
A Some illustrating experiments290

The different results provided are theoretical and we proved that two eigenvalues separate from the291

bulk of the spectrum if the different parameters are big enough and sufficiently far from each other.292

And if they are too close to each other, it is also quite clear that spectral methods will not work.293

However, we highlight these statements in Figure 1.294

Those figure illustrate the effect of perturbation on the spectrum of the stochastic block models for the295

following specific values: N = 2000, p1 = 2.5%, p2 = 1%,  = 0.97 and � 2 {50, 70, 100, 110}.296

Notice that for those specific values with get �1 = 35, �2 = 15 and µ1 2 {20, 14.3, 10, 9.1}; in297

particular, two eigenvalues are well separated in the unperturbed stochastic block model.298

The spectrum of the classical stochastic block model is colored in green while the spectrum of the299

perturbed one is in blue (in red is represented the spectrum of the conditionnal adjacency matrix,300

given the Xi’s). As expected, for the value of � = 50, the highest eigenvalue of P1 is bigger than301

�2 and the spectrum of the expected adjacency matrix (in red) as some "tail". This prevents the302

separation of eigenvalues in the perturbed stochastic block model.303

Separation of eigenvalues starts to happen, empirically and for those range of parameters, around304

� = 70 for which
p
�1  µ1 = 10  �2.305

We also provide how the correlations between the second highest eigenvector and �, the normalized306

vector indicating to which community vertices belong, evolve with respect to � for this choice of307

parameters, see Figure 2.308

B Additional results and technical proofs of Section 1309

In this section, we gather additional results on the random graphs P , namely when it is connected310

(i.e., without isolated vertices) and whether it is possible to prove that some eigenvalues separate311

from the spectrum or not.312

Then we will proceed to prove technical statements made in Section 1.313

B.1 The connectivity regime314

Let us first consider a preliminary remark on the connectivity of the random graph. This result is for315

illustration purpose, as the connectivity (or not) of the geometric graphs would have no real impact on316

our main result, so we do not put too much emphasis on the exact threshold of connectivity. On the317

other hand, the result of Lemma 11 is rather intuitive as with very high probability, one of the kXik
2318

are going to be of the order of 2 log(N), which indicate that the transition between connectivity or319

not should indeed be around log(N)/ log log(N).320

Lemma 11. Assume that
log(N)

� log logN
! 1 as N ! 1. Then one has that

P(9 an isolated vertex i, 1  i  N) ! 0 as N ! 1.

321

Proof. Fix a vertex i. Conditionally on the Xj’s, the probability that i is isolated is
Y

j 6=i

(1� e
��|Xi�Xj |2),

which we will integrate w.r.t. the distribution of independent Xj’s, j 6= i. Precisely, we get that the322

probability that there is an isolated vertex is upper-bounded by323

E
X

i

Y

j 6=i

(1� e
��|Xi�Xj |2) = NE

⇣
1�

1

1 + 2�
e
� 2�

1+2�
|Xi|

2

2

⌘N�1

 N

⇣
1�

1

1 + 2�
e
� 2�

1+2�
A2

2

⌘N�1
+Ne

�A2

2

11



Figure 1: The spectrum of the perturbed/unperturbed stochastic block models for � = 50 (top left),
70 (top right), 100 (bottom left), 110 (bottom right).
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Figure 2: The correlation between the second highest eigenvector and the community vector quickly
grows from near 1 to 0.9 around the critical value � = 60.

for every A > 0. In particular, the choice of ne
�A2

2 = 1/ log(N) gives that the probability of having
an isolated vertex is smaller than

N exp
⇣
�

N � 1

N log(N)

1

1 + 2�
(N log(N))

1
1+2�

⌘
+

1

log(N)

So as soon as log(N)
� log logN

! 1, the probability of having one isolated vertex goes to 0.324

B.2 Separation of eigenvalues325

We now examine the possibility that some eigenvalues of P separate from the rest of the spectrum,326

as it could interfere with standard spectral methods used in community detection. For that purpose,327

we are going to study the moments of the spectral measure of P .328

Proposition 12. Let l � 2 be a given integer, then the following holds:329

lim
N!1

1

�
ETr

✓
2�P

N

◆l

=
1

l2

Var
1

�
Tr

✓
�P

N

◆l

= O

✓
1

N

◆

Proposition 12 implies in particular that the non-normalized spectral measure

µ(P ) =
NX

i=1

�µi

has asymptotically some positive mass on large values in the order of N

�
. This does not prevent330

that the largest eigenvalue separates from the others but it does not hold that the largest eigenvalue331

computed in Proposition 2 overwhelms the remaining eigenvalues.332

Proposition 12 roughly states that the largest eigenvalue does not macroscopically separate from333

the rest of the spectrum. Instead it is blurred into a cloud of large eigenvalues and thus cannot be334

distinguished. Notice that this phenomenon is rather different from the standard stochastic block335

model for which there exists a regime (in the average degree of the graph) where a finite number of336

eigenvalues really overwhelm the rest of the spectrum.337

Proof. We use the fact that the Xi’s are Gaussian random variables to give an explicit formula for338

the moments of the spectral measure µ(P ). Let us use the standard method to derive its moments: let339

l > 1 be given. One has that340

E
NX

i=1

µ
l

i
= ETrP l =

X

i1,i2,...,il

E
lY

j=1

Pijij+1 , (6)

13



using the convention that il+1 = i1. Note that there may be some coincidences among the vertices341

i1, i2, . . . , il chosen in {1, . . . , N}. We forget for a while the precise labels of these vertices and342

denote them by w1, w2, . . . , wl instead (keeping track of the coincidences however).343

