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Abstract

Previous work on adversarially robust neural networks for image classification
requires large training sets and computationally expensive training procedures.
On the other hand, few-shot learning methods are highly vulnerable to adversar-
ial examples. The goal of our work is to produce networks which both perform
well at few-shot classification tasks and are simultaneously robust to adversarial
examples. We develop an algorithm, called Adversarial Querying (AQ), for produc-
ing adversarially robust meta-learners, and we thoroughly investigate the causes
for adversarial vulnerability. Moreover, our method achieves far superior robust
performance on few-shot image classification tasks, such as Mini-ImageNet and
CIFAR-FS, than robust transfer learning.

1 Introduction

For safety-critical applications like facial recognition, algorithmic trading, and copyright control,
adversarial attacks pose an actionable threat [35, 12, 25]. Conventional adversarial training and
pre-processing defenses aim to produce networks that resist attack [19, 34, 26], but such defenses rely
heavily on the availability of large training datasets. In applications that require few-shot learning,
such as face recognition from few images, recognition of a video source from a single clip, or
recognition of a new object from few example photos, the conventional robust training pipeline breaks
down.

When data is scarce or new classes arise frequently, neural networks must adapt quickly [7, 14, 24, 30].
In these situations, meta-learning methods conduct few-shot learning by creating networks that learn
quickly from little data and with computationally cheap fine-tuning. While state-of-the-art meta-
learning methods perform well on benchmark few-shot classification tasks, these naturally trained
neural networks are highly vulnerable to adversarial examples. In fact, even adversarially trained
feature extractors fail to resist attacks in the few-shot setting (see Section 4.1).

We propose a new approach, called adversarial querying, in which the network is exposed to
adversarial attacks during the query step of meta-learning. This algorithm-agnostic method produces
a feature extractor that is robust, even without adversarial training during fine-tuning. In the few-shot
setting, we show that adversarial querying outperforms other robustness techniques by a wide margin
in terms of both clean accuracy and adversarial robustness (see Table 1). We solve the following
minimax problem:

minEg (x4 | max L(Fa,s),X+6,9)], M
0 511y <e '

where S and (x,y) are data sampled from the training distribution, A is a fine-tuning algorithm
for the model parameters, ¢, and € is a p-norm bound for the attacker. In Section 4, we further
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motivate adversarial querying and exhibit a wide range of experiments. To motivate the necessity for
adversarial querying, we test methods, such as adversarial fine-tuning and pre-processing defenses,
which if successful, would eliminate the need for expensive adversarial training routines. We find
that these methods are far less effective than adversarial querying.

Model Anat Aado

Naturally Trained R2-D2 73.01 % +0.13 | 0.00 % 4+ 0.13
AT transfer (R2-D2 backbone) | 39.13 % + 0.13 | 25.33% 4+ 0.13
ADML 47.75% + 0.13 18.49 % £+ 0.13
AQ R2-D2 (ours) 57.87% + 0.13 | 31.52% + 0.13

Table 1: R2-D2 [3], adversarially trained transfer learning, ADML [33], and our adversarially queried
(AQ) R2-D2 model on 5-shot Mini-ImageNet. Natural accuracy is denoted .A,,,;, and robust accuracy,
Aady, is computed with a 20-step PGD attack as in [19] with e = 8/255. A description of our training
regime can be found in Appendix A.5. All results are tested on 150000 total samples, so confidence
intervals of one standard error are of width at most 100+/(0.5)(0.5)/150000% < 0.13%.

2 Related Work

2.1 Learning with less data

Before the emergence of meta-learning, a number of approaches existed to cope with few-shot
problems. One simple approach is transfer learning, in which pre-trained feature extractors are trained
on large data sets and fine-tuned on new tasks [2, 11]. Metric learning methods avoid overfitting
to the small number of training examples in new classes by instead performing classification using
nearest-neighbors in feature space with a feature extractor that is trained on a large corpus of data
and not re-trained when classes are added [29, 9, 20]. Metric learning methods are computationally
efficient when adding new classes at inference, since the feature extractor is not re-trained.

