
Supplementary material: Neural Anisotropy
Directions

Anonymous Author(s)
Affiliation
Address
email

Contents1

A Experiments on linearly separable datasets 22

A.1 General training setup . 23

A.2 Experiments on DFT basis . 24

A.3 Experiments on random basis . 35

B Deferred proofs 56

B.1 Proof of Theorem 1 . 57

B.2 Proof of Lemma 1 . 58

B.3 Proof of Lemma 2 . 79

C Analytic NAD examples 810

C.1 Proofs for linear model of pooling . 811

C.2 More examples . 812

D NADs of CNNs 1113

D.1 NADs obtained through the eigendecomposition of the gradient covariance 1114

D.2 NADs obtained through the SVD of the mixed second derivative 1615

D.3 Further experiments with NADs . 1916

E Details of experiments on CIFAR10 2217

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

A Experiments on linearly separable datasets18

A.1 General training setup19

Regarding the construction of the synthetic datasets used for the experiments of Sec. 2 and Sec. 3.1,20

recall that D(v) is a linearly separable distribution parameterized by a unit vector v ∈ SD−1, such21

that any sample (x, y) ∼ D(v) satisfies x = εyv + w, with noise w ∼ N
(
0, σ2(ID − vvT)

)
22

orthogonal to the direction v, and with label y sampled from {−1,+1} with equal probability. An23

illustration of such dataset is shown in Fig. S1.24

Figure S1: Schematic of the parameters of D(v).

In general, the generated synthetic data correspond to 32× 32 grayscale images, with the standard25

settings being 10, 000 training samples, 10, 000 test samples, and ε = 1. The value of σ varies26

depending on the experiment under study.27

Regarding the setup and parameters for training the networks used for the experiments of Sec. 2 and28

Sec. 3.1: they were all trained for 20 epochs, on batches of size 128, minimizing a Cross-Entropy loss29

using SGD with a linearly decaying learning rate (max lr. 0.5) and without any explicit regularization.30

At this point let us note that we did not perform any extensive hyperparameter tuning to arrive at this31

configuration. In fact, we empirically observed that such parameters were good enough to reveal the32

quantities of interest (i.e., directional inductive bias) and did not tune them further. In general, all of33

our observations are relative in the sense that we do not focus on the exact values, e.g., test accuracy34

or training iterations (except reaching almost zero training loss), but their relative differences for35

different distributions.36

A.2 Experiments on DFT basis37

A.2.1 Basis generation38

Recall that the DFT F : CD → CD is a complex linear operator acting in the complex plane. For this39

reason, the basis obtained from transforming the canonical basis through the DFT, i.e., vi = F(ei) is40

a complex basis. In this work we are interested in dealing with real signals, and as such we need to41

modify this basis such that it is an orthonormal basis of the real space RD.42

We can do that by leveraging the conjugate symmetry of the DFT of real signals. Let x ∈ RD with43

Fourier transform x̂ = F(x) ∈ CD. Then,44

x̂JtKD = x̂?J−tKD,

where x̂? represents the complex conjugate of x̂. This means that, for real signals, half of the DFT is45

redundant, and one can use only bD/2c+ 1 complex coefficients to represent a real signal. We are46

interested in obtaining a basis of RD which is sparse in the Fourier domain. However, note that for47

any index t, 〈F−1 (et) ,F−1 (jet)〉 = 0, with j =
√
−1. For this reason, we can create a basis of48

RD using bD/2c+ 1 real coefficients and bD/2c imaginary coefficients by exploiting their conjugate49

2

symmetries, i.e.,50

vRe
i =

1
√

2
F−1

(
eJiKD + eJ−iKD

)
i = 0, . . . , bD/2c

vIm
i =

1
√

2
F−1

(
jeJiKD − jeJ−iKD

)
i = 1, . . . , bD/2c

Fortunately, most numerical linear algebra libraries avoid the need to keep track of these symmetries51

and include some routine to directly compute the Fourier transform and its inverse on real signals52

(RFFT). This is especially useful on bidimensional signals, like images, where the RFFT of a signal53

has D × bD/2c+ 1 complex coefficients. Nevertheless, despite the redundancies, it is a common54

convention in the image processing community to plot the full Fourier spectrum of an image including55

positive and negative frequencies (indices). In our plots, we follow this convention, and artificially56

create the symmetries on the negative indices to ease readability1.57

All the results that we have shown so far using the DFT basis show only the results for the directions58

obtained from manipulating the real coefficients. Nevertheless, the results do not change in nature59

when one repeats them on the imaginary elements as well. We provide Fig. S2 as a validation of this,60

where we repeated the same experiment as in Fig. 1 but using the directions parameterized by the61

imaginary coefficients, i.e., vIm
i . Note that, because the number of basis vectors parameterized by62

the imaginary coefficients is smaller, there are four gaps in Fig. S2. These are just artefacts of the63

visualization, as these distributions do not exist in reality.64

Figure S2: Imaginary part of DFT

A.2.2 Different noise levels65

Fig. S3 illustrates the test accuracies of various architectures under different noise levels σ. Regardless66

the noise level, a logistic regression can always perfectly generalize to the test data. On the contrary,67