For each possible choice of the set of coincidences in (6), we denote by k � 1 the number of344

pairwise distinct indices (that we again label w1, w2, . . . wk). We associate a graph Gk on the vertices345

{w1, w2, . . . wk} by simply drawing the edges (wj , wj+1), j = 1, . . . , l. Note that the graph may346

have multiple edges. It has no loops because Pii = 0, for any vertex i. Let Cl denote the simple347

cycle with vertices 1, 2, . . . , l in order. Then this graph corresponds to the case where there is no348

coincidence. When there are some coincidences, some vertices from Cl are pairwise identified349

(excluding the possibility that subsequent vertices along the cycle are identified due to the fact that350

loops are not allowed). For k < l we denote by Gk the set of such graphs obtained by pairwise351

identifications of vertices from Cl (excluding subsequent vertices). Note that Gl = {Cl}.352

Then one has that353

E
NX

i=1

µ
l

i
=

lX

k=2

X

Gk2Gk

N(N � 1) · · · (N � k + 1)E
Y

e2Gk

Pe, (7)

where in the above formula we have chosen the set of actual vertices among {1, . . . , N} and each354

edge e 2 Gk is repeated with its multiplicity in the product. By standard Gaussian integration, using355

that P(ij) = exp{��||Xi �Xj ||
2
}, one can easily check that356

E
Y

e2Gk

Pe = (det(I + 2�LGk))
�1

, (8)

where LGk is the Laplacian of Gk: we recall that the Laplacian of a graph G = (V,E), V =
{1, . . . , k} is the k ⇥ k matrix whose entries are

Lii = �deg(i), i = 1, 2, . . . , k;Lij = mij , i < j,

where mij is the multiplicity of the non oriented edge (i, j).357

We now perform the expansion of det (I + 2�LGk) according to the powers of �. By the matrix tree358

theorem (see [6] e.g.), one has that359

det (I + 2�LGk) = (2�)k�1
k ⇥ ]{spanning trees of Gk}+

kX

i=2

(2�)k�i
ak,i, (9)

for some coefficients ak,i which can be easily deduced from some minors of LGk . Combining now360

equations (7), (8), (9), and using that Cl has l spanning trees, we deduce that361

E
P

N

i=1 µ
l

i
= N

l(1 + o(1))
1

(2�)l�1l2(1 + o(��1)

+
l�1X

k=2

N
k(1 + o(k2/N))

1

(2�)k�1ck(1 + o(��1)

=
N

l

(2�)l�1l2

⇣
1 +O(��1) +O

⇣
�

N

⌘⌘
. (10)

In the second line of (10), the constant ck is given by

c
�1
k

=
X

Gk2Gk

1

k]{spanning trees of Gk}
.

Thus we have proved the first statement of Proposition 12.362

Let us now turn to the variance :

Var(TrP l) = E
�
TrP lTrP l

�
�
�
ETrP l

�2
.
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We again developp the product

TrP lTrP l =
X

i1,i2,...,il

lY

k=1

Pijij+1

X

i
0
1,i

0
2,...,i

0
l

lY

k=1

Pi
0
ji

0
j+1

and draw the associated graphs (forgetting the labels) on possibly 2l vertices. If the two graphs are363

disconnected (this means that the two sets {i1, i2, . . . , il} and {i
0
1, i

0
2, . . . , i

0
l
} are disjoint, then the364

expectation of the product splits by independance. The combined contribution of each subgraph to365

the variance will thus be in the order of l2/N times
�
ETrP l

�2. This comes from the fact that one366

has to choose 2k pairwise distinct indices when combining the two graphs (while twice k pairwise367

distinct indices when considering the squared expectation of the Trace). Thus, by definition of the368

variance, the only graphs which are contributing to the variance are those for which at least one369

vertex from {i1, i2, . . . , il} and {i
0
1, i

0
2, . . . , i

0
l
} coincide. This means that using the same procedure370

as above, one can restrict to the set of graphs Gk, k  2l � 1 which are obtained from C2l by at least371

one identification.372

From the above it is not difficult to check that Var 1
�
Tr
⇣

�P

N

⌘l
= O

�
1
N

�
. This finishes the proof of373

Proposition 12.374

B.3 Proof of Proposition 1375

We first show that there exists a constant C1 such that

µ1(P )

NC1(�0)
� 1

for N large enough. For i = 1, . . . , N we set d(i) :=
P

j
Pij , which we call "the degree" of i. By

the Perron Frobenius theorem the largest eigenvalue of P cannot exceed the maximal degree of a
vertex, (which can be proved to be strictly greater than N

1+4� ). However the number of vertices whose
degree is such high is negligible with respect to N (it is not obvious such a number grows to infinity
actually). Because all the entries of P are positive, one knows that the largest eigenvalue of P is
simple and is equal to the spectral radius of P . Furthermore, one has that

µ1(P ) = lim
l!1

hv1, P
l
v1i

hv1, P
l�1v1i

where
p
Nv1 = ṽ1 = (1, 1, . . . , 1)t. Actually we are going to show that

µ1(P )2 = (1 + o(1))
hv1, P

2l+2
v1i

hv1, P
2lv1i

for l = lnN.

First one has that

µ1(P )2 �
hv1, P

2l+2
v1i

hv1, P
2lv1i

for l = lnN.