Meta-learning algorithms create a “base” model that quickly adapts to new tasks by fine-tuning. This
model is created using a set of training tasks {7;} that can be sampled from a task distribution. Each
task comes with support data, 7;°, and query data, 7;%. Support data is used for fine-tuning, and query
data is used to measure the performance of the resulting network. In practice, each task is taken to be
a classification problem involving only a small subset of classes in a large many-class data set. The
number of examples per class in the support set is called the shot, so that fine-tuning on five support
examples per class is 5-shot learning.

An iteration of training begins by sampling tasks {7;} from the task distribution. In the “inner loop”
of training, the base model is fine-tuned on the support data from the sampled tasks. In the “outer
loop” of training, the fine-tuned network is used to make predictions on the query data, and the base
model parameters are updated to improve the accuracy of the resulting fine-tuned model. The outer
loop requires backpropagation through the fine-tuning steps. A formal treatment of the prototypical
meta-learning routine can be found in Algorithm 1.

Algorithm 1 The meta-learning framework

Require: Base model, Fy, fine-tuning algorithm, A, learning rate, -y, and distribution over tasks,
p(7).
Initialize 6, the weights of F’;
while not done do
Sample batch of tasks, {7;}"_;, where 7; ~ p(T) and T; = (7.5, T.7).
fori=1,...,ndo
Fine-tune model on 7; (inner loop). New network parameters are written 6; = A(6, 7,°).
Compute gradient g; = Vo L(Fp,, T,7)
end for
Update base model parameters (outer loop):
end while




Note that the fine-tuned parameters, §; = A(6, 7,°), in Algorithm 1, are a function of the base model’s
parameters so that the gradient computation in the outer loop may backpropagate through A. For
validation after training, the base model is fine-tuned on the support set of hold-out tasks, and accuracy
on the query set is reported. In this work, we report performance on Omniglot, Mini-ImageNet, and
CIFAR-FS [16, 31, 3].

We focus on four meta-learning algorithms: MAML, R2-D2, MetaOptNet, and ProtoNet [8, 3, 18, 29].
During fine-tuning, MAML uses SGD to update all parameters, minimizing cross-entropy loss. Since
unrolling SGD steps into a deep computation graph is expensive, first-order variants have been
developed to avoid computing second-order derivatives. We use the original MAML formulation.
R2-D2 and MetaOptNet, on the other hand, only update the final linear layer during fine-tuning,
leaving the “backbone network” that extracts these features frozen at test time. R2-D2 replaces SGD
with a closed-form differentiable solver for regularized ridge regression, while MetaOptNet achieves
its best performance when replacing SGD with a solver for SVM. Because the objective of these
linear problems is convex, differentiable convex optimizers can be efficiently deployed to find optima,
and differentiate these optima with respect to the backbone parameters at train time. ProtoNet takes
an approach inspired by metric learning. It constructs class prototypes as centroids in feature space
for each task. These centroids are then used to classify the query set in the outer loop of training.
Because each class prototype is a simple geometric average of feature representations, it is easy to
differentiate through the fine-tuning step.

2.2 Adversarial attacks and defenses

Following standard practices, we assess the robustness of models by attacking them with £,-bounded
perturbations. We craft adversarial perturbations using the projected gradient descent attack (PGD)
since it has proven to be one of the most effective algorithms both for attacking as well as for
adversarial training [19]. A detailed description of the PGD attack algorithm can be found in
Appendix A.9. We consider perturbations with ¢, bound 8/255 and a step size of 2/255 as described
by [19]. Adversarial training is the industry standard for creating robust models that maintain
good clean-label performance [19]. This method involves replacing clean examples with adversarial
examples during the training routine. A simple way to harden models to attack is adversarial training,
which solves the minimax problem

minlEx ) max Lg(x+ 6, , 2
a0 E ey | max o y) 2

where Ly(x + 4, y) is the loss function of a network with parameters 6, x is an input image with
label y, and ¢ is an adversarial perturbation. Adversarial training finds network parameters which
maintain low loss (and correct class labels) even when adversarial perturbations are added. A number
of adversarial training variants have emerged which improve performance or achieve various tasks
from data augmentation to domain generalization to model compression [28, 10, 23].