LeNet seems to fail to generalize to a few distributions even in the absence of noise, while the noisier68

the data the more its performance degrades. The other architectures exhibit similar behaviour: they69

properly generalize when there is no noise, while their performance drops as the noise level increases.70

Finally, note that ResNet-18 seems to be slightly more robust to noise compared to the other CNNs71

(cf. Fig. S3b with σ = 1).72

A.3 Experiments on random basis73

As mentioned in Sec. 3, trying to identify the NADs of an architecture by measuring its performance74

on many linearly separable datasets parameterized by a random direction v, would be extremely75

inefficient. To demonstrate this, we repeat the same experiment performed in Sec. 2, but instead of76

constructing the training sets D(v) using vs taken from the 2D-DCT basis elements, each v now77

corresponds to a basis element of a random orthonormal matrix U ∈ SO(D).78

The results of this experiment are illustrated in Fig. S4. Indeed, it is clear that such procedure will79

never be able to reveal the directional inductive bias of an architecture: for most of the datasets the80

networks output the same performance, thus it is impossible to interpret if these directions are aligned81

with the directional inductive bias of the architecture under study.82

1For more information about the properties of the 2D-DFT, we refer the reader to [1].

3

(a) Test accuracies for σ = 0.

(b) Test accuracies for σ = 1.

(c) Test accuracies for σ = 3.

Figure S3: Test accuracies using different training sets drawn fromD(v) (ε = 1, with 10, 000 training
samples and 10, 000 test samples) for different levels of σ. Directions v taken from the basis elements
of the 2D-DFT. Each pixel corresponds to a linearly separable dataset.

0 50 100 150 200 250

Random basis element

58

59

60

61

62

63

T
es

t
ac

cu
ra

cy

(a) LeNet

0 50 100 150 200 250

Random basis element

52

53

54

55

56

T
es

t
ac

cu
ra

cy

(b) ResNet-18

Figure S4: Test accuracy of two CNNs trained using different training sets drawn from D(v) (ε = 1,
and σ = 3) with orthogonal random v.

4

B Deferred proofs83

B.1 Proof of Theorem 184

We give here the proof of Theorem 1 stating the Bayes optimal classification accuracy achieved on a85

linearly separable distribution transformed through a linear pooling layer. We restate the theorem to86

ease readability.87

Theorem (Bayes optimal classification accuracy after pooling). The best achievable accuracy on the88

distribution of (z, y) can be written as89

1−Q
(
ε

2σ
γ(`)

)
with γ2(`) =

S|m̂[`]|2∑S−1
k=1 |m̂J`+ k ·MKD|2

,

and Q(·) representing the tail distribution function of the standard normal distribution.90

Proof. Without loss of generality, let (x, y) be a random sample with y ∼ U{−1, 1} and whose91

Fourier transform satisfies92

x̂ = εye` + ŵ with ŵ ∼ CN (0,diag(σ2)),

where CN (0,diag(σ)2) denotes a circularly symmetric complex Gaussian distribution with complex93

covariance diag(σ2).94

Because all entries of x̂ are uncorrelated, the best accuracy on the distribution of (x, y), αopt, would95

be the same as that of the distribution of (R(x̂[`]), y), i.e., R(x̂[`])|y = +1 ∼ N (ε,σ2[`]/2) and96

R(x̂[`])|y = −1 ∼ N (−ε,σ2[`]/2). Hence,97

αopt = 1−Q

(√
2ε

2σ[`]

)
.

Nevertheless, we are interested on the accuracy on the distribution of (z, y), when (x, y) ∼ D(v`)98

with v` = F(e`), whose spectrum satisfies99

ẑ = εym̂[`]e′J`KM + diag(m̂)ŵ

with e′J`KM ∈ CM the (`modM)th canonical basis vector of RM , and diag(m̂)ŵ ∼100

CN (0,diag(ξ)) with101

ξ2J`KM =
σ2

S

S−1∑
k=1

|m̂J`+ k ·MKD|2 .

Again, the only signal component is at ẑJ`KM . Hence, if we write102

γ2(`) =
S|m̂[`]|2∑S−1

k=1 |m̂J`+ k ·MKD|2
,

and finally the accuracy of the Bayes optimal classifier on the distribution of (z, y) can be explicitly103

described by104

α(`) = 1−Q

(√
2ε|m̂[`]|
2ξJ`KM

)
= 1−Q

(√
2ε

2σ
γ(`)

)
.