Now we show some concentration estimates for both the numerator and denominator, for l ⇠ lnN
showing that to the leading order they concentrate around their mean which is enough to show that

µ1 � C1(�)N(1 + o(1)).

Observe that hṽ1, P l
ṽ1i =

P
i,j,i1,...,il�1

Pii1Pi1i2Pil�1j is a sum of at most N l+1 terms. Each of the
summands if a function of the Gaussian vector X = (X1, X2, . . . , XN )t. We are going to show that
X 7!

P
i,j,i1,...,il�1

Pii1Pi1i2Pil�1j is Lipschitz with Lipschitz constant in the order of N (2l+1)/2

for some constant C large enough. As E
P

i,j,i1,...,il�1
Pii1Pi1i2Pil�1j = (NC2(�0))l+1(1 + o(1))

for some constant C2(�0) > 0, this will be enough to ensure using standard concentration arguments
for Gaussian vectors that

P

0

@|

X

i,j,i1,...,il�1

Pii1Pi1i2Pil�1j � (C2(�0)N)l+1
| � AN

(2l+1)/2

1

A  2e�2A2

.
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Thus this implies that a.s.

lim
N!1

P
i,j,i1,...,il�1

Pii1Pi1i2Pil�1j

(C2(�0)N)l+1
= 1.

Consider two vectors X and Y . One has that376
���

X

i,j,i1,...,il�1

Pii1Pi1i2Pil�1j(X)�
X

i,j,i1,...,il�1

Pii1Pi1i2Pil�1j(Y )
���



l�1X

k=0

X

i,j,i1,...,il�1

Pii1(X)Pi1i2(X)
���Pikik+1(X)� Pikik+1(Y )

���Pik+1ik+2(Y ) . . . Pil�1j(Y )

 ↵

l�1X

k=0

X

i,j,i1,...,il�1

k�1Y

l=0

Pilil+1(X)
l�1Y

l=k+1

Pilil+1(Y )
���|Xik �Xik+1 |� |Yik � Yik+1 |

���,

(11)

where in the last line we have used the fact that x 7! e
��x

2

is ↵-Lipschitz. The constant ↵ can377

be chosen as ↵ = 4
p
� sup

x
|xe

�x
2

|. Consider the sum in (11). We note
P

⇤ the sum over indices378

i, j, i1, . . . , il�1 and k in the following. One has that379

X

⇤

k�1Y

l=0

Pilil+1(X)
l�1Y

l=k+1

Pilil+1(Y )
���|Xik �Xik+1 |� |Yik � Yik+1 |

���



vuutX

⇤

k�1Y

l=0

P
2
ilil+1

(X)
l�1Y

l=k+1

P
2
ilil+1

(Y )

sX

⇤

���|Xik �Xik+1 |� |Yik � Yik+1 |

���
2

 N
l+1
2 N

l�1
2

 
X

k

8|X �Xkv1 � (Y � Ykv1)|
2

! 1
2

 CN
(2l+1)/2

||X � Y ||.

We now show that

µ1(P )2  (1 + o(1))
hv1, P

2l+2
v1i

hv1, P
2lv1i

for l = lnN.

Denote by wi, i = 1, . . . , N a set of orthonormalized eigenvectors of P . Equivalently the above
means that X

i>1

µ
2l
i
(µ2

1 � µ
2
i
)hwi, v1i

2 = o(1)
X

i�1

µ
2l+2
i

hwi, v1i
2
.

Fix ✏ > 0. Set r2 :=
P

i:µ1�|µi|<✏
hwi, v1i

2
. The first sum in the above then does not exceed:

2✏r2µ2l+1
1 + µ

2l+2
1 (1� r

2)(1� ✏)2l.

This is o(1)µ2l+2
1 r

2 provided that r2 � ⌘ for some ⌘ > 0. This is the fact we prove below. To
that aim we show that hw1, v1i

2
� ⌘. Using that w1 (associated to µ1) has non negative coordi-

nates and is normalized to 1, one has that hw1, v1i �
1p

N |w1|1
. Thus it is enough to show that

lim sup
p
N |w1|1 < 1. Assume this is not the case : then there exists a sequence AN ! 1 such

that
p
N |w1|1 � AN (along some subsequence). In particular let wi0 = maxwi �

ANp
N
. Fix � > 0

small. Set J := {j, wj � �wi0}. Then one has that ]J 
N

�2A2
N

⌧ N . Using this in the expression

µ1 =
X

j2J

Pi0j

wj

wi0

+
X

j /2J

Pi0j

wj

wi0

one deduces that
µ1  N� + ]J,

which is a contradiction. This finishes the proof of Proposition 1.380
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B.4 Proof of Lemma 3381

Let us first introduce some notations and key results for the proof. The function

✓ : r � 0 7! ✓(i, r) :=

Z

D(Xi,
p
r)

1

2⇡
e
�|x|2/2

d�2(x),

where D(Xi,
p
r) is the disk centered at Xi of radius

p
r.382

Notice that the following holds for all r > 0

e
� kXik

2

2

⇣
1� e

� r
2

⌘
e
�2kXik

p
r
 ✓(i, r)  e

� kXik
2

2

⇣
1� e

� r
2

⌘
e
2kXik

p
r
.

It also holds that
2e�kXik2

(1� e
�r)  ✓(i, r)  e

� kXik
2

4 (e
r
2 � 1)

and moreover if r1 > r0 then we immediately have

✓(i, r1)� ✓(i, r0) 
r1 � r0

2
.