2.3 Robust learning with less data

Several authors have tried to learn robust models in the data scarce regime. The authors of [27] study
robustness properties of transfer learning. They find that retraining earlier layers of the network
during fine-tuning impairs the robustness of the network, while only retraining later layers can largely
preserve robustness. ADML is the first attempt at achieving robustness through meta-learning. ADML
is a MAML variant specifically designed specifically for robustness [33]. However, this method
for robustness is designed only for MAML, an algorithm which is now far from state-of-the-art.
Moreover, ADML is computationally expensive, and the authors only test their method against a weak
attacker. We re-implement ADML and test it against a strong attacker. We show that our method
simultaneously achieves higher robustness and higher natural accuracy.

3 Naturally trained meta-learning methods are not robust

In this section, we benchmark the robustness of existing meta-learning methods. Similarly to
classically trained classifiers, we expect that few-shot learners are highly vulnerable to attack when
adversarial defenses are not employed. We test prominent meta-learning algorithms against a 20-step
PGD attack as in [19]. Table 2 contains natural and robust accuracy on the Mini-ImageNet and



CIFAR-FS 5-shot tasks [31, 3]. Experiments in the 1-shot setting can be found in Appendix A.1. All
results are tested on 150000 total samples, so confidence intervals of one standard error are of width

at most 1004/ G202 o7 0.13%.

Model Apat ML | Agao MI | Apot FS | Agaw FS
ProtoNet 70.23% | 0.00% 79.66% | 0.00%
R2-D2 73.02% | 0.00% 82.81% | 0.00%
MetaOptNet | 78.12% | 0.00% 84.11% | 0.00%

Table 2: 5-shot MinilmageNet (MI) and CIFAR-FS (FS) results comparing naturally trained meta-
learners. A,,4; and A4, are natural and robust test accuracy, respectively, where robust accuracy is
computed with respect to a 20-step PGD attack.

We find that these algorithms are completely unable to resist the attack. Interestingly, MetaOptNet
uses SVM for fine-tuning, which is endowed with a wide margins property. The failure of even SVM
to express robustness during testing suggests that using robust fine-tuning methods (at test time) on
naturally trained meta-learners is insufficient for robust performance. To further examine this, we
consider MAML, which updates the entire network during fine-tuning. We use a naturally trained
MAML model and perform adversarial training during fine-tuning (see Table 3). Adversarial training
is performed with 7-PGD as in [19]. If adversarial fine-tuning yielded robust classification, then we
could avoid expensive adversarial training variants during meta-learning.

Model Aadv Aadv(AT)
1-shot Mini-ImageNet | 0.03% | 0.20%
5-shot Mini-ImageNet | 0.03% 1.55%
1-shot Omniglot 68.46% | 74.66%
5-shot Omniglot 82.28% | 87.94%

Table 3: MAML models on Mini-ImageNet and Omniglot. A,,,; and A4, are natural and robust
test accuracy, respectively, where robust accuracy is computed with respect to a 20-step PGD attack.
Anatary and A, g, a7y are natural and robust test accuracy with 7-PGD fine-tuning.

While clean trained MAML models with adversarial fine-tuning are slightly more robust than their
naturally fine-tuned counterparts, they achieve almost no robustness on Mini-ImageNet. Omniglot
is an easier data set, and the performance of adversarially fine-tuned MAML on the 5-shot version
is below a reasonable tolerance for robustness. We conclude from these experiments that naturally
trained meta-learners are vulnerable to adversarial examples, and robustness techniques specifically
for few-shot learning are required.

