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A Figures

Wasserstein Rate

Figure 1: The norm ||e~*#~|| is optimized for the choice of v = 2,/m. This is illustrated in the
figure for m = 0.01.

az

Figure 2: A double-well example. Here, AF = F (o) — F(a;). There are exactly two local minima
a1 and ao which are separated with a saddle point o.

B Proof of results in Section

B.1 Proof of Lemmal2l

Proof. Let H be a symmetric positive definite matrix with eigenvalue decomposition H = QDQ7,
where D is diagonal with eigenvalues in increasing order m := Ay < Ay < --- < Ay =: M of the
matrix H. Recall H,, from (2.2)). Note that

T
(8 8]0[7 ] o[ 8]

Therefore H., and G have the same eigenvalues. Due to the structure of G, it can be seen that there
exists a permutation matrix P such that
Ti(y) 0 0 0

0 Ty) O 0
T, := PGP’ = . ) . ,  where T;(v):= {

0 0 0 Ta(v)
withi =1,2,...,d, and T;(v) are 2 x 2 block matrices with the eigenvalues:

+ 2_4 .
TEVIT TR WQA i=1,2,....,d. (B.2)

Hi+ =
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We observe that T, and G (and therefore H.) have the same eigenvalues and the eigenvalues of 7T,
are determined by the eigenvalues of the 2 x 2 block matrices T;().

Since H., is unitarily equivalent to the matrix 7', i.e. there exists a unitary matrix U such that
H, =UT,U*, we have ||| = ||[Ue "> U*|| = ||e~*""||. Since T, is a block diagonal matrix
with 2 x 2 blocks T;(7) we have |le™*77|| = max;<;<q[|e”"7(?)||. Assume that 42 — 4\, =

72 — 4m < 0 so that the eigenvalues p; 4 of T;(7y) (see Eqn. (B.2)) are real when v = 2y/m and
complex when A < 2,/m. Note that

He_tTiW)H =e 1/2 He‘ti‘(”)H , where Tz(v) =Ti(y) - %I, 1<¢<d. (B3

We consider v € (0, 2y/m]. Depending on the value of \; and , there are two cases:

Case 1. If v < 2/m or (\; > m and v = 2\/m), then T}(~y) has purely imaginary eigenvalues
7W, 1 <4 < d. We will show
that the last term in (B23) stays bounded due to the imaginariness of the eigenvalues of T} (7). It

is easy to check that 2 x 2 matrix T} (v) have the eigenvectors v; + = [p;+,—1]T. If we set
G, = [vi+ v;_] € C**? the eigenvalue decomposition of 7T;(v) is given by

that are complex conjugates which we denote by [i; + = %

i, —

and det G; = i1/4\; — v2. We can compute that
efit\/m/Z 0 »

0 eit\/m/Q
_ b i omi- —emVINT/2 it /IN—y?/2

det GZ -1 -1 eitm/Q i +€it\/m/2
1 2Imag (ui,_eitm/g) 2i|p; +|? sin (t\/mﬂ)

CiV/AN — A2 | —2isin (tmﬂ) 2Imag (ui’+eitm/2) ’

where Imag(a + ib) := ib denotes the imaginary part of a complex number. As a consequence, by
taking componentwise absolute values

P i 1 -1 —pu
Ti(v) = G; {'LLBJF 0 }G;l, where G ' = : [ 1 l‘%—] ,

e—ti‘(’)’) =G, ;

He—tﬁm <L Pm,l 2|ui,+l1 ’: 1 {2\/71' 2); } ’
T /AN — 2 2 2fpig] Vi -2l 2 2vN
=l - =
S 1 VN[ = —— 1 Va
| | = = | [P e v
2(1+ ;)

= —— (B.4)

VAN — 2
where the second from last equality used the fact that the 2-norm of a rank-one matrix is equal
to its Frobenius norm. | Then, it follows from that |[e =T ()|| = e~1/2 He’m(”) H <

72(41;)”)2 e~t7/2 which implies ‘ ety H = ||e*tT” H < maxi<;<q He*tTi(”)H < 72(41+M)2 e~t1/2,
VAN Y - m=y
provided that v2 — 4m < 0. In particular, if we choose & = 1 — ﬁ for any £ > 0, we obtain
e~ | < 1+M o~ V(=)
Vm(l=(1-€)?)

*The 2-norm of a rank-one matrix R = uv™ should be exactly equal to o = ||u||||v||. This follows from the
fact that we can write R = o@i’” where @ and ¥ have unit norm. This would be a singular value decomposition
of R, showing that all the singular values are zero except a singular value at o. Because the 2-norm is equal to
the largest singular value, the 2-norm of R is equal to o.
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The proof for Case 1 is complete.

Case 2. If y = 2y/mand \; = m, then T; (y) has double eigenvalues at zero and is not diagonalizable.
It admits the Jordan decomposition

Tz(’}/) =G; [8 (1)] G:l with G; = |:\/T? é:| and G;l = |:(1) \;7%:| .

By a direct computation, we obtain

—tTi(y) _ |1t -1 _ 1—1ty/m —tm
¢ —Gl{o 1}@. —{ £ lttym)

A simple computation reveals

He—tﬁmH < \/Tr (e—tﬁw)e—tﬂ(v)T) =V2+ (m+1)22, (B.5)

To finish the proof of Case 2, let v = 2,/m. We compute

max He*ti‘(”) H = max { max e*ti’(")‘ max Heiﬁi(”) H
1<i<d A =m 7i:)\i>m
(I+N)
<maxq 2+ (m+1)%t2, max ——=
- { ( ) iAi>m /A, —m
where we used (B.4) and (B.3) in the last inequality. We conclude from for Case 2. O

B.2 Proof of Theorem[3|

The main result we use to prove Theorem [3]is the following proposition. The proof of the following
result will be presented later in Section [B.2.2]

Proposition 7. Assume v = 2/m. Fix any r > 0 and

s [ZU U U
0<€<m1n{61,52,€3}7

where
_ Cu+2+(m+1)2
U

= B.6

°1 \/(CH+2)m+(m+1)2r’ (B.6)
—1/2
2 = 2V2 (Cy + 2+ (m + 1)2)/* eml/f, (B.7)
gy = Vm ( = (B.8)
m+1  (Ca+2)m+(m+1
4L (\/CH +2+ 28+ $\/Cr 2T (mI1)? >

Consider the stopping time:
riminf {6205 X () ]| > e e L

For any initial point X (0) = x with |z — .|| <, and

2 2| Hy || T + 1
B>256(20Hm+4m+(m+1) ) (dlog(2)+log< | Hy | T + ))

me2 )

we have
P, (7 € [T, To]) < 6.

We are now ready to complete the proof of Theorem 3]
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B.2.1 Completing the proof of Theorem 3]
Assume that v = 2y/m. Let us compare the discrete dynamics (I.7)-(T.8) and the continuous

dynamics (T.4)-(T-3)). Define:
V() = Vo= [ ¥ (smmas = [ VP (X (Ls/nm) ds+ V5T [Lam,. @)

X(t) = Xo +/0 V (Is/n]n) ds. (B.10)

The process (V, X) defined in (B:9) and (B-I0) is the continuous-time interpolation of the iterates
{(Vk, X})}. In particular, the joint distribution of {(V, X)) : k = 1,2,..., K} is the same as
{(V(t),X(t)):t=mn,2n,...,Kn} for any positive integer K.