Conditionally on Xi, the number of vectors among the X 0
j
s whose distance to Xi falls in the interval I

is a binomial random variable Bin(N � 1, ✓(i, l(I))). So we recall the following basic concentration
argument (see equivalently Theorem 2.6.2 in [21]). Let Z be a binomial random variable with
distribution Bin(m, p). There exists a constant ↵ > 0 ( if p < 4/5, one can choose ↵ = 1/32) such
that for any C > 0, one has

P (|Z �mp| � C
p
mp)  2e�↵C

2

.

We can now turn to the proof of Lemma 3 itself. Let " > 0 be fixed (its specific value is tuned at the
end of the proof) and i 2 [N ] be a fixed index such that |Xi|

2


2 ln �

�
. We are going to show that

S :=
NX

j=1

e
��|Xi�Xj |2 = c0

N

�
(1± o(1)) ,

where

c0 := lim
N!1

�

N

2 ln �
"X

k=1

n(i)
k e

�k"
,

with 8k = 1, . . . , 2 ln �

"
,

n(i)
k := N

⇣
✓
�
i,
(k + 1)"

�

�
� ✓
�
i,
k"

�

�⌘
.

As � goes to infinity with N , then it holds that

Ne
� kXik

2

2

⇣
"

2�
�O(

ln2 �

�2
)
⌘
 n(i)

k  N
"

2�

so that if kXik
2
 2 ln �

�
then n(i)

k '
N"

2� which ensures that c0 = 1
2 (1 + o(1)) is well-defined.383

To control S, we split this sum into three parts, depending on the distances from Xj to Xi, as follows384

S =
X

j:d2(Xi,Xj)2[ "� ,
2 ln �

� ]

e
��|Xi�Xj |2

| {z }
S1

+
X

j:d2(Xi,Xj)< "
�

e
��|Xi�Xj |2

| {z }
S2

+
X

j:d2(Xi,Xj)>
2 ln �

�

e
��|Xi�Xj |2

| {z }
S3
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We first focus on S1 that we are going to further decompose as a function of the distance from Xj to
Xi : define for k 2 {1, . . . , 2 ln �

"
}

n
(i)
k

:= ]

n
l, d

2(Xl, Xi) 2


k"

�
,
(k + 1)"

�

o
.

Then one has385

S1 

2 ln �
"X

k=1

e
�k"

n
(i)
k

=

2 ln �
"X

k=1

e
�k"n(i)

k +

2 ln �
"X

k=1

e
�k"

⇣
n
(i)
k

� n(i)
k

⌘

=
N

2�

�
1 + o(1)

�
+

2 ln �
"X

k=1

e
�k"(n(i)

k
� n(i)

k ),

where the last equality comes from the approximation of n(i)
k as N and � goes to infinity. It also386

holds that387

S1 �

2 ln �
"X

k=1

e
�(k+1)"

n
(i)
k

=

2 ln �
"X

k=1

e
�(k+1)"n(i)

k +

2 ln �
"X

k=1

e
�(k+1)"

⇣
n
(i)
k

� n(i)
k

⌘

�
N

2�

�
1� 2"� o(1)

�
+

2 ln �
"X

k=1

e
�(k+1)"(n(i)

k
� n(i)

k ).

It remains to control the different errors n(i)
k

� n(i)
k . It holds that,

PXi

✓
91  k 

2 ln �

"
, |n

(i)
k

� n(i)
k | � "n(i)

k

◆
 8

ln(�)

"
e
�↵"

2 N
4� ,

because each n(i)
k '

N"

2� as � increase to infinity with N . At the end, we obtained that for each Xi388

such that kXik
2


2 log(�)
�

, then389

����S1 �
N

2�

���� 
N

2�

�
3"+ o(1)

�
with proba at least 1� 8

ln(�)

"
e
�↵"

3 N
4� . (12)

Let us now focus on S2 which is obviously smaller than n
(i)
0 where

n
(i)
0 := ]{j, d

2(Xi, Xj) <
"

�
}.

Moreover, because of the concentration of binomials, it holds that

PXi

✓
n
(i)
0 � 2N✓(i,

"

�
)

◆
 2e�↵N✓(i, "� )

.

Now as � goes to infinity with N , then for � large enough, the following holds
"

4�
 ✓(i,

"

�
) 

"

2�

which ensures that
PXi

✓
n
(i)
0 �

N"

�

◆
 2e�↵

N"
4� .
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As a consequence we have shown that390

S2 
N"

�
with probability at least 1� 2e�

↵
4

N"
� . (13)

Last, by the very definition of S3, it always holds that391

S3  Ne
� ln �

2


N

�2
. (14)

Combining (12), (13) and (14), we obtain that with probability at most

2e�
↵
4

N"
� + 8

ln(�)

"
e
�↵"

3 N
4�

one has that ���S �
N

2�

��� 
N

2�

�
5"+ o(1)

�
.

