A Proof of Prop. 1: SKSD closed form

Our proof will parallel that of Gorham and Mackey [22, Prop. 2] for non-stochastic KSDs. For each
j € [d] and each o;, we define the coordinate operators

#(7:7]; )(J?) é (%viﬁ logpo'i, (33) + vi])f(x)

for f : R? — R. Foreach g = (g1,...,94) € Gk, and = € R?, our C1) assumption on k and
the proof of [47, Cor. 4.36] imply that

(Tou9) (@) = S0 (T2.95)(x) = Y-y T3 95, k(, ) e = X195, TE k(@)
Meanwhile, the result [47, Lem. 4.34] yields
<#7:rjlk(xlv )s mT k(i 7)> = ( vzl] log po, (i) + vx”)(mvz i 1nga (i) + vzi/j)k(xiu Tr)

forall 4,4’ € [n] and j € [d]. Therefore, the advertised
= i L (e T k(e ), T R (we,)) = Il 0y 5 T3 ki, )k, -

Finally, our assembled results and norm duality give

SS(QTL7TP7gk,HH) = Supgegk,”.u Z?:l % =1 m(T )( )
= Sup“gj ), =y, llvll* <1 Zj 1<gja % Z? 1 mTJ k(l‘,, )> K
= SUpP|jy|*<1 Ej 1UJ|| . El 1 m[TJ k(i) |l

= SupHvH*§1 Zj:lvjwj = H’LU”

B Proof of Theorem 2: SSDs detect convergence
We will find it useful to write
S8(Qn,T,G) = supyeg|= Yi, & ZJG([SJ) Bio (T59) ()

B Z ([L]) M’TLG’(’]-Ug)‘ for Hno = (,EL) %% Z?:l Bio(sa:,y

for B,L'J = ]I[O’ = 0','] (9)

= supyeg)| (1)

We will also write BL|.| £ {h : RY — R : ||h||o + Lip(h) < 1} as the unit ball in the bounded

Lipschitz metric, and for any R > 0, Bg £ {z € R? : ||z||2 < R} as the radius R ball centered at
the origin. For any set K, let [ (x) =[xz € K

Our proof relies on a lemma, proved in App. B.1, that boosts almost sure convergence in distribution
into almost sure uniform convergence for the expectations of all continuous functions dominated by a
uniformly integrable, locally bounded | fo| with derivatives dominated by a locally bounded | f1].

Lemma 8 (Convergence of random measures). Consider two sequences of random measures (Z/n)n 1

and (7,)2%, on R%, and suppose there exists an R > 0 such that v, (hIg,) — in(hIp,) “3 0 for
each bounded and continuous h. Then, for H = BL),

sup |vn(hlpy,) — on(hIp,)| “3 0. (10)
heH

Suppose, in addition, that for every S > 0 there exists an R > S such that (10) holds. Then if fy is
almost surely uniformly v, -integrable and uniformly Uy, -integrable, and fy, f1 are bounded on each
compact set, we have

sup |Vn(h) - Dn(h)| E). 0;

heHy

where Hy £ {h € C(R?) : |h(x)| < | fo(x)|, =1L < |fy(2)| + | f1(y)| for all 2,y € RY}.

lz—yll2
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Since W, (Q.,, P) — 0, [17, Proof of Cor. 1] implies that Q,,(h) — P(h) for all bounded continuous
h and that fo(z) = ¢(1 + ||=||%) is uniformly @Q,,-integrable and P-integrable. Moreover, for each

o€ ([ﬁ), fino(h) — £Q,(h) “3 0 for all bounded h by Lemma 10, and thus ji,,(hlp,,) —
Qn(hIp,) “3 0 for all bounded h € C(R?) and any R > 0. Since, for any compact set K,
pno (| fol Ixe) < (é) L Qn(|folIke), fo is also uniformly fi,,,-integrable. By assumption f; (z) =

To9)(x)—(Ts
w(||z]2) for w(R) £ sup,, SUPeg, 4 yep,y Lo =W

is bounded on any compact set.

Moreover, since P is a finite measure, there are at most countably many values R for which
P({z : ||z||]2 = R}) > 0. Hence, for any S > 0 we can choose R > S such that By, is a continuity
set under P. For any such R, Q,(hlp,) — P(hIg,) — 0 for any bounded h € C(R?) by the

Portmanteau theorem [29, Thm. 13.16], since W, (Q.,, P) — 0 implies convergence in distribution.