It is derived in the proof of Lemma EC.6 in [GGZI18] that the relative entropy D(-||-) between the
law PX7 of ((V (t), X (t)) : t < Kn) and the law PE" of ((V(¢), X (¢)) : t < Kn) is upper bounded
as follows:

_ M2 25!
D (IP’K"H}P’K”> < %K?f (O{} +2M2CY 4 282 + Vf) :
y

provided that n < min {1, =(d/B+ A/B), %} where C¢ is defined in Lemma Using
2 1

Pinsker’s inequality, we obtain an upper bound on the total variation || - || 7y :
- 2 38M?% . 2dyB~1
P -] < M s (e 4 ana2cd 4 2p2 4 200
TV 4y 3

Using a result about an optimal coupling (Theorem 5.2., [Lin92]]), that is, given any two random
elements X', ) of a common standard Borel space, there exists a coupling P of X and Y such that

PX #Y) < LX) = LO)Irv-
Hence, given any 8 > 0 and K7 < 7;§UC, we can choose

< 462

T 38M2(CE + 2M2CE + 2B2 4 287U
so that there is a coupling of {(V (kn), X (kn)) : k=1,2,...,K}and {(V}, Xy) : k=1,2,..., K}
such that

It follows that
P((V1, X1),.... (Vk, XK)) € 1) <P((VI(n), X(n)),...,(V(Kn), X(Kn))) € ) + 4.

(B.11)

Let us now complete the proof of Theorem[3] We need to show that
P((Xl,...,XK) S .A) <4,
where K = |77 'T.U | and A := A; N Ay, where

[z — 2|

Ap = {(mh...,xK) € (RHK: max ——~ 1 < ;},

Ck<nITY € 4 re=Vmkn

d\K 2k — 2|
= e . _ > .
A2 {(xh ox) € (BY) n*l?%lga;(kgK €+ re-vVmkn — !

We can choose 3 sufficiently large so that with probability at least 1 — §/3, we have either || X (¢) —
x| > e+re= V™t forsomet < TU or | X (t)—x.,|| < e+re~ V™ forallt < T.U. Moreover, for any

K, n and § satisfying the conditions of the theorem, there exists a coupling of (X (), ..., X (Kn))
and (X7, ..., Xx) so that with probability 1 — 6/3, X, = X (kn) forall k = 1,2,..., K. Then, by

(BTT) and (B.12). we get

P((X1,...,Xk) € A) <P(X(n),...,X(Kn)) € A) + g (B.13)
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provided that

291725
n<7y = Hove= :
3v3BM(Cd + 2M2Cd + 2B2 4 20871 )1/2(TU)1/2

(B.14)

It remains to estimate the probability of P((X (n),..., X(Kn)) € A; N Ag) for the underdamped
Langevin diffusion. Partition the interval [0, 7] using the points 0 = ¢; < t; < --- < typ-170) =

TS with ty, = knfork =0,1,...,[n~T.Y] — 1, and consider the event:

B:= 3
: 111 m X(t)— X(t < = 5.
{0</€<[7791X7 Ul-1 te[tkii:-ﬂ ” ( ) ( k+1)|| - 2}

rec

On the event {(X (n),..., X (Kn)) € A1} N B,

p KO el _ X0 2.
P = max su
te[0,TU] €+ re VT 0<k<[n T -1 ety tyya] €+ TV

1 1
2 +0Sk§€71?1}%"f1—1 te[?;%i{+l] 5” (t) (trg1)ll

rec

<

and thus

PH(X(n),---, X(Kn)) € A} N B) + P(B)
P(7 € [Tree: Tee)) + P(B°)
)
3

+P(B°), (B.15)

provided that (by applying Proposition [7{and Lemma (with v = 2/m):

2 \/72
53 Y 256(20Hm+nj:21+(m+1) ) (dlog(2)+log (6 4m—|—J\45 +1T+3>>.

(B.16)

To complete the proof, we need to show that P(3¢) < £ in view of (BI3) and (B-I3). For any
t € [tk, tkt1], Where tr1 — tr, = n, we have

tht

te41 1
IX(8) — X (ti)]| < / IV (s)llds < nllV (tesn)] + / IV(s) — V(tesn)llds, (B.17)
t t

and
V() = V(tksr)]

tet1 tet1
<~ / IV (s)[lds + / V(X ()]l ds + /2751 Bs — Buy|
t t
41
< [V (tap)ll + 7 / IV(s) = Vtsr)lds
t
tht1
[ (6) = Xt s + 0 VFCE b)) + VBB~ B
t
41
<V (tesn) | + / IV(s) = V(tesn)lds
t

tht1
0 [ 1(6) = Xt s + Ml X ()]l + B+ VBB~ Bl
t
(B.18)
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515 where the second inequality above used M -Lipschitz property of V' and the last inequality above
st6  used Lemma[20] By adding the above two inequalities (B-17) and (B-I8) together, we get

X (&) = X ()| + IV (E) = V(Err)l

tet1
< (L +)V (Eer)l + (1 + 7)/ [V (s) = V(tr+1)llds
t
k41
+ M/ [X(s) = X (trt)llds + Mn|[ X (trs1)[| + Bn + V2v87 1By — B, ||
t

<y mn [V Vi)l 1X6) - Xl ds
+ (L +)0llV ) + Myl X (o) | + Bn + \/Wﬁte[ts;i“] 1B = Bty ys I
517 By applying Gronwall’s inequality, we get
sup  [[|X () = X (trra)[| + 1V (E) = V(i)

tE€[tk,tht1]

< e(I+7+M)n

A+t )l + Ml X (e )| + By + V29871 sup IBt—BtMII]

tE[tr,trt1]
(B.19)
518 We have from Lemmalm that for any u > 0,
sup,o E[IV(®)[* _ CF
PV (k)| 2 w) < —205——- < =, (B.20)
st9 and X))
sup,o E|| X (¢ ce
P(| X (tr11) ]| > u) < —=2 — <5 (B.21)
s20 where Cf, Cf are defined in Lemma|[I0] By Lemma|T9] we have
u2
P sup || By — By, || > u ] < ol/4et/ e~ dam
tE[tk,thrl]
521 Therefore, we can infer from that with Ko := [n~1T.Y],
P (B°)
Kol —(4y+M)p\ Kol —(1+7+M)n
e e
< 32 (x> g )+ 3 P (Wl >
kzzo ( " 8Mn kZ:O i 8(1+7)n
Kot —(ryrany  FoTt —(+y+M)n /3
e e
e (B T ) (s - Bl 2
kz:o 81 kZ:O tE€ [t trr1] mH 8v/2y
64K
<~ (MPCS + (1+7)2C%) - nPe2(Hr+ADn (B.22)
€
1 626—2(1—i-’y-‘,-M)nﬁ
ol/4c1/4 . R B.23
+ e 0 exp 1dy 1237 (B.23)
66_(1+7+M)7]
+ KP (B > 877) , (B.24)

s22 where the last inequality follows from (B-20), (B-21)) and Lemma([I9] We can choose n < 1 so that
o se2e—2(1+7+M)
2T 38A(M2CE + (1+7)2CH)TY

523 so that the term in (B.22) is less than /6, where CS, C¢ are defined in Lemma [10] and then we
524 choose 3 so that

5> U = 512d77’y1og(21/4el/465_17;g/77)
— g - 62672(1+w+1\/[)n ’

(B.26)
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so that the term in is also less than /6, and we can choose 7 so that < 1 and
—(14y+M)
ce
<p = B.27
n=m 8B ’ ( )

so that the term in is zero.