As a consequence, as N grows to infinity, one has392

P

0

@9i : |Xi|
2


2 ln �

�
and

���
NX

j=1

e
��|Xi�Xj |2 �

N

2�

��� �
N

2�

�
5"+ o(1)

�
1

A

 4N
ln �

�

⇣
e
�↵

4
N"
� + 4

ln(�)

"
e
�↵"

3 N
4�

⌘
! 0

by choosing " =
⇣

N

� ln �

⌘�1/4
(so that " goes to 0 as intended) and because N

� ln �
goes to infinity.393

This proves Lemma 3.394

B.5 Proof of Lemma 4395

The proof is almost identical to that of Lemma 3. The only difference is that we cannot approximate396

n(i)
k by N"

2� because e�
kXik

2

2 might go to 0. Yet it still holds that n(i)
k 

N"

2� . And thus, we can easily397

prove the weaker statement398

P

0

@9i,

NX

j=1

e
��|Xi�Xj |2 �

N

2�

�
1 + 5"+ o(1)

�
1

A

 4N
⇣
e
�↵

4
N"
� + 4

ln(�)

"
e
�↵"

3 N
4�

⌘
! 0

with the same choice of ", assuming Assumption (H1) holds.399

B.6 Proof of Lemma 5400

If we can show that for any i 2 J and with probability close to 1, it holds that401

X

j /2J

Pij ⌧
N

�
, (15)

then the result would be a direct consequence of Lemma 3.402

By the very definition of J , if j /2 J , then necessarily |Xj |
2
�

2 ln �

�
. Notice that |Xj |

2
� (3+ ✏) ln �

�

then �|Xi �Xj |
2
� (1 + ✏) ln � so that for any i 2 J, this immediately yields that

X

j,|Xj |2�(3+✏) ln �
�

Pij 
N

�1+✏
⌧

N

�
.

This is enough to obtain (15) for the contribution of such indices. Note also that the same argument is
valid to get (15) for the subsum (keeping i 2 J fixed)

X

j,�|Xi�Xj |2�(1+✏) ln �

Pij 
N

�1+✏
⌧

N

�
.
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Thus we only need to consider indices i 2 J and j /2 J such that �|Xi �Xj |
2
 (1 + ✏) ln �. This

implies in particular that necessarily kXjk
2
 8 ln(�)

�
. Consider therefore such an index i and let

S :=
X

j:�|Xj�Xi|2(1+✏) ln �,|Xj |2� 2 ln �
�

e
��|Xi�Xj |2 .

Because kXjk
2
 8 ln �

�
then the number of indices j 62 J is smaller than than 16N ln �

�
with403

probability at least 1� e
�↵8N ln �

� . As a consequence, the sum above is composed of at most 16N ln �

�
404

terms, all smaller than 1. Obviously, if they are all smaller than 1
ln2

�
then S  16 N

� ln �
⌧

N

�
.405

So this implies that it only remains to control the sum S for indices i 2 J such that for some j 62 J it
holds that kXi �Xjk

2


4 ln ln �

�
. This implies that such indices i 2 J must satisfy

2
ln �

�
� |Xi|

2
� 2

ln �

�

 
1� 2

s

2
ln ln �

ln �

!
.

And, using the same argument as before, there are at most 8N

�

p
ln � ln ln � such indices with406

arbitrarily high probability (as � goes to infinity). On the other hand, ]J (the cardinality of J) is, with407

arbitrarily high probability, of the order of N ln �

�
408

This gives a lower bound on the spectral radius of PJ : let v be the unit vector v = 1p
]J
(1, . . . , 1)t409

(of dimension ]J). Then410

hPJv, vi �
]J � 8N

�

p
ln � ln ln �

]J

N

2�
(1� o(1))

�
N

2�
(1� o(1))

 
1� 8

s
ln ln �

ln �

!

�
N

2�
(1� o(1)) .

Hence Lemma 5 is proved.411

C Technical proofs of Section 2412

C.1 Proof of Proposition 6413

The preceding proof can be easily modified to obtain the following bounds on the spectral radii :
there exist constants c0 = 1/2, C > 0 so that with high probability

⇢(P1)  c0
N

�
; ⇢(Ac)  C

p

N.

Following [11], we first prove that the largest eigenvalue of A is up to a negligible error (in the
appropriate regime of p1, p2, �) that of P0. More precisely, it holds with arbitrarily high probability
that

hAv1, v1i = N
p1 + p2

2
+O

 
N

�
+

s

N

✓
p1 + p2

2
+



2�

◆!
.

It easily follows that the largest eigenvalue ⇢1(A) of A satisfies

⇢1 � �1

⇣
1 +O(

1

�(p1 + p2)
+

1
p
N

)
⌘
.

In addition decomposing a normalized eigenvector v associated to ⇢1 as

v = r1v1 + r2v2 +
p

1� r2w
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for some normalized vector w orthogonal to v1 and v2 and where r
2 = r

2
1 + r

2
2 , then one has that

hAv, vi = r
2
1N

p1 + p2

2
+O(

p

N +
N

�
)f(r) +N

p1 � p2

2
r
2
2

for some function f()̇ such that kfk1  1. Thus it follows that r1 = 1+O( 1
�
+N

� 1
2 ). This finishes

the proof that the largest eigenvalue (and eigenvector) of A and P0 almost coincide. Similarly, since

hAv2, v2i = �2 +O

✓
N

�
+
p

N

◆
,

the same arguments imply that the second largest eigenvalue of A and P0 coincide provided

N(p1 � p2) �
p

N +
N

�
.

And associated normalized eigenvectors coincide asymptotically, following the same basic perturba-414

tion argument.415

C.2 Proof of Lemma 9416

We first prove the first point. The objectif is to lower-bound hv1, w1i. Since w1 has non negative
coordinates and is normed to 1,

P
i
w1(i)|w1|1 � 1 = |w1|

2
2. Thus we immediately get the first

lower bound

hv1, w1i =
1

p
N

NX

i=1

w1(i) �
1

p
N |w|1

.

Let io be a coordinate such that w1(i0) = |w|1. Then one has that

µ1wi0 =
NX

j=1

Pi0jwj =
NX

j=1

Pi0jwi0 +
NX

j=1

Pi0j(wj � wi0).