105

B.2 Proof of Lemma 1106

We detail here the proof of Lemma 1 describing the average curvature of the loss landscape for the107

deep linear network fθ,φ(x) = θTA(m�φ�x) when optimizing the quadratic loss J(θ,φ;x, y) =108

(y − fθ,φ(x))2.109

Lemma (Average curvature of the loss landscape). Assuming that the training parameters are110

distributed according to θ ∼ N (0, σ2
θIM) and φ ∼ N (0, σ2

φID), the average weight Hessian of the111

loss with respect to φ satisfies E∇2
φJ(θ,φ;x, y) = 2ε2m2[`]σ2

θ diag(e`) + 2σ2σ2
θ diag(m2).112

5

Proof. Let us start by computing the gradients for a generic loss J(θ,φ;x, y) = q(z, y) with113

z = fθ,φ(x)114

∇θJ(θ,φ;x, y) = q′(z, y)A(φ�m� x)

∇φJ(θ,φ;x, y) = q′(z, y)(ATθ)� (m� x).

Therefore, the second derivatives are115

∇2
θJ(θ,φ;x, y) = q′′(z, y)A(φ�m� x)(A(φ�m� x))T

∇2
φJ(θ,φ;x, y) = q′′(z, y)(ATθ)� (m� x)((ATθ)� (m� x))T

∇2
θ,φJ(θ,φ;x, y) = q′′(z, y)((ATθ)� (m� x))(A(φ�m� x))T+

+ q′(z, y)Adiag(x�m)

∇2
φ,θJ(θ,φ;x, y) = q′′(z, y)A(φ�m� x)((ATθ)� (m� x))T+

+ q′(z, y) diag(x�m)AT

Hence, the Hessian116

∇2J(θ,φ;x, y) = q′′(z, y)

[
A(φ�m� x)

(ATθ)� (m� x)

] [
A(φ�m� x)

(ATθ)� (m� x)

]T
+

+ q′(z, y)

[
0 Adiag(x�m)

diag(x�m)AT 0

]
= q′′(z, y)

[
A diag(φ�m)
diag(ATθ �m)

]
xxT

[
Adiag(φ�m)
diag(ATθ �m)

]T
+

+ q′(z, y)

[
0 Adiag(x�m)

diag(x�m)AT 0

]
When we optimize a square loss, q′′(z, y) = 2 and q′(z, y) = 2(z − y). Thus,117

∇2J(θ,φ;x, y) = 2

[
Adiag(φ�m)
diag(ATθ �m)

]
xxT

[
A diag(φ�m)
diag(ATθ �m)

]T
+ 2(z − y)

[
0 Adiag(x�m)

diag(x�m)AT 0

]
︸ ︷︷ ︸

R

.

Let e` ∈ RD and e′` ∈ RM be the `th canonical basis vectors of RD and RM , respectively. Taking118

the expectation over the data we get119

E(x,y)∇2J(θ,φ;x, y) = 2

[
Adiag(φ�m)
diag(ATθ �m)

]
(ε2 diag(e`) + σ2ID)

[
Adiag(φ�m)
diag(ATθ �m)

]T
+ E(x,y)R.

Here, the first summand can be decomposed in a signal and a noise component. The signal component120

is121

S =

[
A diag(φ�m)
diag(ATθ �m)

]
ε2 diag (e`)

[
Adiag(φ�m)
diag(ATθ �m)

]T
= ε2

[
φ[`]m[`] diag

(
e′J`KM

)
θJ`KMm[`] diag (e`)

] [
Adiag(φ�m)
diag(ATθ �m)

]T
=

= ε2m2[`]

[
φ2[`] diag

(
e′J`KM

)
θJ`KMφ[`]e′J`KMe

T
`

θJ`KMφ[`]e`e
′T
J`KM θ2J`KM diag (e`)

]
.

6

The noise component is122

W = σ2

[
Adiag(φ�m)
diag(ATθ �m)

] [
Adiag(φ�m)
diag(ATθ �m)

]T
=

= σ2

[
Adiag(φ2 �m2) Adiag(φ�m)(diag(ATθ �m))T

(diag(ATθ �m))(Adiag(φ�m))T diag(ATθ2 �m2)

]
Taking the expectation over the parameters123

Eθ,φS = ε2m2[`]

[
σ2
φ diag

(
e′J`KM

)
0

0 σ2
θ diag (e`)

]

Eθ,φW = σ2

[
Aσ2

φ diag(m2) 0
0 σ2

θ diag(m2)

]
,

and because Eθz = Eφz = 0, and Ey = 0, then ER = 0.124

Overall, we see that125

E∇2J(θ,φ;x, y) =

[
Hφ 0
0 Hθ

]
with126

Hφ = 2ε2m2[`]σ2
θ diag (e`) + 2σ2σ2

θ diag(m2)