To complete the proof, let us work on the leading orders of the constants. For the sake of convenience,
we hide the dependence on M and L and assume that M, L = O(1). We also assume that Cy = O(1).

Recall that 0 < & < min{gY,25, 2y}, where it is easy to check that It is easy to check that

_ Cy+2+(m+1)2 iy

U H

g = - 5 7 57 > ) 73 > Q(r),
(Cr +2)m+ (m+1) Cy™m'/2+m+1

where we used m < M = O(1) and

—1/2 1/4
e = 2V2(Cp + 2 + (m + 1)2)/4E Tz@(“’LCH)T zQ( r )
m

1/4 mi/4 ml/4
and
v Vi >0 v > Q(m),
m+1 Cy+2)m+(m+1 L (]_ 4 mtl  Vm )
AL (V O+ 24 00+ otz ) o

where we used the fact that m + 1 > 2./m. Hence, we can take

. T
e < mm{@ (r),O (m) ,O(m)} .
Moreover, m < M = O(1). Hence, we can take

e <min{O(r),O(m)}.

Next, we recall the recurrence time:

TV = _Lw_l —etym
rec vm 8r2\/Cy+2+(m+1)2)’

and since W_1 (—z) ~ log(1/z) for z — 07, and we assume C'y = O(1), we get
1 r [log(m)| r
U= —log(—) ) < ——log|(-)|.
Tre O(\/m Og(sm)) O( N (5)

Next, we recall that stepsize 7 satisfies n < min{1,7Y,75, 7Y, 7Y} and it is easy to check that

—(142/m+M) )
ﬁlU _ %T >0 (567(2m /2+M)> > Q(e),

and

- 522042 M) ete” (im' 200 )
N2 =

>0
384(M2CE + (14 2¢/m)2CHTY — ((M2C§ + (14+m)CS)TY
Moreover, we have (note that R = /b/m in the definition of C¢, C?)

1+L14+4 1 d
C§§0<m ﬁ>, CS§O(1++>,
m m B

together with m < M = O(1) implies that

6626—2(1+2\/E+M) m2ﬁ552
384(M2CE + (14 2¢m)*Co) T — ((md + ﬂ)Téi) '

ny =
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Moreover,

. 2v/3m! /45 g ( g >
& 3v3BM(CE + 2M2Cd + 2B2 + AWM yi2(ruyi/z = \(d+ B)A(TL)V? )

where we used C¢ < O (‘“‘ﬁ) and C4 < O <d+5) and
. 2ymd+ A ym\ . m!/2(d + B)
U
774 = mln{ K2 5 Kl } 2 min {Q <d'rnl/2_~_ﬁ ,Q(m5/2) R
where we used A = Q(m), 4 = Q(f), K1 = O(5y;), Kz = O(1), Ky = O(5;), K = O(1 +

M 5/2
dmi/7 4B

) mQ,BJ 5/45
< min {O“)’ © ((md+ ;)TQ 0 <<d T 6)1/%7;2%)1/2) ’O(m5/2)} |

Finally, (3 satisfies 8 > max{@?, ég}, and We have

%\/ m), and the minimum between and m®/? is m®/2. Hence, we can take

v 256(2CHm +4m + (m +1)?)
by = me?

SO<d+10g( (T + )/5))

2 1/2
(dlog@) ¢ log (6(4m+M ;1) T+3)>

me2

and

)

U = 1024dy/m log(2/1el /1601 Ti /) _ ) (dnm!/? log(0~ 1 Teee /)
= e2e—2(14+2v/m+M)n - e2

where we used e2(1t2vVm+M)n — (O(=) — O(1),

Hence, we can take

55 ma {Q (d+ log((T + 1)/6)) " <d71m1/2 log(5lTr§£/n)> } |

me? g2
The proof is now complete.

B.2.2 Proof of Proposition 7]

In this section, we focus on the proof of Proposmonl [7] We adopt some ideas from [BGO3| [TLR18].
We recall z, is a local minimum of F' and H is the Hessian matrix: H = V2F($*) and we write

X(@t)=Y () + x.
Thus, we have the decomposition
VE(X(t)) = HY (t) = p(Y (1)),

where [[p(Y (¢))|| < L[V (t)||? since the Hessian of F' is L-Lipschitz (Lemma 1.2.4. [NesI3]).
Then, we have

AV (t) = =V (O)dt — (H(Y (£)) - p(Y (1)))dt + /275 1dB,,
dY (t) = V(t)dt.

We can write it in terms of matrix form as:
Vi) | _ | - -H V /o =1 @ | o
d{Y(t)}_[ I 0 dt +/2v8 dB;
where B§2) is a 2d-dimensional standard Brownian motion. Therefore, we have

[ 583 } =e ' [ ¥E8§ } + W/Ot (=D H 1) gB(2) +/Ot (s —t)H, [ p(VO(S)) ]ds,

o=

~

~—

~

—
QU
Sk
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where

[y H @ [T 0
HW_[_I 0], ®=\0al (B.28)

Given 0 < tg < tq1, we define the matrix flow
Qs (t) 1= el =DM (B.29)

and we also define

Z(t) 1= elt=tolHy [ ggg ] =7} + 7},
where
Z0 = e~tolly { gggg ] + /2761 / t et Hy 12 gB(2) (B.30)
0
7= /<>H [ V() ] i B3
Note that

t
Qo (12) 20 = =111 [ v } N / (=t H: 1) pC)
0

is a martingale. Before we proceed to the proof of Proposition [7] we state the following lemma,
which will be used in the proof of Proposition 7}

Lemma 8. Assume v = 2/m. Define:

i = e (V(0),Y(0)7, (B.32)
t
¥, =2y / (s Hy [(2) (=) HT g (B.33)
0
Forany 0 € (O, 7(2CH77L2—|-TZﬁ(m+1)2)>’ and h > 0 and any (V(0),Y(0)),

P( sup [Qu ()20 > h)

to<t<t;

oy —d
< (1 _ QV(QCHm + 477\1/i (m+1) )> o~ B = ey (I=BOSe ) " haey)]
- 2m+/m

Finally, let us complete the proof of Proposition 7]

Proof of Proposition[7} Since |[Y(0)|] = [|X(0) — x.]| < r, we know that 7 > 0. Fix some
1

TYU <ty < ty,suchthatt; —tg < oy~ Then, for every ¢ € [to, t1],
vy

1Y @) < (e Quy (t1) Z2|| < €7 Qi (t1) Zull

It follows that (with e=1/2 > 1/2)

P(r € [to, t1])

-F <t0<stl<1£)1/\'r % 2172 t0>

=F (to;;g)lm % 2 %’T 2 to)

=F (togbtsltolm % 2 00,7 2 to) +P (togb;?t)lm % >, T > to) ;
(B.34)

where ¢g + ¢; = § and ¢o, ¢; > 0. We will first bound the second term in (B-34) which will turn out
to be zero, and then use Lemma(8]to bound the first term in (B234).
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576