4 Adversarial querying: a meta-learning algorithm for adversarial
robustness

We now introduce adversarial querying (AQ), an adversarial training algorithm for meta-learning.
Let A(0, S) denote a fine-tuning algorithm. Then, A is a map from support data set, S, and network
parameters, 6, to parameters for the fine-tuned network. Then, we seek to solve the following minimax
problem (Equation 1 revisited):

inEg « L(F s J, )
winEs ey | max L(Fa.s) % +0.9)

where S and (x, y) are support and query data, respectively, sampled from the training distribution,
and ¢ is a p-norm bound for the attacker. Thus, the objective is to find a central parameter vector
which, when fine-tuned on support data, minimizes the expected query loss against an attacker. We
approach this minimax problem with an alternating algorithm consisting of the following steps:

1. Sample support and query data

2. Fine-tune on the support data (inner loop)



3. Perturb query data to maximize loss
4. Minimize query loss, backpropagating through the fine-tuning algorithm (outer loop)

A formal treatment of this method is presented in Algorithm 2. Adversarial querying requires a
factor of n + 1 more SGD steps than standard meta-learning. We test adversarial querying across
multiple data sets and meta-learning protocols. It is important to note that adversarial querying
is algorithm-agnostic. We test this method on the ProtoNet, R2-D2, and MetaOptNet algorithms
on CIFAR-FS and Mini-ImageNet (see Table 4 and Table 5). See Appendix A.6 for tests against
additional attacks. We test against black-box transfer attacks which have been shown to be effective
against gradient masking. In the white-box setting, we test adversarial querying against several
gradient-based attacks as these have been shown to be more effective than zeroth order methods [4].

Algorithm 2 Adversarial Querying
Require: Base model, Fy, fine-tuning algorithm, A, learning rate, -, and distribution over tasks,

p(7).
Initialize 6, the weights of F’;
while not done do
Sample batch of tasks, {7;}i—,, where 7; ~ p(7T) and T; =
fori=1,...,ndo
Fine- tune model on 7;. New network parameters are ertten 0; = A(6,T7).

(732, T;%).

Construct adversarial query data, ’T by maximizing £(Fy,, Tq) constrained to ||x —x]l, <

€ for query examples, x , and their associated adversaries, xq

Compute gradient g; = Vg,C(Fg Tq)
end for
Update base model parameters: 6 < ¢ — 15" g;
end while

Model At 1-Shot | Agq, 1-Shot | A,,q: 5-Shot | Agqe 5-Shot
ProtoNet AQ 42.33% 26.48% 63.53% 40.11%
R2-D2 AQ 52.38% 32.33% 69.25% 44.80%
MetaOptNet AQ | 53.27% 30.74% 71.07% 43.79%

Table 4: Comparison of adversarially queried (AQ) meta-learners on 1-shot and 5-shot CIFAR-FS.
Anar and A g4, are natural and robust test accuracy, respectively, where robust accuracy is computed
with respect to a 20-step PGD attack. Top 1-shot and 5-shot robust accuracy is bolded.

Model Anat 1-Shot | Agg, 1-Shot | A,q¢ 5-Shot | A4, 5-Shot
ProtoNet AQ 33.31% 17.69% 52.04% 27.99%
R2-D2 AQ 37.91% 20.59 % 57.87% 31.52%
MetaOptNet AQ | 43.74% 18.37% 60.71% 28.08%

Table 5: Comparison of adversarially queried (AQ) meta-learners on 1-shot and 5-shot Mini-ImageNet.
Anat and A,q, are natural and robust test accuracy, respectively, where robust accuracy is computed
with respect to a 20-step PGD attack. Top 1-shot and 5-shot robust accuracy is bolded.