Finally, the assumption P(7g) = O for all ¢ € G, the triangle inequality, the continuity and
polynomial growth of each function in 7,G,,, and Lemma 8 applied first to 1, and (Q,,)>>; for
each o and then to (Q,,)22 ; and P together yield

SS(Qn,T, gn) = SUPgeg,, |(7I;L) ZJE(%J) Mno’(%g) - %Qn(%g) + #Qn(%g) - #P(%g”

< (5) 7 e () SPnen, iino(h) = EQu(B)| + £IQu(k) = P(h)] “5 0.

-1

B.1 Proof of Lemma 8: Convergence of random measures

Fix any R, e > 0 and let K = Bpr. By the Arzela—Ascoli theorem [15, Thm. 8.10.6], there exists
a finite e/2-subcover of the set of K -restrictions {h|x : h € H}. Since any bounded continuous
function on K can be extended to a bounded continuous function on R?, there therefore exists a
sequence of bounded continuous functions (k)7 , on R? such that

P(suphEH |Vn(h[K) - ﬂn(hIK” > € 10) < P(maxlgkgm ‘Vn(thK) — Dn(thK)l > 6/2 10)
< S P(ln(hie) — Tn(ha)| > €/21.0.) =0,

where we have used the union bound and our almost sure convergence assumption for bounded
continuous functions. The first result (10) now follows since € was arbitrary.

We next assume that the event £ on which fy is uniformly v,, and 7,-integrable occurs with
probability 1, and fix any ¢ > 0. On & there exists R, > 0 such that (10) holds and
sup,, max(vn (| folIxce ), o (| folIxe)) < €/2 for K. £ Bpg,_. Furthermore, on &,

+ |Un(h) — Up(RIk,)

SUPpep [vn(h) = va(hlk,) < SUPpey, Un(|h|IKe) + Dn(|h|1Kk<)
< vn(follke) 4+ Un(| follke) < e

Therefore, the triangle inequality, fact that for each R > 0 there is a constant cg > 0 such that
{hIp, :h € Hs;} C{crhip, : h € H}, and our first result (10) give

P(suppey, [vn(h) — n(h)| > 2€i.0.) < P(E°) + P(suppeyy, [vn(hlk,) — Un(hlk, )| > €i0.)

< P(E°) + P(cr. suppey [Vn(hIk,) — Dn(hik,)| > €i.0.)
=0.

The second result now follows since € was arbitrary.

C Proof of Theorem 3: Bounded SDs detect tight non-convergence
We consider each Stein set candidate in turn.

C.1 Kernel Stein set

Suppose G,, satisfies (A.1). Since, for any vector norm ||-|| on R¢, there exists ¢4 such that {g €
gk’H.Hz : maXa_E([L]) H%g”oo < 1} - cd{g S gk,H,H : maXJe([L]) ‘7:,9“00 < 1} [4], it suffices to

assume [|-[| = {[-[|2.
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Choosing a convergence-determining IPM d;; Consider the test function set H from [22, Sec
E.1, Proof of Thm. 5] which satisfies

1. ||hljoo < 1and Lip(h) < 14 +/d — 1 forall h € H and

2. Qn # P implies dy(Qy, P) # 0 for any sequence of probability measures (Qy,)n>1.

Solving the Stein equation Tpg, = h — P(h) Let us define Z(x) = (1 + ||z[|3)'/2. By [22,
Sec E.1, Proof of Thm. 5], for each h € H there exists an accompanying function g, such that
Trgn = h — P(h) and ||Egn|lcc < M p for a constant M p > 0 independent of h.

Smoothing the Stein function g, Fix any p € (0,1], and let U ~ N(0,I). Since Vlogp is
Lipschitz, the argument in [22, Proof of Thm. 13] constructs a smoothed approximation gy, ,(z) =
E[gn(x — pU)] satisfying

| Tegn,p — TPgnlloc < Cip (11)
for a constant C'; independent of i and p. Moreover, the following lemma shows that
IZgnplloc < IIEgnlloc V2E[L + [|U]|2] < M) £ V2Mp(1+ V),
where M p is notably independent of p and h.