577

579

580

First, notice that Z} = 0 in the quadratic case and the second term in (B.34) is automatically zero.
In the more general case, we will show that the second term in (B:34) is also zero. On the event
T € [to,t1], forany 0 < s < t; A 7, we have

~

(Y () < ZIY () < & (= +revm)’

[\

Therefore, for any ¢ € [to,t; A 7], by Lemma[2] we get

Qe (t1) Z2||

t
< [l
0

L [ 9
< 5/ VO +2+ (m+1)2(t — s)2els7h)vVm <8+r6—\/ﬁs> ds
0

oY (s))llds

< L/Ot (VCr 2+ (m+ )t = 5)) =V (2 4 72e72) g

= 1 ( Cuy+2+(m+1)(th — s)) els—tvm (52 + TQe—Q\/ES) ds

hh
ﬁ

m+1\ , 2 _—mt
< — C 24 —— v C 2 mh
—ﬁ(< mre m)g VA
t1
+L(m+ 1),,,2/ (tl _ S)e(sfn)\/me*%/msds
0
L 1
< T <<\/CH +2+ Wi/%) e2+/Cx +2r2e™V™ 4 (m + 1)r2tle—tlﬁ>
L m—+1 2 2 —ti/m
L 1 C 2 1
e b Jarsa il @ ms m )
vm vm  8,/Chy+2+ (m+1)2
where we used t; >t > to > T.U > \/17,7, and t;e VM < ﬂge_ﬁgm and the definition of 7,:
U 62
\/CH + 2 + (er 1)27;3367\/57;% e @

i - L m+1 (Cu+2)m+(m+1)
Consequently, if we take ¢c; = NG (m + I N ) . then,

Qe (01) Zell _ 1
sup T——————" < - su )74 < e,
toﬁtﬁlt)l/\-r £+ re—vmt — 5to§t§1t)1ATHQt°( )7 <a

which implies that

Qs (t1) 2|
P S Mt AP/ Z N S >t o
<t0§t§11?1/\‘r E—‘y—re—\/ﬁt —Z €1 > 1o

v (Cu+2)m~+(m+1) . ..
Moreover, ¢y = % —c = % — \/% (\/C’H + 2+ % + 8\/5H+2+(m+1)2 )E > i since it is

assumed that ¢ < vm

n
SR i RS
4L<\/m+m+8\/m)
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ss1  Second, we will apply Lemmal[8]to bound the first term in (B-34). By using V'(0) = O and ||Y(0)[| < r
ss2 and the definition of y, and X, in (B:32) and (B33), we get

(pes, (T = BO0,) " gy )

= (7 (V(0), Y (0))7 (I - BO5,,) " e (V(0), Y (0)))
< (1 _ p22Cum i (m+1))
<2 ((Cp +2)m + (m +1)?) e~ 2Vt 2
i(CH+2)m—|—(m+1)2a4 - 1,

-1
) (Cr + 2+ (m+1)%3) e 2Vmhy2

< — < —€7,

=32 Cy+2+(m+1)2 72~ 32
s83 by choosing § = v(chm-ﬁﬂ(mH)z) and t; > 7Y > ﬁ and tje~tivm < ’7;6(106*7:3,
s« and using the definition \/Cy + 2+ (m + 1)2TYe V™ = 85%, and we also used ¢ <

[ Cu+2+(m+1)2
585 Cnroymiminz’

ses  Then with the choice of h = (¢ +re~V™1)¢p and 6 = «/(ZCHm:Z/ri(mH)z) in Lemma and using
se7  the fact that h = (e 4 re=V"1)¢y > ecg, we get
t1) 2y
P( sup |Qt0(1)t|200772t0>
to<t<tiAT €+ re—Vvmt

sp( sup Qo ()20 > (+f))

to<t<ty

m+4m + (m 2)\ "%
S (1 o 67(2CH ';:1\/%( + ]-) )> -exp <_520 [h2 o <,Uft1, (I o 592261)1[”1”)

d By~ my/me? o 1
s 2 exp (_2(20H Fadm+ (m+1)?) (CO - 32)>
By~ tmy/me?
- 128(2Cy + 4m + (m + 1)2)> '

sss  Thus forany to > 7,.% and ty < t; <o+ m
.

<2d-exp<

P(7 € [to,t1]) <27 - exp (_ L ) :

128(2Cym + 4m + (m + 1)2)

seo  Fix any 7 > 0 and recall the definition of the escape time 7., = 7 + 7, Partition the interval

so0 (T4, 7] using the points T = fo < ta <+ < traysr, 77 = T with 15 = /(2] H, ), then we
591 have
(2]l Hy [ 7]
P(re[TeTel) = > P(eltin)
=0
_1 2
d By~ tmy/me
< BT +1) 2% e <_ 128(2Cym + 4m + (m + 1)2)> =5

592 provided that
128(2Cm + 4m + (m 4 1)%)y 2| Hy [T +1
> dlog(2) +1 —_— .
pz my/me? 08(2) + log o

se3  Finally, plugging v = 2y/m into the above formulas and applying the bound on || H., from Lemma
so4 [I8] the conclusion follows. O

595 B.2.3 Uniform L? bounds for underdamped Langevin dynamics

s96 In this section, we state the uniform L? bounds for the continuous time underdamped Langevin
so7  dynamics ((T4) and (T33)) and the discrete time iterates ((I.7) and (I.8)) in Lemma[I0] which is a
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619

620

modification of Lemma 8 in [GGZIS]||. The uniform L? bound for the discrete dynamics (T.7)-(T:8)
is used to derive the relative entropy to compare the laws of the continuous time dynamics and the
discrete time dynamics, and the uniform L? bound for the continuous dynamics (T.4)-(T.3) is used to
control the tail of the continuous dynamics in Section[B.2.1]

Before we proceed, let us first introduce the following Lyapunov function (from the paper [EGZ19])
which will be used in the proof the uniform L? boundedness results for both the continuous and
discrete underdamped Langevin dynamics. We define the Lyapunov function V as:

V(z,v) = pF(x) + 5 7% (

and ) is a positive constant less than 1 / 4 according to [EGZ19]]. We will first show in the following
lemma that we can find explicit constants A € (0, min(1/4,m/(M +~2/2))) and A € (0, 0) so
that the drift condition @ is satisfied. The drift condition is needed in [EGZ19], which is applied
to obtain the uniform L? bounds in [GGZ18]] (Lemma 8) that implies the uniform L? bounds in our
current setting (the following Lemma [I0).

z4+~y"0l? + v oll* = All=]?) , (B.35)

Lemma 9. Let us define:

A= % min(1/4,m/(M +~%/2)), (B.36)
— B m B? b 1,
A= 2M+%72 2M+72+m M+27 +4), (B.37)
then the following drift condition holds:
x-VE(z) > 2\(F(z) +~%|=|?/4) — 24/8. (B.38)

The following lemma provides uniform L? bounds for the continuous-time underdamped Langevin
diffusion process (X (t), V (t)) defined in (I.4)-(I.3) and discrete-time underdamped Langevin dy-
namics (X, V%) defined in (I.7)-(T-8).