In our tests, R2-D2 outperforms MetaOptNet in robust accuracy despite having a less powerful back-
bone architecture. In Section 4.5, we dissect the effects of backbone architecture and classification
head on robustness of meta-learned models. In Appendix A.6, we verify that adversarial querying
generates networks robust to a wide array of strong attacks.

4.1 Adversarial querying is more robust than transfer learning from adversarially trained
models

We observe above that few-shot learning methods with a non-robust feature extractor break under
attack. But what if we use a robust feature extractor? In the following section, we consider both
transfer learning and meta-learning with a robust feature extractor.



In order to compare robust transfer learning and meta-learning, we train the backbone networks from
meta-learning algorithms on all training data simultaneously in the fashion of standard adversarial
training using 7-PGD (not meta-learning). We then fine-tune using the head from a meta-learning
algorithm on top of the transferred feature extractor. We compare the performance of these feature
extractors to that of those trained using adversarially queried meta-learning algorithms with the same
backbones and heads. This experiment provides a direct comparison of feature extractors produced
by robust transfer learning and robust meta-learning (see Table 6). Meta-learning exhibits far superior
robustness than transfer learning for all algorithms we test. Additional experiments on CIFAR-FS
and on 1-shot Mini-ImageNet can be found in Appendix A.2.

Model Apat Transfer | Agq, Transfer | A, .: Meta | A,q, Meta
MAML 32.79% 18.03% 33.45% 23.07 %
ProtoNet 31.14% 22.31% 52.04% 27.99%
R2-D2 39.13% 25.33% 57.87 % 31.52%
MetaOptNet | 50.23% 22.45% 60.71% 28.08 %

Table 6: Adversarially trained transfer learning and adversarially queried meta-learning on 5-shot
Mini-ImageNet. A,,,; and A4, are natural and robust test accuracy, respectively, where robust
accuracy is computed with respect to a 20-step PGD attack. Top natural and robust accuracy for each
architecture is bolded.

4.2 Why attack only query data?

In the adversarial querying procedure detailed in Algorithm 2, we only attack query data. Consider
that the loss value on query data represents performance on testing data after fine-tuning on the
support data. Thus, low loss on perturbed query data represents robust accuracy on testing data
after fine-tuning. Simply put, minimizing loss on adversarial query data moves the parameter vector
towards a network with high robust test accuracy. It follows that attacking only support data is not an
option for achieving robust meta-learners. Attacking support data but not query data can be seen as
maximizing clean test accuracy when fine-tuned in a robust manner, but since we want to maximize
robust test accuracy, this would be inappropriate. One question remains: should we attack both query
and support data?

One reason to perturb only query data is computational efficiency. The bulk of computation in
adversarial training is spent computing adversarial attacks since perturbing each batch requires an
iterative algorithm. Perturbing support data doubles the number of adversarial attacks computed
during training. Thus, only attacking query data significantly accelerates training. Perturbing support
data will additionally increase the cost of fine-tuning during deployment, especially for methods,
such as MetaOptNet, which use efficient solvers for the linear classification problem on clean data.
But if attacking support data during the inner loop of training were to significantly improve robust
performance, we would like to know.

We now compare adversarial querying to a variant in which support data is also perturbed during
training. We use MAML to conduct this comparison on the Omniglot and Mini-ImageNet data sets.
Additional experiments on 1-shot tasks can be found in Appendix A.3.

Model -Anat Aadv Anat(AT) AadU(AT)
MAML (naturally trained) 60.25% | 0.03% 32.45% 1.55%
MAML adv. query 33.45% | 23.07% | 33.03% 23.29%
MAML adv. query and support | 29.98% | 22.55% | 30.44% 23.03%
ADML 47.75% | 18.49% | 47.27% 20.23%

Table 7: Performance on 5-shot Mini-ImageNet. Robust accuracy, A4, is computed with respect
to a 20-step PGD attack. A, 4447y and Aqq,(a7) are natural and robust test accuracy with 7-PGD
training during fine-tuning. Top robust accuracy with and without adversarial fine-tuning is bolded.