Lemma 9 (Smoothing preserves decay). For each g : R? — R%, ¢ € [0, 1], and absolutely integrable
random vector Y € R,

sup,epe E[A(2)[lg(z — €Y)2] < V2|29 E[A(Y)] for Alx) 21+ [zfs.  (12)
Proof For B(y) = SUP, ue(o,1] A(@)/E(z — uy), we have
sup,czs BI(1+ ||2]2)llg(@ — €7 2] = sup, e B[ SEEE (@ — ) g o — )]
< sup, cp |29l B[ S22 < |29l EIB(Y)].
Moreover, Z(z) > 27Y/2(1 + | z||2) for all z implies that, for any v,
B(y) = SUPz we(0,1] % < SUPz we(0,1] \@ﬁ = SUP; ue(0,1] \/iﬁ(jir;ﬁz)
< SUDP; ye(0,1] ﬁ% < V2A(y),

where we used the triangle inequality in the penultimate inequality. [

Truncating the smoothed Stein function g, , Fix any € € (0,1), and, since (Q,);>; is tight,

n=

select a compact set K satisfying sup,, @, (K¢) < e. The argument in [22, Proof of Thm. 13]
identifies a truncation gy, , . and a constant C independent of A, €, and p € (0, 1] such that, for all
x € R4,

19h.p,e(@)]l2 < llgn,p(2)l]2  and

|(TPgn,p,) (@) = (Tpgn,p)(x)| < Collz € K¢]. (13)

Hence, ||Egh/,p7eHoo < ||Egh,p||oo < M/P'

Smoothing the truncation g, ,. By assumption, for all o € ([i]), there is a constant 5 > 0
such that ||V log po(2)||2 < B(1 + ||z||2) for all z. Defining Ag(z) = £3(1 + ||z[|2), we note

m

that, since Vlogp = £ (L) - ZUE([L]) V log p,, an application of the triangle inequality yields

IV 1og p(z)||2 < Ag(z) for all z. Moreover, since L/m > 1 we have ||V log p, (z)||2 < Ag(z) for
all x and o.

From the construction in [22, Proof of Lem. 12], there is a random variable Y with finite first moment
such that the function gy , (%) £ E[gp , (z — €Y)] satisfies

”Tpgh,p,e - TPgh,p,e”oo S C’p6 (14)
and g . € C¢ Gy for constants C, independent of € and h and C, , independent of h.
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Showing the smoothed truncation g, , . is in a scaled copy of G;, , By Lemma 9, we have
1A8Ghp.elloc < [12h.puellocV2E[Ap(Y)] < Mp £ MpV2E[A5(Y)],

where /% is independent of h, ¢, and p. Thus for any o, Cauchy-Schwarz, our bound (12), the
triangle inequality, and the fact that |V log p, /Agllee < 1 and |V 1ogp/Agllee < 1imply
H#ngh,p,e - TPgh,p,EHOO = ||<%V10gpg — Vlogp, gh,p,6>||00
< [(£Vlogps — V1ogp)/Aslloc | Asdn,p.cllo
< Mp(£|V1ogps /Agllo + |V log p/Aglloc) < (£ + 1) M.
Thus, the triangle inequality and our error bounds (11), (13) and (14) yield
[Tpgn.p.elloc < TPgn — Tegnplloc + 1 TPgh.o — TPghp.elloc + | TPGhpc = TPGh,poelloc + [ TPGR o
<Cip+Co+Che+2 and
oo < Hﬁgh,p,e - %Tpghm@”oo + %HTPgh,p,EHoo
<Cop2 (1+2)Mp + 2(Crp+ Co + Cpe +2)

||7:r§h,p,6

for each o. Therefore, gy , € max(C,, (ng)gb,n.

Upper bounding the IPM d3; Finally, we combine the triangle inequality and our approximation
bounds (11), (13) and (14) once more to conclude

dH(an-P) £ sup |Qn(h) - P(h)‘ = sup ‘Qn(TPgh”
heH heH
< sup |Qn(TPan.p.e)| + |Qu(TPGn.p.e — TPGh.p.)l +1Qn(TPgh.p — TPghp.e)| + |Qn(Trgn — TPgn,p)|
S :ug |Qn(TP§h,p,e)| + Cpe + COQn(KeC) + Clp
€

§ max(C’W, ée,p)S(Qna TP7 gb,n) + (CO + Cp)E + Clp.

Since € and p were arbitrary, whenever S(Qy,, Tp, Gp,n) — 0, we have dy (@, P) — 0 and hence
Q.= P.

C.2 Classical Stein set

Suppose G,, satisfies (A.2), and consider Gy, .|, for k(z,y) = ®(z —y) £ (1 + ||[T(z — y)||3)”
with 8 < 0 and T > 0. Since V*®(0) is bounded for s € {0,2,4}, [47, Cor. 4.36] implies that
Gk, € coYn for some co. The result now follows since Gy, .||, also satisfies (A.1).