Lemma 10 (Uniform L? bounds). Suppose parts (i), (ii), (iii), (iv) of Assumptwnland the drift
condition (B38) hold. v > 0 is arbitrary and )\, A are defined in (B.36) and (B.37).

(7) It holds that
(255 + 22G=N) B2 4 BBR + B4+ ]|V (0) 2 + 452
s(1—21)87 ’

supE| X (1)|]” < €5 =
t>0

(B.39)
(880 1 22N g2 1 BBR 4 BA+ 38|V (0)[2 + A
2 c
supE[|V(1)]* < €5 = . ,
>0 T(1—=2))
(B.40)
(i1) For any stepsize 1) satisfying:
0<n <7 :=min { (d/ﬂ + A/B) } (B.41)
K
where
8
K, =K —_— B.42
1 1+Q11_2>\+Q2(1_2)\)727 (B.42)
Ky = Ko + Qs, (B.43)
where
32M? (% 8(3M + 7% — 1722
K = max G+7) S8GM+ "= A+) | gy
(1— 20572 B(1—2)
K, := 2B? (; + 7> , (B.45)

23



621 and

Q= %Co ((5M +4 =27+ (co+7%) + (1 +7) (g +eo(1+ 7)> + 272>\>,
(B.46)
Q2 := %Co ((1 +7) (Co(l +7)+ 2) +eo+2+ My +2(Meg + M+ 1)) -2M?

3
+ <2M2 + A+ 57"’(1 + v)) , (B.47)

5
Qs = c0<(1 +7) (co(l +9) + 2) +eo+24+ M2 F2(Mco+ M+ 1))32 + coB?

1
+ 5735_1022 + 2B tere + MyB teos, (B.48)
622 where
9 d d
co=1+477, C12 = bR €22 = 3 (B.49)
623 we have

n _
%MJFW) R? + BBR+ BA+ 38|V (0)[|? + 24t
§(1=2X)8y2

sup E[| X < Cf = (
>0

b

(B.50)
(MmN Ry pBR 4 pA+ 38|V + AR
supE[|V;|* < O := : |
A Z(1—2x
(B.51)

624 B.2.4 Proofs of auxiliary results

625 Proof of Lemmal8] Note that Qy, (t1)Z} is a 2d-dimensional martingale and by Doob’s martingale
626 inequality, for any h > 0,

IP( sup | Qe (1) 27| > h) < e P2 [ew@/?)“@to@l)z?lﬂz}
to<t<ty

_ B0/ ! 2 ey (1-BOZ0) " iy) (B 52)
det(T — B0, )

627 where the last line above uses the fact that Q¢ (t1)Z:, is a Gaussian random vector with mean
pay = e~ (V(0),Y(0))T,

628 and covariance matrix

t1 T
Y = QWﬁ_l/ (e(s_tl)HVI(Q)) (e(s_tl)HWI(Q)) ds
0

ty
= 27671/ e~ sHy [D)g=sHT g
0

620 We next estimate det(I — 86X, ) fron (B:52). Let us recall from Lemma 2] that if = 2/m, then
s30 we recall from Lemma [2] that,

e || < /O +2+ (m + 1)242 . e~ VMt
| | <VCu ( ) :

631 and thus, we have

*1 20gm + 4m + (m + 1)?
HZHH < 2’}/,6_1/ (CH +24 (m—|—1)2t2) 6_2\/mtdt < 76_1 H ( ) )
0

2m\/m
632 Therefore we infer that the eigenvalues of I — S9% are bounded below by 1 — V(QCHm;nf"\}%(mHy) )
633 The conclusion then follows from (B.32). O
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e3¢ Proof of Lemma[9, By Assumption(iii), x - VF(z) > mlz||? — b. Thus in order to show the drift
635 condition (B.38), it suffices to show that

mllz]|* — b — 2A(F(2) +9?[|z|*/4) > —24/8. (B.53)
ss6  Given the definition of X in (B:36), by Lemma20] we get
mla]* = b — 2X(F(z) + 7*[|l=[|*/4)

m
> Q_b_i F 2 2 4
2 mlel = b= G (P + el
mM + tm~? m M
> P b= s (G elP 4 Blal 4 4)
M+ Ly M+ 1y
m 1 1 b 1
= (I MYfa|? + =2 - Bla| - = (M +242) — 4
s (MR + el = Bllel - 2 (M + 5
m B? b 1 —
> - ——(M+z9*)-A)=-24
—'A4+-;72< oM + 2 n1< T3 ) ) /8,
637 by the definition of A in (B-37). Hence, (B-33) holds and the proof is complete. O

638 Proof of Lemma[I0] According to Lemma EC.1 in [GGZIS],

d+A
SHPEHX ||2 fde z,v d,uo(x U) + +T7
5(1—2X)672
d+A
SV (D) < Joa Vi, v)dpole, ) + 57
B(1-2n)

ess where V is the Lyapunov function defined in (B:33) and i is the initial distribution of (X (0), V' (0))
ss0 and in our case, jp = O(x¢ 0) v(oy and [ X(0)] < Rand V(0) € R? and for any 0 < n <

641 min {1, 7 (d/B+ A/B), 5% }w1th K, and K> given in (B:42) and (B43), | and according to
642 Lemma EC.5 in [GGZ18|, we also have
Jrza V(@, 0)po(dz, dv) + 4(%@
Hi-ome
Jiza V(@ v)po(dar, dv) + 152
B1-2)

sup E[| X;|* <
>0

sup E||V; || <
320

e43  We recall from (B33) that V(z,v) = BF(z) + §72(||J; + 7|2 + [y tw]? = Allz[?), and
64 || X(0)|| < Rand V(0) € R%. By Lemma we get

V(w,) < Bl + 8Blall + 84+ Z2(la 4+l + Iy ol = Al
645 SO that
VX(0),V(0)
= PLIX©)P + BBIXO)] + BA+ T @IXO) + 3972V O)? - AIXO)])

2(9 _
S(%Y+57ﬁ”)R%HBR+ﬁA+Zme)?

646 Hence, the conclusion follows. O

3Note that in the definition of K 1, K 2 in [GGZ18], there is a constant &, which is simply zero, in the context
of the current paper.
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B.3 Proof of Theorem [

The proof of Theoremd]is similar to the proof of Theorem[3] For brevity, we omit some of the details,
and only outline the key steps and the propositions and lemmas used for the proof of Theorem 4]

Proposition 11. Fix any r > 0 and 0 < ¢ < min{g{,&J }, where

glJ . my (&)

= - , z) == 8rCy(é). (B.54)
1AM TN+ grime) 2

Consider the stopping time:
7= inf {t >0 | X(t) — 2] > e+ re*mf(f-f)t} .

For any initial point X (0) = x with |z — z.|| < r, and

55 128057 (;llog(Q) log (2(1 HITINMT + 1))

m(€)e? 5

we have
P. (7 € [T, Tk]) <6.

B.3.1 Completing the proof of Theorem 4]

We first compare the discrete dynamics (I.10) and the continuous dynamics (T.9). Define:
t t
X(t) = X — / Ay (VE(X(Ls/nln) ) ds + /23571 / dB,. (B.55)
0 0

The process X defined in (B:33) is the continuous-time interpolation of the iterates { X}, }. In particu-
lar, the joint distribution of {X}, : k =1,2,..., K} is the same as {X (¢) : t =, 2n, ..., Kn} for
any positive integer K.