Hθ = 2ε2m2[`]σ2
φ diag

(
e′J`KM

)
+ 2σ2σ2

φAdiag(m2)

127

B.3 Proof of Lemma 2128

We prove Lemma 2 under a slightly more general setting than in the text.129

Lemma. Let g : [0,∞]→ [0,∞] be an increasing function with polynomially bounded first-order130

derivative, i.e., |g′(t)| ≤ ωn(|t|), where ωn : R→ R is an n-order polynomial.131

The expected value of ‖∇θqθ(v)‖ is bounded by132

E‖∇θqθ(v)‖ ≤
√
Eω2

n (|vT∇xfθ(x)|)
√
E‖∇2

θ,xfθ(x)v‖2

Proof. Using the polynomial bound on the derivative of g and using Cauchy-Schwarz inequality we133

can bound the expected norm of∇θqθ(x) as134

E‖∇θqθ(v)‖ = E|g′
(∣∣vT∇xfθ(x)

∣∣) |‖∇2
θ,xfθ(x)v‖

≤ Eωn
(∣∣vT∇xfθ(x)

∣∣) ‖∇2
θ,xfθ(x)v‖

≤
√
Eω2

n (|vT∇xfθ(x)|)
√
E‖∇2

θ,xfθ(x)v‖2

135

We see that this bound depends on the spectral decomposition of the moments of ∇xfθ(x) up to136

order 2n, e.g., its covariance E∇xfθ(x)∇Txfθ(x), and the expected right singular vectors of the137

mixed second derivative ∇2
θ,xfθ(x). In the case of the text ωn(t) = αt+ β. Hence, n = 1 and the138

bound only depends on the gradient covariance and second derivative.139

7

C Analytic NAD examples140

C.1 Proofs for linear model of pooling141

We first prove the expressions for the example in the text.142

Example 1. Let φ ∼ N (0, σ2
φID) and θ ∼ N (0, σ2

θIM), the covariance of the input gradient of143

the linear model of pooling is144

E∇xfθ,φ(x)∇Txfθ,φ(x) = σ2
φσ

2
θ diag

(
m2
)
,

and its eigenvectors are the canonical basis elements of RD, sorted by the entries ofm2. Surprisingly,145

the expected right singular vectors of its mixed second derivative coincide with these eigenvectors,146

E∇2
(θ,φ),xf(x)T∇2

(θ,φ),xf(x) =

(
σ2
θ +

σ2
φ

S

)
diag(m2).

This result agrees with what was seen in Sec. 2.2 where we found that the NADs of this architecture147

are also ranked bym2.148

Proof. Borrowing the gradient computations from Sec. B.2,149

Eθ∇xfθ(x)∇xfθ(x)T = Eθ,φ[(ATθ)� (φ�m)][(φT �mT)� (θTA)]

= EφφφT � EθATθθTA�mmT = σ2
φσ

2
θ

(
I �ATA�mmT

)
= σ2

φσ
2
θ diag

(
m2
)
.

Similarly, the mixed second derivatives for this model are150

∇2
θ,xf(x) = diag(φ�m)AT

∇2
φ,xf(x) = diag

(
(ATθ)�m

)
which can be combined in151

∇2
(θ,φ),xf(x) =

[
diag

(
(ATθ)�m

)
Adiag(φ�m)

]
.

We can extract its right singular vectors from the eigendecomposition of152

E∇2
(θ,φ),xf(x)T∇2

(θ,φ),xf(x) = E
[
diag

(
(ATθ)2 �m2

)]
+ E

[
diag (φ�m)ATAdiag (φ�m)

]
=

= σ2
θ diag(m2) +

σ2
φ

S
diag(m2)

=

(
σ2
θ +

σ2
φ

S

)
diag(m2).

153

C.2 More examples154

We provide a few more examples showing that the gradient covariance can indeed capture the NADs155

of an architecture.156

Example 2 (Logistic regression). Let fθ(x) = θTx be a single layer neural network, i.e., logistic157

regression. The gradient covariance of this architecture is158

E∇xfθ(x)∇Txfθ(x) = σ2
θID.