Fix ⌘ > 0, ✏ > 0 that we allow further to depend on N and such that ⌘ � ✏. Using that µ1 �417

dmax(1� ✏) (see Proposition 2), we thus obtain that418

NX

j=1

Pi0j(wi0 � wj)  ✏dmaxwi0 , (16)

where dmax = maxi
P

N

j=1 Pi,j ' c0
N

�
. Define now

B := {j, Pi0j > ⌘ and wj <
wi0

2
}

and
B := {j, Pi0j > ⌘ and w�

wi0

2
}

Using (16), one obtains that ⌘]Bwi0/2  ✏wi0dmax. This means that419

]B 
2✏

⌘
dmax. (17)

We can also deduce from the fact µ1 � dmax(1� ✏) that

NX

j=1

Pi0j � dmax(1� ").

Let us assume for the moment that
X

j:Pi0j�⌘

Pi0j � cdmax

21



for some constant c. Then by (17) this implies

]B � cdmax � ]B � dmax(c�
2"

⌘
) � Cdmax

for some constant C > 0. Using the fact that kwk = 1, this implies that dmaxCw
2
i0
/4  1 which in

turn yields that

|w|1 
C

0
p
dmax

,

and then Lemma 9 will be proved.420

Therefore, it remains to prove that
X

j:Pi0j�⌘

Pi0j � cdmax.

This is true if i0 is such that |Xi0 |
2


ln �

�
, by slightly adapting the proof of Lemma 3 and choosing421

⌘ of the order of min{
p
", 1/�} – more precisely, the only change in the proof of Lemma 3, is the422

control of S1.423

One can easily extend this claim if |Xi0 |
2


K ln �

�
for some constant K large enough. Now noting424 P

j
P

⇤
ij

the subsum over those indices j such that Pij  ⌘, one has that425

P

0

@9i, |Xi|
2
�

K ln �

�

⇤X

j

Pij � dmax(1� 2✏)

1

A

 P
✓
9
CN

�
) points Xj in a ball B(x, r), |x| �

(K � 1) ln �

�
, r  2

ln �

�

◆
.

 C
00
✓
N

N

�

◆
e
�C

0
N(K�2) ln �

,

where C,C 0
, C

00 are constants and the last follows from Gaussian integration on squares of size 2 ln �

�
426

covering B(0, (K � 3) ln �

�
)c. Choosing K large enough (actually K = 4 should be enough) yields427

the result and finishes the proof of the first part Lemma 9.428

We now consider the second, more technical point. Let us consider a subset of indices I ⇢ {1, . . . , N}429

to be fixed later and wI = 1p
]I
(wI(1), . . . , wI(N))t, where wI(i) = i2I .430

Then one has

hwI , v1i =

r
]I

N
and hP1wI , wIi =

1

I

X

i,j2I

Pij =: DI ,

where DI denotes the average inner degree (restricted to edges between two vertices from I) and it
also holds thathP1v1, v1i = d where d is the average global degree. We now show that we can exhibit
such a set I such that ]I � � and DI = µ1(1 + o(1)), since we assumed N

�
⇠ Np. Fix A > 0. Set

I := {1  i  N, kXik
2
 A

�

N
}.

Since � ln �/N tends to 0, the arguments of the proof of Lemma 3 can be easily adapted to prove that431

]I � �A with arbitrarily high probability as long as A ⌧ ln �. Moreover, adapting again the proof432

of Lemma 3 (controlling the sum S1 defined there in a similar fashion since we can still approximate433

n(i)
k by N"

2� as e�
kXik

2

2 goes to 1), we obtain that DI = µ1(1 + o(1)). We can do the same to define434

a vector supported on N

�
coordinates instead of �.435

Consider now the largest entry of w1: let i be such that wi = |w1|1. Let ✏ be fixed small so that
µ1 �

N

2� (1� ✏). Let J be the subset

J = {j, w1(j) � (1� 3✏)wi}.
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Then, one has that
P

j2J
Pij + (1 � 3✏)(

P
j
Pij �

P
j2J

Pij) �
N

2� (1 � ✏) from which one
deduces that

P
j2J

Pij �
2
3

N

2� . In particular this implies that w1 cannot be localized on less than N

�

coordinates (and is roughly equally spread on these coordinates). One can also show that the second
block of largest entries of w1 has size at least of order N

�
and entries greater than |w1|1(1� 3✏)2.

Assume w1 is localized on less than � coordinates so that hw1, wIi ! 0.
In the same way we constructed I , one can construct at least �2

/N vectors v̂i whose support are of
size A

N

�
A > 0 chosen large enough, 2 by 2 disjoint such that

hv̂i, P v̂ii �
N

2�
(1� ✏).

Let now w̃1 be the vector whose coordinates are those of w1 greater than ⌘|w1|1, with ⌘ > 0 chosen
small. Because w1 is localized on less than � coordinates, the number of non zero coordinates of w̃1

can be written k
N

�
for some k ⌧

�
2

N
. Let ✏ be such that 1� 3✏ = ⌘, so that there must exist an index

i 2 J such that for some � > 0, X

j /2J

Pij � �
N

�
.

This follows from the fact that J corresponds to a subset of indices of the smallest of the Xi’s and the
nearest neighbors cannot be all in J . Furthermore, for the same reason there exist at least �0N

�
such

indices i. Indeed define for any vertex j 2 J :

S1(j) =
X

k2J

Pjk;S2(j) =
X

l2Jc

Pjl.