By following Lemma 7 in [RRT17] and apply the uniform L? bounds for X}, in Corollary [17|provided
that the stepsize 7 is sufficiently small (we apply the bound ||A,|| < 1 + ||J|| to Corollary[17)

<7l .— 1
N>y = M(

. B.56
R NIE (850

we will obtain an upper bound on the relative entropy D(-||-) between the law PX7 of (X () : t < K1)
and the law PX7 of (X (¢) : t < Kn), and by Pinsker’s inequality an upper bound on the total variation
| - ||7v as well. More precisely, we have

~ 2 1 - 1
Kn _ mpKn <t KnH Kn) < 2 .
(s HTV < 5D (BF7|[PE7) < SOkt (B.57)
where (we use the bound ||A|| < 1+ [|J]])
C1 = 6(8((1 + |171)*M>Ca + B) + d)(1 + ||J])*M?, (B.58)
where Cy is defined in (B.72).

Let us now complete the proof of Theorem[d We need to show that
P((X1,...,Xk) € A) <9,
where K = |n7 172 | and A := A; N A:

— 1
Alzz{(xl,...,xK)e(Rd)K' max T =Tl }

Ck<n 1T £+ re~mu(@kn T 9

. d\K . [zx — x|
Ay = {(xl,...,mK) € (RY) 'nflﬁagch T — T >1;.

Similar to the proof in Section[B.2.1]and by (B.37), we get

P((X1,...,Xx) € A) <P(X(1), ..., X(Kn)) € A) + g (B.59)
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673

674

675
676

677

680

681

683
684

provided that

ST 262 .
59O T,

It remains to estimate the probability of P((X (n),..., X (Kn)) € A; N Ag) for the non-reversible
Langevin diffusion. Partition the interval [0, 7,2.] using the points 0 = t; < t; < --- < U171 =
T2 with ty, = knfork =0,1,...,[np~*7,2] — 1, and consider the event:

rec

n< (B.60)

=

13
B := X(t)— X(t < Z %,
{0<k<[rrrzlalx’rﬂl te[ﬁliﬁ]] 1) (tern)ll < 2}

rec

Similar to the proof in Section [B:2.T] we get
o
P((X (), -, X(En)) € A) < 5 +B(BY), (B.61)

provided that (by applying Proposition [TT)):

8> 8] = m (;l log(2) + log (6(1 HDMT 3)) . B

To complete the proof, we need to show that P(8¢) < ¢ in view of (B:39) and (B-61). For any
t € [tg,tk+1], where tg1 — t = 7, we have

X (&) = X (txt)l

tht1
< / | ASVE(X())llds + /25| By — Bo., |
t
tet1
<A™ / 1X(5) — X(tks0)lds + 1l Ay VF(X (b )| + V2B B — Boy,, |
t

te41
< A M / 1X(s) = X(trsr)]ds
t

+llAsll - (MIX @t )l + B) + V287 Be = Biyya Il -

By Gronwall’s inequality, we get the key estimate:

sup || X(¢) = X (k1)

tE€[tk,tht1]

< enllAslim

77||AJ||'(MIIX(tk+1)||+B)+\/2ﬂ*1t sup |[[Br = By ||| -

€tk trt]

Then, by following the same argument as in Section and also apply ||A ;|| <1+ ||J||, we can
show that P(B°) < % provided that 7 < 1 and

e ce—(1+ITIM
1= A B

(B.63)
and
S5e2e—20+I1TIM
<7l = B.64
ST S 31 [T])PMEC.T (B.69

where C. is defined in (B.71) and

B> gl . PL2n log(2!/%e!/166 1T /m)
=2 £2e— 201+ 71D M

(B.65)

To complete the proof, we need work on the leading orders of the constants. We treat ||.J||, M, L as
constant. The argument is similar to the argument in the proof of Theorem 3| and is thus omitted here.
The proof is now complete.
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B.3.2 Proof of Proposition [I1]

Before we proceed to the proof of Proposition[IT] let us first state the following two lemmas that will
be used in the proof of Proposition[TT}

Lemma 12. Forany 0 € (0, & A (s))Z) h > 0 and yo € RY,

- —d/2
P (L @z = n) < (1-0GO) T g,

to<t<t; M —é

where Q, (t1) is defined in (B.67), Z{ is defined in (B.68), and
t
py = e tATHy PINEES 25‘1/ e~ s(ATH) o=s(ATH)T 4o (B.66)
0

Lemma 13. Given tg <t < (1 A T), where T is the stopping time defined in Proposition m we
have

H|AS L [ . N2
HQtO (tl)ZtlH < CJ(€)2 JH / e(S—tl)mJ(E) (E + re—an(a)s) ds,
0
where Qy, (t1) is defined in (B.67), and Z} is defined in (B.69).

Proof of Proposition|[I1] We recall z, is a local minimum of F' and H is the Hessian matrix: H =
V2F(z,), and we write
X(@t)=Y(t) + z..
Thus, we have the decomposition
VF(X(t)) = HY (t) — p(Y (1)),

where ||p(Y'(t))|| < 3 L||Y (t)||* since the Hessian of F is L-Lipschitz (Lemma 1.2.4. [NesI3]). This
implies that

dY (t) = —A;HY (t)dt + Ayp(Y (t))dt + /28~ 1dB;.
Thus, we get

t t
Y (t) ze_tAJHY(O)—F\/QB—l/ e(s_t)AJHst+/ DA A (Y (5))ds.
0 0

Given 0 < tg < t1, we define the matrix flow
Q1 (1) 1= oA, (B.67)
and Z; := e(t=t0)AHY, o that

t t
Zy = e A HY () + «/2/571/ ets—to) A Hg B +/ et AH A5 0(Y (5))ds.
0

0
We define the decomposition Z; = ZP + Z/, where

t
79 = e~ Ay (0) \/25771/ els—to)AsHyp (B.68)
0
t
7! = / STATH A oY (5))ds. (B.69)
0

It follows that for any ¢ <t < ¢4,
t
Qu(0)2} = [ = A (Y (5))ds,
0

t
Qi (1) 2] = e A1y (0) 4 /251 / emtAH R,

The rest of the proof is similar to the proof of Proposition[7] We apply Lemma@to bound the term
Q1, (t1)Z} and apply Lemmato bound the term Qy, (¢1)Z}. By letting v = 1 in Pr0p0s1t10nand
replacing d by d/2 due to Lemma|12} and || H,|| by || A;H || and using the bounds || A ;| < (1+ J||)
and ||A;H|| < (1+ ||J||)M, we obtain the desired result in Proposition[T1}
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B.3.3 Uniform Z? bounds for NLD

In this section we establish uniform L? bounds for both the continuous time dynamics and
discrete time dynamics (I.10). The main idea of the proof is to use Lyapunov functions. Our local
analysis result relies on the approximation of the continuous time dynamics by the discrete time
dynamics (T.10). The uniform L? bound for the discrete dynamics (T.10) is used to derive the relative
entropy to compare the laws of the continuous time dynamics and the discrete time dynamics, and
the uniform L? bound for the continuous dynamics (T.9) is used to control the tail of the continuous
dynamics in Section[B.3.1] We first recall the continuous-time dynamics from (L.9):

dX( )**AJ(VF dt+\/2ﬂ dBt, AJ:I+J7

where J is a d x d anti-symmetric matrix, i.e. J? = —J. The generator of this continuous time
process is given by
L=-A,VF-V+87'A (B.70)