Because the eigendecomposition of ID is isotropic, we can see that the logistic regression has no159

directional bias.160

8

Example 3 (Single hidden-layer neural network). Let fθ,Φ(x) = θT ρ
(
ΦTx

)
be a single hidden161

layer neural network with no bias and a ReLU non-linearity ρ(·). Its gradient covariance is162

E∇xfθ,Φ(x)∇Txfθ,Φ(x) =
σ2
θσ

2
Φ

2
,

and we see that this architecture has also no directional bias.163

Proof. The gradient of fθ,Φ(x) is ∇xfθ,Φ(x) = Φ diag
(
ρ′
(
ΦTx

))
θ, where the derivative of the164

ReLU non-linearity is the indicator function ρ′(u) = 1u�0.165

Hence,166

E∇xfθ,Φ(x)∇Txfθ,Φ(x) = E
[
Φ diag

(
ρ′
(
ΦTx

))
θθT diag

(
ρ′
(
ΦTx

))
ΦT
]

=

= σ2
θE
[
Φ diag

(
ρ′
(
ΦTx

))
diag

(
ρ′
(
ΦTx

))
ΦT
]

=

= σ2
θE
[
Φ diag

(
1ΦTx�0

)
ΦT
]

This expectation can be computed analytically. In particular note that167

E
[
Φ diag

(
1ΦTx�0

)
ΦT
]

[i, j] =

D∑
k=1

E
[
Φ[i, k]Φ[j, k]1Φ[i,:]Tx≥0

]
.

Therefore, if i 6= j168

E
[
Φ[i, k]Φ[j, k]1Φ[i,:]Tx≥0

]
= EΦ[i,k]

[
EΦ[j,k]

[
Φ[i, k]Φ[j, k]1Φ[i,:]Tx≥0

∣∣Φ[i, k]
]

= 0.

On the other hand, when i = j,169

E
[
Φ diag

(
1ΦTx�0

)
ΦT
]

[i, i] =

D∑
k=1

E
[
Φ2[i, k]1Φ[i,:]Tx≥0

]
= E

[
‖Φ[i, :]‖21Φ[i,:]Tx≥0

]
.

Let p(w) denote the probability density function of a Gaussian random vector w ∼ N (0, σ2I) and170

U ∈ SO(D) and orthonormal matrix such that x′ = UTx with x′[1] = ‖x‖ and x′[i] = 0 for171

i = 2, . . . , D. Then,172

〈w,x〉 ≥ 0⇔ 〈Uw,x〉 ≥ 0〉 ⇔ 〈w,UTx〉 ≥ 0⇔ w[1]‖x‖2 ≥ 0⇔ w[1] ≥ 0.

Using this equivalence, we can compute the expectation173

E
[
‖w‖21wTx≥0

]
=

∫
RD

1wTx≥0‖w‖2p(w)dw =

∫
RD

1w[1]≥0‖w‖2p(w)dw =

=

∫
RD

1w[1]≥0w
2[1]p(w)dw +

D∑
i=2

∫
RD

1w[1]≥0w
2[i]p(w)dw =

=

∫ +∞

0

w2[1]
1

√
2πσ2

e−
w2[1]

2σ2 dw[1]+

+
D − 1

2

∫ +∞

−∞
w2[2]

1
√

2πσ2
e−

w2[2]

2σ2 dw[2] =

=
1

2
σ2 +

D − 1

2
σ2 =

D

2
σ2.

Plugging this into the expressions of the gradient covariance we get174

E∇xfθ,Φ(x)∇Txfθ,Φ(x) = σ2
θE
[
Φ diag

(
1ΦTx�0

)
ΦT
]

=

= σ2
θE
[
‖Φ[i, :]‖21Φ[i,:]Tx≥0

]
ID =

=
D

2
σ2
θσ

2
ΦID.

175

9

Example 4 (Non-linear model of pooling). Let fθ,φ(x) = θTA(m�ρ(φ�v)) with∇xfθ,φ(x) =176

(ATθ)� (ρ′(φ� x)� φ�m). Then,177

E∇xfθ,φ(x)∇Txfθ,φ(x) = σ2
φσ

2
θ

(
ATA�mmT �Ξ(x)

)
,

where Ξ(x) ∈ RD×D is a matrix that depends on the input vector x and can be computed in closed178

form.179

In particular, if the distribution of x is symmetric around 0, then EΞ(x) = ID and the average180

gradient covariance with respect to the input would be identical to that of the linear model of pooling.181

Proof. Expanding the covariance definition182

E∇xfθ,φ(x)∇Txfθ,φ(x) = E[(ATθ)� (ρ′(φ� x)� φ�m)]

[(ρ′(φT � xT)� φT �mT)� (θTA)] =

= E[(ρ′(φ� x)� φ][(ρ′(φT � xT)� φT]� EATθθTA�mmT .