C.3 Graph Stein set

If G,, satisfies (A.3), the result follows as G,, contains the classical Stein set gH-H .

D Proof of Theorem 4: SSDs detect bounded SD non-convergence

Since S(Qn, T, Gp,n) # 0, there exists € > 0 such that S(Q,,, T, Gp.»,) > € infinitely often (i.0.). Fix
any such e. For each n, choose h,, = Tpg, for g, € Gy, satisfying Q,, (hn) > S(Qn, T, Gb.n) —€/2.
Then since 7= (5)71$ 2oe(iy Tos

m

S(@ns T Gom) = /2 € Qulbn) = (1) X ey ina (Toga) + (5) ™ S ey o (Togi)
< (1) e () (EQn(Tagn) = tino (Tagn)) + SS(Qn. T, 9).

m

Moreover, since || 75 gn||oo < 1 forall o € ([L]

- m

%Qn(%gn) — tine (Togn) “3 0 for each o.

) and n, Lemma 10, proved in App. D.1, implies that
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Lemma 10 (Bounded function convergence). Fix any triangular array of points (CE?)ie[n],n; in R%,
and, for each n > 1, define the measures

1 n ~ 1 n B;
Un =4 Zi:1 59c? and U, = n Zi:1 T 6;8,”

i

where B; "% Ber(t) are independent Bernoulli random variables with P(B; = 1) = 7. If ||| 0o < 1
for each n, then, with probability 1,

() — v ()] < 71128 2 oallog()

2n

for all n sufficiently large. Hence, i, (hy,) — vn(hy) “3 0.

Hence
P(SS(Qn, T,Gn) # 0) > P(SS(Qn,T,G,) > €/21.0.)
> P(Qn(Togn) — tno(Togn) < % eventually, Vo) = 1
as advertised.

D.1 Proof of Lemma 10: Bounded function convergence

The result will follow from the following lemma which establishes rates of convergence for subsam-
pled measure expectations to their non-subsampled counterparts.

Lemma 11. Under the notation of Lemma 10, for any a € [1,2], § € (0,1), and h : R¢ — R,

Un(h) —vn(h) < T vzosll/9) ”%log(lm(un(\hw))l/a with probability at least 1 —6 and

= nl-1/a

—1 1
Up(h) — iy (h) < Y2220 M(V,,(W“))”“ with probability at least 1 — 6.

nl-1/a
Proof Fixanya € [1,2],6 € (0,1), and h : R? — R. Since
Zn(h) = 5 Xisy Z-h(a)

is an average of independent variables 77! B;h(z?) € {0,7 ! h(z?)} with E[7,,(h)] = va(h),
Hoeffding’s inequality [26, Thm. 2] implies

Un(h) — vn(h) < T‘l\/log(l/é)# S h(z?)2  with probability atleast 1—¢§ and

vn(h) = on(h) < 771\ flog(1/6) 315 1 h(x})?  with probability at least 1 — 4.
Moreover, since |||z < |||, we have /> h(z7)2/n2 < (30, |h(21)]|%/n*)'/4, and the
O

advertised result follows.

By Lemma 11 with a = 2,

S0 P(Jvn () — Dy (hy)| > 771 1By < 57 5, < oo

for 6,, = 1/(nlog®(n)). The result now follows from the Borel-Cantelli lemma.

E Proof of Prop. 5: Coercive SSDs enforce tightness

Let f(z) = minge(m) L (T,g)(x). Since f is bounded below, C' = inf,cga f(z) is finite. Define

y(r) £ inf{f(z) = C ||z]2 > 7},
so that -y is nonnegative, coercive, and non-decreasing, as f is coercive. Since (Q),,)52 ; is not tight,
there exist € > 0 and R > 0 such that lim sup,, @, (|| X||2 > R) > e and y(R)e + C > 0. Moreover,
since -y is non-decreasing and nonnegative, Markov’s inequality gives

Qn([X[l2 > R) < Qu(v([IX]l2) > v(R)) < Eq,[y(IX[2)]/7(R) < (@n(f) — C)/7(R).