In these experiments, we find that adversarially attacking the support data during the inner loop
of meta-learning does not improve performance over adversarial querying. Furthermore, networks
trained in this fashion require adversarial fine-tuning during test time or else they suffer a massive



Model Anat Aad'u Anat(AT) Aadv(AT)
MAML (naturally trained) 97.12% | 82.28% | 97.71% 87.94%
MAML adv. query 97.27% | 95.85% | 97.51% 96.14%
MAML adv. query and support | 95.61% | 77.73% | 97.46% 95.65%
ADML 97.31% | 94.19% | 97.56% 94.82%

Table 8: Performance on 5-shot Omniglot. Robust accuracy, A.q4,, is computed with respect to
a 20-step PGD attack. A q¢(a7) and A, (a7) are natural and robust test accuracy with 7-PGD
training during fine-tuning. Top robust accuracy with and without adversarial fine-tuning is bolded.

loss in robust test accuracy. Following these results and the significant reasons to avoid attacking
support data, we subsequently only attack query data.

4.3 Tuning the robustness-accuracy trade-off: AQ may be used to adapt other robustness
techniques to meta-learning

Adversarial querying trades off natural accuracy for robust accuracy. This massive trade-off exists
in the standard setting where SOTA robust ImageNet models sacrifice twenty percentage points
[32]. Adversarial querying can be used to construct meta-learning analogues for other variants of
adversarial training. We explore this by using the TRADES loss function, used for controlling the
accuracy-robustness trade-off, in the querying step of AQ [34]. We refer to this method as meta-
TRADES. While meta-TRADES can marginally outperform our initial adversarial querying method
in robust accuracy, we find that it trades off natural accuracy in the process. See Appendix A.4 for
both 1-shot and 5-shot on multiple datasets.

4.4 For better natural and robust accuracy, only fine-tune the last layer.

High performing meta-learning models, like MetaOptNet and R2-D2, fix their feature extractor and
only update their last linear layer during fine-tuning. In the setting of transfer learning, robustness is
a feature of early convolutional layers, and re-training these early layers leads to a significant drop in
robust test accuracy [27]. We verify that re-training only the last layer leads to improved natural and
robust accuracy in adversarially queried meta-learners by training a MAML model but only updating
the final fully-connected layer during fine-tuning including during the inner loop of meta-learning.
We find that the model trained by only fine-tuning the last layer decisively outperforms the traditional
MAML algorithm (AQ) in both natural and robust accuracy (see Table 9).

Re-trained | A,q Ao -Anat(AT) -Aadv(AT)
All layers | 33.45% | 23.07% | 33.03% 23.29%
FC only 40.06% | 25.15% | 39.94% 25.32%

Table 9: Adversarially queried MAML compared with a MAML variant with only the last layer
re-trained during fine-tuning on 5-shot Mini-ImageNet. A,,,; and A4, are natural and robust test
accuracy, respectively, where robust accuracy is computed with respect to a 20-step PGD attack.
Anat( AT) and Aadv( AT) are natural and robust test accuracy, respectively with 7-PGD training during
fine-tuning. Layers are fine-tuned for 10 steps with a learning rate of 0.01.

4.5 The R2-D2 head, not embedding, is responsible for superior robust performance.

The naturally trained MetaOptNet algorithm outperforms R2-D2 in natural accuracy, but previous
research has found that performance discrepancies between meta-learning algorithms might be an
artifact of different backbone networks [5]. We confirm that MetaOptNet with the R2-D2 backbone
performs similarly to R2-D2 in the natural meta-learning setting (see Appendix Table 22).

However, we find that the performance discrepancy in the adversarial setting is not explained
by differences in backbone architecture. In our adversarial querying experiments, we saw that
MetaOptNet was less robust than R2-D2. This discrepancy remains when we train MetaOptNet
with the R2-D2 backbone (see Appendix Table 21). We conclude that MetaOptNet’s backbone is
not responsible for its inferior robustness. These experiments suggest that ridge regression may



be a more effective fine-tuning technique than SVM for robust performance. ProtoNet with R2-
D2 backbone also performs worse than the other two adversarially queried models with the same
backbone architecture.