We can see that the only difference with respect to the linear model case is the first expectation. Let183

Ξ(x) ∈ RD×D be the matrix with entries184

Ξ[i, j] = E[(ρ′(φ� x)� φ][(ρ′(φT � xT)� φT][i, j]

= E[φ[i]φ[j]1φ[i]x[i]≥01φ[j]x[]j]≥0] =

{
E[φ[i]1φ[i]x[i]≥0]E[φ[j]1φ[j]x[j]≥0] i 6= j

E[φ2[j]1φ[j]x[j]≥0] i = j

Depending on x the expectation E[φ[j]1φ[j]x[j]≥0] takes different values:185

E[φ[j]1φ[j]x[j]≥0] =


σφ
√

2

2
√
π

x[j] > 0

−
σφ
√

2

2
√
π

x[j] < 0

0 x[i] = 0

Similarly186

E[φ2[j]1φ[j]x[j]≥0] =


σ2
φ

2

(
1−

2

π

)
x[j] 6= 0

σ2
φ x[j] = 0

Then the covariance depending on x becomes,187

E∇xfθ,φ(x)∇Txfθ,φ(x) = σ2
φσ

2
θ

(
ATA�mmT �Ξ(x)

)
.

188

10

D NADs of CNNs189

As highlighted in Sec. 3.1, we can use two algorithms to identify the NADs of an architecture without190

training. Surprisingly, both algorithms yield very similar results, but the algorithm based on the191

eigendecomposition of the gradient covariance is numerically much more stable. Indeed, for most192

randomly initialized networks, the norm of the second derivative with respect to the weights and input193

is very small, rendering the numerical singular value decomposition of the second derivative very194

unstable. Meanwhile, the gradient covariance only requires information about first order gradients195

and these are orders of magnitudes larger than the second derivatives. For this reason, in all our196

experiments we used the eigenvectors of the gradient covariance as approximations of the NADs of a197

given architecture.198

We provide now the implementation details of both algorithms, as well as some examples of NADs199

identified with both methods.200

D.1 NADs obtained through the eigendecomposition of the gradient covariance201

Algorithm 1 describes the steps required to identify the NADs of an architecture using its input202

gradient covariance. As we can see, this procedure amounts to sampling T architectures from its203

weight initialization distribution, computing its input gradient at an arbitrary input point x, and204

performing a Principal Component Analysis on the gradient samples.

Algorithm 1 NAD discovery through gradient covariance

Require: Network architecture fθ, parameter distribution Θ, evaluation sample x, number of
Monte-Carlo samples T , and finite-difference scale h.

1: G ← ∅ . Gradient samples
2: for t = 1, . . . , T do
3: Draw θ ∼ Θ
4: ∇̄xfθ(x)← 0
5: for i = 1, . . . , D do

6: ∇̄xfθ(x)[i]←
fθ(x+ hei)− fθ(x− hei)

2h
. Compute finite difference gradient

7: end for
8: G ← G ∪ ∇̄xfθ(x)
9: end for

10: {(ui, λi)}Di=1 ← PCA(G) . Perform Principal Component Analysis
11: return {ui}Di=1

205

In practice, we found out that using finite differences with a scale of h = 100 to approximate the206

gradients instead of backpropagation was necessary to obtain meaningful results. We believe the207

reason for this is that the finite differences allow to capture a coarser scale of the function geometry208

and hide the effect of higher order terms, as they do not rely on very local fluctuations of the input209

geometry. We leave for future research the understanding of this phenomenon.210

We now show some additional examples of NADs obtained using Algorithm 1 on a LeNet, VGG-11,211

ResNet-18 and DenseNet121.212

11

D.1.1 LeNet213

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S5: NADs of LeNet obtained through eigendecomposition of gradient covariance

12

D.1.2 VGG11214

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S6: NADs of VGG16 obtained through eigendecomposition of gradient covariance

13

D.1.3 ResNet-18215

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S7: NADs of ResNet-18 obtained through eigendecomposition of gradient covariance

14

D.1.4 DenseNet-121216

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S8: NADs of DenseNet-121 obtained through eigendecomposition of gradient covariance

15

D.2 NADs obtained through the SVD of the mixed second derivative217

The second way we can identify the NADs without training is using the expected right singular218

vectors of the mixed second derivative,∇2
x,θfθ(x). However, note that the mixed second derivative219

has a number of entries equal to the product of the weight and input dimensionalities, which can220

amount to more than a trillion elements. This makes it impossible to store this object in any common221

computational platform, and hence we can only estimate its singular vectors using power iteration222

methods [2]. Specifically, these methods estimate the spectral decomposition of a linear operator by223

sequentially alternating between the application of the linear operator on a vector and its adjoint.224

Consequently, we just need an efficient way to compute ∇2
x,θfθ(x)v and v′T∇2

x,θfθ(x) for any v225

and v′ to be able to compute the SVD. Algorithm 2 details these procedures. As we can see, in our226

algorithms we use a finite difference approximation to compute the directional input derivative of227

∇θfθ(x). Again, this helps for stability of the results.228

Algorithm 2 NAD discovery through mixed second derivative

Require: Network architecture fθ, parameter distribution Θ, evaluation sample x, number of
Monte-Carlo samples T , and finite-difference scale h.