One then has that
µ1

S1(j) + S2(j)
! 1, 8j 2 J.

In all cases one has that
µ1

S1(j) + S2(j)
� 1� ✏.

Fix � > 0 small. And set E� = {j 2 J,
S1(j)

S1(j)+S2(j)
2 [�, 1� �]}. We call E� the boundary of J . For436

any i = 1, . . . , kN�
�1 (corresponding to the non zero entries of w̃1), consider the ball B(Xi,

1
�
). It437

is colored green if S2(i)
S1(i)+S2(i)

> 1� �. It is colored red S1(i)
S1(i)+S2(i)

> 1� �. In all other cases, such438

a ball is colored blue3 . One can note that the boundary corresponds to blue balls. We claim that there439

exists � > 0 small such that the edge E� is non empty and furthermore encircles an area in the order440

of kN

�
.441

To prove this fact, one first remarks that there are green balls. This follows from the fact that we
assume the size of the support of w1 is negligible with respect to �. There also exists at least one red
ball. Indeed, consider the ball centered at Xi where wi = |w1|1. One then has that

µ1

S1(i) + S2(i)
=

S1(i)

S1(i) + S2(i)
a1 +

S2(i)

S1(i) + S2(i)
a2,

where a1S1 =
P

k2J
Pik

wk
wi

, a2S2 =
P

l2Jc Pil
wl
wi

. One deduces that

S1(i)

S1(i) + S2(i)
�

µ1

S1(i)+S2(i)
� ⌘

a1 � a2
,

where µ1

S1(i)+S2(i)
 a1  1. From this one deduces that442

S1(i)

S1(i) + S2(i)
� 1�

✏

1� ⌘
.

Choosing ⌘ > 0 small enough (⌘ < 1/2) yields that443

S1(i)

S1(i) + S2(i)
� 1� 2✏ � 1� �

3Of course, this choice of colours is completely arbitrary and only for illustration purpose
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provided � � 2✏. Consider two balls intersecting on more than one third of the total area of one ball.444

This is the case if the center of the second ball is contained in the first one. They cannot be colored445

green and red provided 2� < 1/3. From this fact we deduce that there necessarily exists an interface446

of blue balls surrounding the red balls. Now J consists of indices corresponding to those in the area447

encircled by the blue interface (up to an error in the proportion of �) and some more points which448

are necessarily included in red balls centered at some point Xj , j 2 J . Note that the proportion of449

those points in J and such red balls cannot exceed �. The minimal area A to contain kN�
�1 points450

is in the order of A � Ck�
�1 for some constant C. Now the total area covered by red balls with451

some inside points in J defines a domain D whose area is at most in the order of k

�
. Among these a452

proportion of at most 2� corresponds to points in J . From this we deduce that the area encircled by453

blue balls is at least cA for some constant c < 1. Thus one can find at least K = (k�)1/2 blue disks454

whose support are pairwise disjoint and on the frontier of the domain.455

As a consequence there exists at least one normalized vector v̂i such that the supports of v̂i and w̃1456

are disjoint. Calling I2 the support of v̂i one has that there exists a constant c > 0457

Rv2 :=
X

i2J, j2I2

Pijw1(i)
1

p
]I2

=
µ1

p
]I2

X

i2I2

w1(i) � c

s
N

�
⌘|w1|1µ1. (18)

Now we can construct at least K such vectors whose support are pairwise disjoint by considering the
blue disks. We denote these vectors v1, . . . ,vK. Let then set

v =

P
K

i=1 vi
p
K

.

Then because hvi, Pvii �
N

2� (1� ✏), and (18) one can check that

sup
r

hrw1 +
p
1� r2v, P

�
rw1 +

p
1� r2v

�
i

is achieved for r0 < 1 such that

r0p
1� r

2
0

�
µ1 �

N(1�✏)
2�

p
Kc

q
N

�
⌘|w1|1µ1

.

The denominator is much larger than µ1 as one can check that
p
K

q
N

�
|w1|1 does not tend to 0.458

And furthermore this maximum can excede µ1: this is a contradiction.459

C.3 Proof of Theorem 10460

Let us denote by ✓1 and ✓2 the two eigenvalues that exit the support of the spectral measure of P1.
Now assuming this holds true, an eigenvector associated to such an eigenvalue ✓ has necessarily the
form:

w = R1(✓)(↵1v1 + ↵2v2),

where
↵1v1 + ↵2v2 2 Ker(I + P0R1).

Hereabove and in the sequel we denote R1 for R1(✓) for the sake of notations. Using this one deduces461

that462

↵1 = �
�1hv1, R1v2i

�1hv1, R1v1i+ 1
↵2

and �1�2hv1, R1v2i
2 = (1 + �1hv1, R1v1i)(1 + �2hv2, R1v2i).

Then for such an eigenvector setting ai = hvi, R1vii, for i = 1, 2 and b = hv1, R1v2i we obtain that463

hw, v2i
2 =

↵
2
2

�
2
2

; hw, v1i =
b↵2

1 + �1a1
. (19)
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So far we have not normalized the eigenvector w: this has to be considered in order to show that464

there is indeed some information on v2 using the two normalized eigenvectors. Let us now recall the465

equation to compute the two eigenvalues ✓i:466

f�1,�2(✓) = (1 + �1a1(✓))(1 + �2a2(✓))� �1�2b
2(✓) = 0, (20)

which we have solved as ✓ being a function of �1 and �2. The very definition of w yields that

||w||
2 = ↵

2
2

✓
�
2
1b

2

(�1a1 + 1)2
a
0
1(✓) + a

0
2(✓)� 2

�1b

�1a1 + 1
b
0(✓)

◆
.