5 Robustness alternatives to adversarial training

5.1 Enhancing robustness with robust architectural features

In addition to adversarial training, architectural features have been used to enhance robustness [32].
Feature denoising blocks pair classical denoising operations with learned 1 x 1 convolutions to
reduce the feature noise in feature maps at various stages of a network, and thus reduce the success of
adversarial attacks. Massive architectures with these blocks have achieved state-of-the-art robustness
against targeted adversarial attacks on ImageNet. However, when deployed on small networks for
meta-learning, we find that denoising blocks do not improve robustness. We deploy denoising blocks
identical to those in [32] after various layers of the R2-D2 network. The best results for the denoising
experiments are achieved by adding a denoising block after the fourth layer in the R2-D2 embedding
network (see Appendix Table 23).

5.2 Pre-processing defenses

Recent works have proposed pre-processing defenses for sanitizing adversarial examples before
feeding them into a naturally trained classifier. If successful, these methods would avoid the expensive
adversarial querying procedure during training. While this approach has found success in the
mainstream literature, we find that it is ineffective in the few-shot regime.

In DefenseGAN, a GAN trained on natural images is used to sanitize an adversarial example by
replacing (possible corrupted) test images with the nearest image in the output range of the GAN
[26]. Unfortunately, GANs are not expressive enough to preserve the integrity of testing images on
complex datasets involving high-res natural images, and recent attacks have critically compromised
the performance of this defense [13, 1]. We found the expressiveness of the generator architecture
used in the original DefenseGAN setup to be insufficient for even CIFAR-FS, so we substitute a
stronger ProGAN generator to model the CIFAR-100 classes [15].

The supperesolution defense first denoises data with sparse wavelet filters and then performs super-
resolution [22]. This defense is also motivated by the principle of projecting adversarial examples
onto the natural image manifold. We test the superresolution defense using the same wavelet filtering
and superresolution network (SRResNet) used by [22] and first introduced by [17]. Like with the
generator for DefenseGAN, we train the SRResNet on the entire CIFAR-100 dataset before applying
the superresolution defense.

We find that these methods are not well suited to the few-shot domain, in which the generative
model or superresolution network may not be able to train on the little data available. Morever, even
after training the generator on all CIFAR-100 classes, we find that DefenseGAN with a naturally
trained R2-D2 meta-learner performs significantly worse in both natural and robust accuracy than an
adversarially queried meta-learner of the same architecture. Similarly, the superresolution defense
achieves little robustness. The results of these experiments can be found in Appendix Table 24.

6 Discussion

Naturally trained networks for few-shot image classification are vulnerable to adversarial attacks, and
existing robust transfer learning methods do not perform well on few-shot tasks. Naturally trained
networks suffer from adversarial vulnerability even when adversarially fine-tuned. We thus identify
the need for few-shot methods for adversarial robustness. We particularly study robustness in the
context of meta-learning. We develop an algorithm-agnostic method, called adversarial querying,
for hardening meta-learning models. We find that meta-learning models are most robust when the
feature extractor is fixed, and only the last layer is retrained during fine-tuning. We further identify
that choice of classification head significantly impacts robustness. We believe that this paper is a
starting point for developing adversarially robust methods for few-shot applications.

A PyTorch implementation of adversarial querying can be found at:
https://github.com/goldblum/AdversarialQuerying



Broader Impact

Few-shot learning systems are already deployed in real-world settings, but practitioners may remain unaware of
the robustness properties of their models. Our work thoroughly studies this topic using methods which these
practitioners may deploy, and we contribute a method for hardening their systems. Our work can benefit both
organizations deploying few-shot learning systems as well as their customers and clients.
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