1: procedure DVP(F , v) . Computes ∇2
x,θfθ(x)v

2: for fθ ∈ F do
3: d← 0

4: d← d+
∇θfθ(x+ hv)−∇θfθ(x− hv)

2h
5: end for
6: return d/T
7: end procedure

8: procedure ADVP(F , v′) . Computes v′T∇2
x,θfθ(x)

9: for fθ ∈ F do
10: d← 0
11: d← d+∇x

(
v′T∇θfθ(x)

)
12: end for
13: return d/T
14: end procedure

15: F ← ∅ . Function samples
16: for t = 1, . . . , T do
17: Draw θ ∼ Θ
18: F ← F ∪ fθ
19: end for

20: {(ui, σi)} ← PowerIteration(DVP,ADVP) . SVD through power iterations
21: return {ui}Di=1

In the next figures, we show the results of the application of these algorithm to a LeNet, VGG-10 and229

ResNet-18. However, due to the high computational complexity of Algorithm 2 on large networks,230

we do not show them for the larger DenseNet-121. At this stage, it is important to highlight that the231

results of Algorithm 2 are much noisier than those of Algorithm 1 (as seen in the resulting NADs232

depicted in Sec. D.1 and Sec. D.2). We believe this is due to the bad conditioning of Algorithm 2233

due to the small magnitude of the second derivatives and the use of a power iteration method in234

Algorithm 2 with respect to the exact eigendecomposition in Algorithm 1. Nevertheless, looking at235

the shape (especially in the spectral domain) of the first few NADs obtained with both algorithms we236

can see that they are indeed very aligned.237

16

D.2.1 LeNet238

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S9: NADs of LeNet obtained through SVD of mixed second derivative

17

D.2.2 VGG11239

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S10: NADs of VGG16 obtained through SVD of mixed second derivative

18

D.2.3 ResNet-18240

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Index 10 Index 11 Index 12 Index 13 Index 14 Index 15 Index 16 Index 17 Index 18 Index 19

Index 50 Index 100 Index 150 Index 200 Index 250 Index 300 Index 350 Index 400 Index 450 Index 500

Index 550 Index 600 Index 650 Index 700 Index 750 Index 800 Index 850 Index 900 Index 950 Index 1000

Figure S11: NADs of ResNet-18 obtained through SVD of mixed second derivative

D.3 Further experiments with NADs241

We now provide some further experiments using the NADs of some common neural network archi-242

tectures. First, we give two additional experiments on the performance of a VGG11, and a multilayer243

perceptron (MLP) with 3 hidden layers with 500 neurons each, on a sequence of linearly separable244

datasets aligned with its NADs. As we can see in Fig S12, the VGG11 behaves very similarly to the245

other CNNs (see Fig. 6), only being able to generalize to a few distributions, whereas the MLP can246

always perfectly generalize to the test distribution. Note also, that the eigenvalue decay on the MLP is247

much less pronounced. In fact, we believe that this is only a result of the finite set of gradient samples248

used to perform its eigendecomposition, and we conjecture that in the limit of infinite samples the249

eigenvalue distribution of the MLP will be completely flat (as we formally proved for the single250

hidden layer network of Example 3).251

D.3.1 Speed of convergence252

NADs also have an effect in optimization. To show this, we tracked the training loss of a LeNet and253

a ResNet-18 when trained on different D(v) parameterized by the NAD sequence. Fig. S13 shows254

these results. As expected, even if in all cases these networks achieved almost a 100% test accuracy,255

19

Figure S12: (Green) Normalized covariance eigenvalues and (brown) test accuracies of a MLP and
a VGG11 trained on linearly separable distributions parameterized by their NADs. (σ = 3, ε = 1)

the effect of NADs is clearly visible during optimization. This is, it takes much longer for these256

networks to converge to small training losses when the discriminative information of the dataset is257

aligned with the later NADs as opposed to the first ones. This is similar to the phenomenon described258

in Fig. 4b where we identified the same behaviour with respect to the Fourier basis. However, in that259

case, higher frequency was not a direct indicator of training hardness (cf. NAD index).260

0 100 200 300 400 500 600 700

Iterations

0

200

400

600

800

1000

NA
D

 I
nd

ex

10−4

10−3

10−2

10−1

100

(a) LeNet (σ = 0)

0 100 200 300 400 500 600 700

Iterations

0

50

100

150

200

250

N
A

D
 In

de
x

10−5

10−4

10−3

10−2

10−1

100

(b) ResNet-18 (σ = 1)

Figure S13: Training loss per batch of different networks trained using different training sets drawn
from D(v) (ε = 1, and σ chosen to accentuate differences). Directions v taken from the NAD
sequence.

