
We thank the reviewers for their careful consideration and their feedback, our replies are provided below. We believe1

that we addressed all the raised issues, the detailed responses are given below.2

Novelty of our analysis and comparison to [TLR18]: Our analysis is significantly more complicated compared to3

the LD case in [TLR18] due to non-reversibility, and requires us to develop new estimates, e.g. Lemma 2, where the4

eigenvalue and the norm estimates require a significant amount of work because the forward iterations correspond to5

non-symmetric matrices Hγ (defined in (2.2)) and achieving the acceleration behavior requires careful estimates. The6

analysis here also requires us to establish novel uniform L2 bounds for NLD in both continuous and discrete times. We7

have also new results and insights about the mean exit times for ULD and NLD, which is a difficult problem to study.8

R.1: (1) We will add a conclusion section to summarize our paper. (2) The name9

NLD is indeed a bit unfortunate but the name “non-reversible” for such dynamics is10

standard, see e.g. “Duncan, A.B., Lelièvre, T. & Pavliotis, G.A. Variance Reduction11

Using Nonreversible Langevin Samplers. J Stat Phys 163, 457-491 (2016)". (3) When12

condition number is close to 1 or m large, ULD may not improve upon LD. (4) We13

will add discussions on dependence on other parameters in the revision. We focus14

on the comparison in m since it is a natural choice. For example, for convergence15

rate to Gibbs distribution, it is known that for m-strongly convex objectives the16

continuous-time overdamped Langevin diffusion has rate e−mt in W2 independent of17

other parameters. (5) Line 220. The improvement will occur if CJ(ε̃) = Õ(1). (6) We will add discussions comparing18

ULD and NLD. For example, when smallest eigenvalue m is close to the largest eigenvalue M , NLD will not improve19

much upon LD, but ULD will improve upon LD if m is small and ULD will be faster than NLD. The figure on the20

right is an example for training fully-connected neural networks on MNIST where ULD was faster when both methods21

were tuned. (7) Hγ is defined in (2.2). We will define it earlier than Line 114. We will also define H and M more22

appropriately. (8) We will correct all the typos the reviewer pointed out and add clarifications to all the bullet points.23

R.2: We thank the reviewer for the insightful comments. We absolutely agree with the reviewer that smaller value24

of empirical risk achieved, better generalization will be in general. However, for many interesting problems such as25

deep learning with modern neural networks, it has been empirically found that most local minima are equivalent in the26

sense that they lead to similar generalization performance and that finding a global minima may sometimes lead to27

overfitting (see e.g. the paper “The Loss Surfaces of Multilayer Networks” by Choromanska et al.). Therefore, there is28

also incentive to find a local minima to achieve good generalization performance where our results would be relevant.29

R.3: (2) We sincerely apologize for mis-citing Lemma EC.6 in [GGZ18]. Regarding Lemma 14 in [GGZ18], we would30

like to point out that in our current paper, our ULD uses the Cheng et al. discretization of underdamped Langevin31

diffusion as in [CCBJ17]; therefore it corresponds to Lemma 18 in [GGZ18] because in [GGZ18] two discretizations32

of underdamped Langevin diffusion are considered: Euler discretization (Lemma 14), and Cheng et al. discretization33

(Lemma 18). Indeed, the proof of Lemma 18 provides the bound O(Kη3) for KL divergence; see Equation (D.20)34

on p.63 of [GGZ18]). We will provide a self-contained proof in the revision. (3) Carrying out metastability analysis35

without relying on discretization error is a good idea, and is worth exploring in the future. One reason we follow the36

current approach is to make it easier for us to compare our results with [TLR18] and show advantage and improvement37

when breaking the reversibility. If the improvement comes from avoiding discretization error, it might confuse the38

readers and undermine and main message of our paper. (4) In the exit-time part, we do not know any rigorous results39

for continuous-time Langevin beyond the double well example. Analyzing the behavior of these processes around40

a saddle point becomes very hard as the surface that contain the saddle point is characteristic, i.e. the drift and the41

normal to the surface is orthogonal which makes standard boundary layer approaches inapplicable (see Sec 5 of [BR16])42

and we agree with the reviewer that exploring beyond the double well example will be a very interesting research43

direction to pursue which would lead to a major breakthrough in this research area. (5) We will cite the papers A.44

Dalalyan, “Theoretical guarantees for approximate sampling from smooth and log-concave densities” A. Durmus and E.45

Moulines, “Nonasymptotic convergence analysis for the unadjusted Langevin algorithm”. Thanks for bringing this up!46

R.4: (2) Our analysis is for the empirical risk F , however it is straightforward to47

obtain standard generalization bounds to get results for the population risk F by an48

analysis similar to [TLR18]. (3) We agree that it would be interesting to relax the twice49

continuously differentiability assumption, however we note that due to the difficulty50

of analyzing ULD and NLD algorithms, even for such smooth functions many basic51

questions are open such as the mean exit time or a sharp characterization of time it52

takes to be in a neighorhood of a local minima. (4-5) In practice, the matrix J can53

be chosen as a random anti-symmetric matrix. For quadratic objectives, there is a54

formula for optimal J matrix (see the paper “Optimal non-reversible linear drift for the convergence to equilibrium of a55

diffusion” by Lelievre et al, 2013). We can take the parameter γ = 2
√
m as predicted by our theory (Lemma 2) for56

quadratics. In the figure, we compare ULD and NLD to LD for the double well example with random initialization over57

100 runs where J is chosen randomly and γ = 2
√
m. In this simple example, we observe NLD and ULD have smaller58

mean exit times (from a barrier) compared to LD. We will add these discussions in the revised version.59