Lemma 14. Given X(0) = z € R¢,

b(M + B) N 2MB~*d(M + B)

E[F(X(t))] < F(z) + B + A+ S

2 m m
Since F has at most the quadratic growth (due to Lemma [20), we immediately have the following
corollary.
Corollary 15. Given || X(0)|| < R = +/b/m,

MR?2+2BR+ B+ 4A 20(M + B AMB Yd(M + B b
E[J|X(8)]?] < C. = L B+ B) | AMBTAM+B) | b

m
(B.71)

m m?2 m3

We next show uniform L? bounds for the discrete iterates X, where we recall from (T.10) that the
non-reversible Langevin dynamics is given by:

Xk+1 = Xk — T]AJ(VF(Xk)) + v/ 27}ﬂ71£k.

Lemma 16. Given that n < we have

L
MI[A;[?’

E,[F(Xy)] < F(z) + g +A+ 4(M+i)M5_1d N (M:;B)b.

Since F' has at most the quadratic growth (due to Lemma|20), we immediately have the following
corollary.
Corollary 17. Given that n < m and || X (0)|] < R = +/b/m, we have
MR2+2BR+B+4A 8(M + B)M B~ ld 20M+B)b b
5 + —log 3.
m m
(B.72)

E[|X%|?] < Cq4 :=
(X2 < Ca = -
B.3.4 Proofs of auxiliary results

Proof of LemmalI2] By following the proof of Lemmal§] We get

1 B6 2 —1
P( su )29 > h) < e~ B =y (T=B0ey) " iey)],
<t0<tgt1 HQtO( VZ; H - T /det(I — B0%4,)

Recall from (2.3) that for any £ > 0, there exists some C';(€) such that for every ¢ > 0,

HeftAJHH < C«J(é)ef()\ffé)t,

Hence, by the definition of ; from (B.66), we get

—1 “\\2
12 < 28 / o204 o1y = BUCIE)
N —E

The rest of the proof follows similarly as in the proof of Lemma] O
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Proof of Lemmal(I3] Note that

HQto @z < [ e s oty ) as,

and by applying ||p(Y (t))|| < 1L||Y (t)||? and @3), and to < t < (t; A 7) and the definition of the
stopping time 7 in Prop0s1t10n @ we get the desired result. [

Proof of Lemma Note that if we can show that F'(z) is a Lyapunov function for X (¢):

LF(z) < —e F(z) + by, (B.73)
for some €1, b1 > 0, then

BIF(X(1)] < (o) + 2.

Let us first prove this. Applying Ito formula to e“'* F(X (t)), we obtain from Dynkin formula and
the drift condition (B.73) that for ¢ := min{¢, 7x } with 7x be the exit time of X () from a ball
centered at 0 with radius K with X (0) = z,
b
Efett* F(X (tx))] < F(z) + E U bleelgds} <P / breods < Flz) + 2L . ot

€1
Let K — oo, then we can infer from Fatou’s lemma that for any ¢:

E [ F(X(t)] < F(z)+ i—i et

Hence, we have

Next, let us prove (B.73). By the definition of £ in (B.70), we can compute that

LF(z) = —A;VF(z)-VF(z)+ 3 'AF ()

= —|IVF(2)|* + 67 AF (x),

since J is anti-symmetric so that (VF(x), JVF(z)) = 0. Moreover,

]| - [VE(@)[| > (z, VF(x)) = m|z|* - b, (B.74)
implies that

b
IVE@) = mllzll = 7 = gmall, (B.75)

provided that ||z|| > 1/2b/m, and thus
2 2 b
LF(2) € == |lal]? + 87 AF () < —T[lo|? + 5 + BTIAF (), (BT6)
for any ||z|| > 1/2b/m. On the other hand, for any ||z| < \/2b/m, we have
2 b
LF(z) < B 1AF(z) < —%W + % + BIAF(x). (B.77)
Hence, for any z € R?,
2
b
LF(@) < —"|lo|? + 57 + B AF (). (B.78)
Next, recall that I' is M -smooth, and thus
AF(z) < Md.

Finally, by Lemma [20]

B
l2]* + 5 + A.

M M+ B
F(z) < 7”%“2 + Bllz||+ A<
Therefore, we have

m?2 m2(L +A) mb _
LF(z) < —WF(@ + m +o +MB 1d.

Hence, the proof is complete. O
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Proof of Corollary[I3] Recall from Lemma 20| that
b
F(z) > 2]l -  log3,
which implies that
2 b
|| < =F(x) + — log3.
m m

It then follows from Lemma [T4] that

2 B 2A 2b(M + B AMB~1d(M + B b
E(X()2) < 2F()+ 2 4 24 200+ B) | AMBTdM+B) | by 5
m m m m m m

Recall that || X (0)|| = ||z|| < R and by Lemmawe get F(z) < X ||z||? + B||z|| + A, and thus
_ MR*42BR+B+4A (M +B)  4MB'd(M +B) | b

2
< — .
E[”X(t)H } — CC m m2 m3 + m 10g3
O
Proof of Lemmal[I6 Suppose we have
E,[F(X1)] - F(z) < —eF(2) 4 by, (B.79)

Ui

uniformly for small 7, where €5, by are positive constants that are independent of 7, then we will first
show below that

B [F(X0)] < (o) + 2.

We will use the discrete Dynkin’s formula (see, e.g. Section 4.2 in [MT92])). Let F; denote the
filtration generated by Xy, ..., X;. Note { X}, : k£ > 0} is a time-homogeneous Markov process, so
the drift condition (B-79) implies that

E[F(X)[Fi—1] < (1 —ne2) F(Xi—1) + bo.
Then by letting » = 1/(1 — ne3), we obtain
E[rF(X;)|F—1] < F(X;_1) + rba.
Then we can compute that
E [r'F(X;)|[Fio1] = ' F(Xio1) =" [E[rF(X;)[Fim] — F(Xi-1)] < r'ba. (B.80)

Define the stopping time 73, x = min{k,inf{i : |X;| > K}}, where K is a positive integer, so that
X is essentially bounded for ¢ < 73, k. Applying the discrete Dynkin’s formula (see, e.g. Section
4.2 in [MT192]), we have

By [r™ 5 F(Xr, )] = Es [F(X0)] + E Z (E[r'F(Xi)[Fia] ="' F(Xi1))
i=1

Then it follows from (B-80) that
k
B (175 F(Xr, )] < F(z) +ban 1.
i=1
As T,k — k almost surely as K — oo, we infer from Fatou’s Lemma that
k
]Em [TkF(Xk)] S F(l’) + bQUZTJ’
i=1

which implies that for all k,

B, [F()] < Fo) + 20 = (e + 2020 g
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asr = 1/(1 — n2€3). Hence we have
bo

E. [F(X0)] < () + 2

It remains to prove (B.79). Note that as V F' is Lipschitz continuous with constant M so that:
M
Fy) < F(a) + VE(@)(y —2) + S lly —=[*.
Therefore,

BlFXZF@) _ L (g, [p(e — na (V@) + V205 160)] - F@)

n n
< —VF@)A V@) + 5 E, [H—nAJWF(a:)) " \/2775_150”2]
= IVE@)IP + Sl A VE@? + M5
<~ IVE@)? + M,

provided that & (|4 ;||>n < 1. Similar to the arguments in (B-74)-(B-78), we get
E,[F(X1)] - F(x)
n

2 b
< —%HxHQ +MpTNd+

Finally, by Lemma [20]
M

M +B B
F(z) < = l|l=]* + Bljzll + A < lz]* + 5 + A.