D.3.2 Generalization vs. number of training samples261

NADs encapsulate the preference of a network to search for discriminative features in some particular262

directions. This means that a network first tries to fit the training data using features aligned with263

NADs of lower indices, before proceeding to later ones. In that sense, and for a fixed level of noise264

σ, one can argue that, if the discriminative direction of the data is aligned with a NAD of higher265

index (i.e., not properly aligned with the directional inductive bias of the network), it is quite likely266

that the network will overfit to some discriminative but non-generalizing solutions, using noisy267

features that are aligned with NADs of lower indices. In this case, and for reducing such spurious268

correlations, more training samples might be necessary for the network to “ignore” such solutions269

20

and seek for other discriminative ones using NADs of higher indices (and hence eventually finding270

the discriminative and generalizing one).271

On the contrary, if the discriminative direction of the data is aligned with a lower NAD index (i.e.,272

properly aligned with the directional inductive bias of the network), then the network tries to fit the273

training data along the truly generalizing direction earlier; hence, the possibility of overfitting to274

noisy features appearing along higher NAD indices is reduced. In that sense, even a few training275

samples might be enough for the network to converge to the generalizing solution.276

An illustration of this dependency between the alignment of the generalizing direction with the NADs,277

and the number of training samples, is shown in Fig. S14. For both cases, it is clear that less training278

data are required for the network to generalize when the discriminative direction v is aligned with279

the lower NADs of the network. On the contrary, when v is aligned with higher NADs, more data is280

required for the network to “ignore” the noisy features and find the generalizing solution. In fact, as281

clearly observed for the case of ResNet-18, given a large amount of training samples (considering the282

simplicity of the task) the network can eventually generalize perfectly, regardless the position of the283

direction v.284

0 200 400 600 800 1000

NAD Index

50

60

70

80

90

100

T
es

t
ac

cu
ra

cy

100

1000

5000

20000

50000

100000

(a) LeNet

0 200 400 600 800 1000

NAD Index

50

60

70

80

90

100

T
es

t
ac

cu
ra

cy

100

1000

5000

20000

50000

100000

(b) ResNet-18

Figure S14: Generalization vs number of training samples for two CNNs trained using different
training sets drawn from D(v) (ε = 1, and σ = 3). Directions v taken from the NAD sequence.

21

E Details of experiments on CIFAR10285

All our experiments on CIFAR-10 use networks trained for 50 epochs using SGD with a linearly286

decaying learning rate with maximum value 0.21, fixed momentum 0.9 and a weight decay of287

5× 10−4. Again, our objective is not to obtain the best achievable performance, but to show relative288

differences with respect to NADs for a fixed training setup. Hence, the hyperparameters of these289

networks were not optimized in any way during this work. Instead they were selected from a set of290

best practices from the DAWNBench submissions that have been empirically shown to give a good291

trade-off in terms of convergence speed and performance.292

We finish this section with a detailed description of the poisoning experiment. In particular, recall293

that, in the binary class setting, i.e., y ∈ {−1,+1} an easy way to introduce a poisonous carrier on a294

sample x is to substitute the information on that sample in a given direction by εy. However, this295

means that, for a given direction u, we can only allocate at most two classes. A simple extension to296

the multi-class case, i.e., y ∈ {1, . . . , L}, uses therefore dL/2e directions to poison all samples.297

CIFAR-10 has L = 10 classes, but also, its samples contain information spread along K = 3 color298

channels. The NADs that we computed in Sec. 3.1 were computed for single-channel inputs. Hence,299

we need to extend them to work in the K-channel case. Let {ui}Di=1 be the NADs of a deep neural300

network for a single channel input. The NADs of the same architecture with K input channels are301

{ui ⊗ e′k, i = 1, . . . , D, k = 1, . . . ,K}, where e′k represents the kth canonical basis vector of RK .302

All in all, using these extensions to the simple setting, we can easily poison CIFAR-10. Given a303

carrier NAD index i, for each sample xj ∈ RDK in the training set with associated label yj we can304

modify it such that it satisfies xTj (ui⊗e′byj/2c) = ε(2JyjK2− 1). Note that, for any ε > 0, this small305

modification on the training set renders each class linearly separable from the others using only the306

poisonous features. However a classifier that uses these features will not be able to generalize to the307

unpoisoned test set.308

References309

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson, 4 edition ed., 2017.310

[2] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). USA: Johns Hopkins University311

Press, 1996.312

22

	Experiments on linearly separable datasets
	General training setup
	Experiments on DFT basis
	Experiments on random basis

	Deferred proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2

	Analytic NAD examples
	Proofs for linear model of pooling
	More examples

	NADs of CNNs
	NADs obtained through the eigendecomposition of the gradient covariance
	NADs obtained through the SVD of the mixed second derivative
	Further experiments with NADs

	Details of experiments on CIFAR10