Using (20) we obtain that467

||w||
2 = ↵

2
2

@f�1,�2
@✓

�2(1 + �1a1)
= ↵

2
2

@f�1,�2
@✓

�1�2b
2

a
2
2

� (1 + �1a1)
, (21)

and combining (19) and (21) gives468

hw, v2i
2

||w||2
=

1
@f�1,�2

@✓

1 + �1a1

�2
. (22)

Notice that Equation (22) implies that there are at most two eigenvalues of P0 + P1 that separate
from the spectrum of P1; denote them by ✓1 and ✓2. We also recall that we have denoted by ✓(�1)
and ✓(�2) the respective solutions of 1 + �1a1 = 0 and 1 + �2a2 = 0. We claim that those four
specific values satisfy the following relations

✓2  min{✓(�2), ✓(�1)}
✓1 � max{✓(�2), ✓(�1)}

, ✓(�2)  �2 + µ1 and �1  ✓(�1)  �1 + µ1 .

The inequalities on the left are a consequence of the fact that ✓1 and ✓2 are solutions of f�1,�2(✓) = 0469

thus (1+ �1a1(✓i)) and (1+ �2a2(✓i)) must have the same sign, the one of @f�1,�2
@✓

(✓i). The second470

inequality is a consequence of the fact that |µj |  µ1 and then plugging this value in a2. The471

inequalities on the right are a consequence of the very last argument and of the fact that ✓(�1) � �1472

since ✓(�1) is an eigenvalue of P0 + �1v1v
>
1 .473

This immediately gives the first bound474

� (1 + �1a1(✓2)) = �1

X

j

r
2
j

✓2 � µj

� 1 �
�1

�2 + 2µ1
� 1 (23)

As a consequence, it remains to control @f�1,�2
@✓

(✓2). Notice that, by definition of f�1,�2 and the fact475

that f�1,�2(✓2) = 0, we get476

����
@f�1,�2

@✓
(✓2)

����  �1
@a1

@✓
(✓2)

�
�2|a2|� 1

�
+ �2

@a2

@✓
(✓2)

�
�1|a1|� 1

�

+2
@b

@✓
(✓2)

p
�1�2

p
(1 + �1a1)(1 + �2a2)

Moreover, we immediately get the following upper-bounds

|ai(✓)| =
X

j

r
2
j

✓ � µj


1

✓ � µ1
, |a2(✓)| 

1

✓ � µ1
, a

0
1, a

0
2, b

0


1

(✓ � µ1)2
.

Plugging those estimates in @f�1,�2
@✓

(✓2) gives that477

�2

����
@f�1,�2

@✓

���� 
�1�2

(✓2 � µ1)2
� �2

✓2 � µ1
� 1
�
+

�
2
2

(✓2 � µ1)2
� �1

✓2 � µ1
� 1
�

+2

p
�1�2�2

(✓2 � µ1)2

s
� �2

✓2 � µ1
� 1
�� �1

✓2 � µ1
� 1
�

(24)
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From Equation (5), we get that ✓2 �
�2
4 � µ1(1 + ") so that we get non-zero correlation between w2478

and v2 from Equations (23) and (24).479

We can actually be more precise. It is indeed quite easy to prove using (??) that

f�1,�2(✓) � 1 +
�1

µ1 � ✓
+

�2

µ1 � ✓
+

�1�2

(µ1 + ✓)2
.

Let us assume that the ratios �1
�2

= q > 1 and 0 
µ1

�2
= x  1 are fixed, and make the change of

variables ✓ = �2 � �µ1 = (1� �x)�2, so that

f�1,�2(✓) � 1�
1 + q

1� (� + 1)x
+

q

(1� (� � 1)x)2
.

In order to control the solution of f�1,�2 = 0 w.r.t. �, we are going to assume for the moment that480

(� + 1)x 
1
2 so that the r.h.s. can be easily lower-bounded into481

f�1,�2(✓) � 1� (1 + q)
�
1 + (� + 1)x+ 2((� + 1)2x2)

�

+ q
�
1 + 2(� � 1)x� (� � 1)2x2

�

= x

⇣⇥
�(q � 1)� (3q + 1)

⇤
� 2x

⇥
(3q + 1)�2

� 2(q � 1)� + (3q + 1)
⇤⌘

,

which gives an explicit (and uniformly bounded) upper-bound � for �, i.e., the solution of the above
degree 2 polynomial. Notice that when x goes to zero, the expression boils down to

� = 3 +
4

q � 1
+O(x).

Plugging � into Equations (23) and (24) gives that

|hw, v2i|
2

kwk2
�

⇣
1�

2x

q � 1

⌘ (1� (� + 1)x)3
⇣
1 + �+1

2(q�1)x+
p
q(� + 1)x

⌘2

which is uniformly bounded away from 0.482

Moreover, when x goes to 0, it holds that483

|hw, v2i|

kwk
� 1� 2

q
p
q � 1

p
x�O(x)

= 1� 2
�1
�2q

�1
�2

� 1

r
µ1

�2
�O

�µ1

�2

�

and when x is small enough4, then we also have that (� + 1)x 
1
2 as required. This proves the484

theorem (since ratios are assumed to be uniformly lower and upper-bounded).485

4Numerical implementation suggests that those computations hold for x 
q�1
8q , i.e., when the value on � is

set to 3 + 4
q�1 without the O(x) term.
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