2
Therefore, we have

E.[F(X;)] — F(x) m? m?(Z + A) 1, mb
< - F — =+ M d+ —.
n St Wt anir e M AT
Hence, the proof is complete. O

Proof of Corollary[I7} The proof is similar to the proof of Corollary [T5]and is thus omitted. O

C Proof of Proposition 5 and Proposition [6]

Proof of Proposition[5] Write u as the corresponding eigenvector of A ;L7 for the eigenvalue —p% <
0, so we have
A Ly = —pfu. (C.1)

Then it follows that
(—p5)u*Lou = w*Lo (—phu) = w' LA L0u = u* (L) T A L0u = [L7ul? + u* (L7)T JLOu,
where u* denotes the conjugate transpose of u, (I.7)7 denotes the transpose of .7, and (%) = L7
as L is a real symmetric matrix. It is easy to see that «*IL7w is a real number as (v*L7u)* = v L.
In addition, u*(L7)T JLou is pure imaginary, since (u*(L)TJLw)* = w*(Lo)TJTLou =
—u*(IL7)T JIL?u by the fact that .J is an anti-symmetric real matrix. Hence, we deduce that
uw* (L) JLou = 0,

and it implies that

(—p5)u*Lou = [L7ul?. (C2)
Note u*L7u # 0 as otherwise 0 becomes an eigenvalue of L7 from , which is a contradiction.
In fact, we obtain from (C.2) that —u*L°u > 0 as p% > 0 and |[L7ul|* > 0.

Since L7 is a real symmetric matrix, we have

L° = STDS, (C.3)
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for a real orthogonal matrix S, where D = diag(p1, pa, ..., 1q) With g1 < 0 < po < ... < fig
being the eigenvalues of L. Then we obtain

L L7 wrstD2Su Y pdl(Su)il?
M= Zou - —w S5 DSu 5 2’ €4
u u u STy — il (Su)i

where (Su); denotes the i-th component of the vector Su. Since 1 < 0 < pg < ... < g, we
then have (Su); # 0 as otherwise —u*L7u = Y 7" | —u;](Su);|* < 0, which is a contradiction.
Therefore, we conclude from (C.4) that

wy = || = p* (o). (C5)
The equality 15 = || = p* (o) is attained if and only if (Su); = 0fori = 2, ..., n. Orequivalently
if and only if the vector Su = ae; where a is a non-zero constant and e; = [10 ... O]T is the first

basis vector. Since S~ = ST, this is also equivalent to u = av where v = S7e; is an eigenvector of
L7 corresponding to the eigenvalue ;. Since v and v are related up to a constant, this is the same as
saying v is an eigenvector of A ;L7 satisfying (C.I)). Since v is also an eigenvalue of L and J being
anti-symmetric, has only purely imaginary eigenvalues except a zero eigenvalue, this is if and only if
Jv = 0. In other words, the equality p = |u1| = p* (o) is attained if and only if the eigenvector of
L7 corresponding to the negative eigenvalue 4; is an eigenvector of .J for the eigenvalue 0.

We note finally that Equation (3.5)) then readily follows from (3.4) and (C.5). O
Proof of Proposition[f] Write Tflla , for the first time that the continuous-time dynamics { X (t)}
starting from a4 to exit the region D,,. Then by monotone convergence theorem, we have

hm E [ al—>a2] =K [Tfl—MIQ] :

Hence, for fixed € > 0, one can choose a sufficiently large n such that

|]E [ a1—>az} -E [Ta1—>a2]| <€ (C.6)
We next control the expected difference between the exit times Tfln_m , of the discrete dynamics, and

Tflga , of the continuous dynamics, from the bounded domain D,,. For fixed € and large n, we can

infer from Theorem 4.2 in [GMO3] thaﬂ for sufficiently small stepsize n < 7j(¢, n, ),

|]E [ a1_>a2} —E [Ta1—>a2]| <€ (C7)
Together with (C.6), we obtain for 7 sufficiently small,

B [74%0,] ~E 74

ll1 — a2 ap—az

] | < 2e.
The proof is therefore complete. O
D Supporting technical lemmas
Lemma 18. Consider the square matrix H., defined by 2.2). We have
[Hy || < V2 + M2+ 1.

Proof. 1t follows from (B.I) that
] = [T || = max [ T3 (7)]]- (D.1)

We also compute

TP = A (BT = s (|2 7))

-

“The Assumption (H2”) in Theorem 4.2 of [GMO0S5] can be readily verified in our setting: for both reversible
and non-reversible SDE, the drift and diffusion coefficients are clearly Lipschitz; the diffusion matrix is uniformly
elliptic; and the domain D,, is bounded and it satisfies the exterior cone condition.
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816 where A« denotes the largest real part of the eigenvalues. This leads to

YE+AZ 414 /(2 + A2 +1)2 — 42
2

IT5(2)II? = <Y HA+ L

g1z Since m < \; < M for every ¢, we obtain

max [|T;(7)[|> < max (72 + A7 + 1) =42 + M? + 1.

818 We conclude from (D.T). 0O

st Lemma 19. Let B; be a standard d-dimensional Brownian motion. For any u > 0 and any
820 t1 > tg > 0withty —tog =mn > 0, we have

tE€[to,t1]

u2
P ( sup || By — By, || > U) < 2l/4et/temam,

g2t Proof. Also, by the time reversibility, stationarity of time increments of Brownian motion and Doob’s
g2z martingale inequality, for any 6 > 0 so that 2609 < 1, we have

P ( sup ||B;— Byl > u) =P < sup ||By — Byl > u)
tefto,t1] tel0,n]

< R [eeuBn—BOHZ}

= e~ (1 — 20m) /2,

g23 By choosing 0 = 1/(4dn), we get

1\ w2
P sup |Bi—By|>u)< <1 _ > i
t€[to,t1] 2d

g2+ Note that for any « > 0, (1 + %)z < e. Let us define x > 0 via

1 1
1—— = .
2 1+

s2s Then, we getd = 2 andz = —+ — 1 <1, and

1-3q
1IN
1 —
(1-3)

vl

(1+2)% < 2t/tel/t,

Sl

1+
1 T Tz 1
—<1+$> =(1+2)

u2
P| sup ||B;— By | >u| <24t/ temdm,
te(to,t1]

827 ]

s2s  Lemma 20 (See Lemma 2 in [RRTI17]). If parts (i) and (ii) of Assumption |I| hold, then for all
829 z€RYandz e Z,

g26 Hence,

IV £z, 2)]| < Mljz] + B,
830 and b v
Sllzl? - 3 log3 < f(@,2) < - [lall* + Bll|| + A.
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