Meanwhile, our assumption on g and the SSD subset representation (4) imply that, surely,

Qn(f) = %2?21 f(Iz) < %Z?:1 %(7:779)(931) < SS(Qm T, gn)
Hence, SS(Qy, T, G,) surely does not converge to zero, as
lim sup,, SS(Qy, T, Gn) > v(R) limsup,, @, (|| X||2 > R) + C > y(R)e + C > 0.
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F Proof of Theorem 6: Coercive SSDs detect non-convergence
We consider each Stein set candidate in turn.

Kernel Stein set  Suppose G,, satisfies (A.1) for one of the specified kernels, k1 (z,y) = ®1(z — y)
or ka(z,y) = Pa(x — y), with T = 1.

We have <i>1 and fi)g are non-vanishing by [51, Thm. 8.15] and [9, Lem. 7], respectively. Moreover,
we have for all z,y € R?

—1
(Viogp(z) — Viogp(y),z —y) = £(5) 3 (Viegp,(z) — Viegpo(y), = — y)
< —kllz —yll3+ 7

Hence if Q,, # P, then, by Theorem 3, either S(Q,,, Tp, Gp.n) 7 001 (Qy)5%; is not tight.
If S(Qn, Te, Go.n) 7 0, then, with probability 1, SS(Qy,, Tp, Gn) # 0 by Theorem 4.

Now suppose (@)% is not tight, and fix any o € ([Tfl]). Consider first the kernel k1. Since
#V log p, has at most linear growth and satisfies distant dissipativity, the proof of [22, Lem. 16]

constructs a function g € G, that is independent of the choice of ¢ and satisfies #’Eg > f, for
some coercive bounded-below f,,. Similarly, the same conclusion holds for the kernel ko by the

proof of [9, Thm. 3]. Since (%L]) has finite cardinality, we have #’7} g > f for a common coercive

bounded-below function f(x) = min, f, (). Therefore, surely, SS(Q.,,, T, G») # 0 by Prop. 5.

To extend this result to any I' > 0, fix some I' > 0. For any distribution P on R, let us write
'~ P to represent the distribution of I'"'Z when Z ~ P. Let pr be the density "' P. Then

pr(z) = det(I')Vlog p(I'z) and V logpr(z) = I'Vlog p(T'z), and for any o € ([5:,])’ the analog
pr,o of pr satisfies pr () = det(I")V log p,(I'z) and Vlog pr ,(x) = I'Vlogp,(I'z). By the
same argument made in [10, Lem. 4], we have that V log pr is Lipschitz and V log pr , satisfies

distant dissipativity. And since
[VIogpro(z)llz _ [[T'VIogps(Iz)(l2 1+ [Tzl
- = < r o 1+ o
T+ [l TrTals 1+ [y = lerl Tl
is uniformly bounded, we can apply the same argument discussed in [10, Lem. 4], i.e., make a
global change of coordinates = — I' "'z and then invoke Theorem 6 for "' P and I'"'Q,, with a
non-preconditioned kernel, thereby concluding the proof.

|V log ps(T'z)|2
14 T2

Classical Stein set Suppose G,, = G| satisfies (A.2). By the proof of Theorem 3, for I' = [ and
any 8 € (—1,0), there is a constant ¢y > 0 such that the kernel Stein set gk»”‘”? C ¢pG,. Hence
SS(Qns TP, Gk )-)12) < c0S8S(Qn, Tp, Gn) for all n implying the result.

Graph Stein set Suppose G, satisfies (A.3). Then the result follows as G,, contains the classical
Stein set g”,” .

G Proof of Theorem 7: Wasserstein convergence of SVGD and SSVGD

G.1 Additional notation
For each € > 0 and collection of n points («]')?_; with associated discrete measure v,, = % Sy Oz,
we define the random one-step SSVGD mapping

T ) =24 2 S0, BV logpy, (a)) k(e 2) + Vg h(al. 2)

VUn,€,M j=1m

for (0;)%_; independent uniformly random size-m subsets of [L]. We also let ", (1) denote the
random distribution of 7" _ . (X) when X ~ p.

VUn,€,M

G.2 Proof of Theorem 7

We will prove each convergence claim by induction on r > 0.

18



Inductive proof of W1(Q,, -, Qoo,r) — 0 For our base case we have W1 (@0, Qoo,0) — 0 by
assumption.

Now, fix any r > 0 and assume W1(Qpr, Qoo,r) — 0, so that ¢o(1 + ||-||2) is uniformly @, ,-
integrable and Q,, «o-integrable by [17, Proof of Cor. 1]. Therefore, there exists a constant C’ > 0
such that

sup, > 1+ €1 (L4 Qnr(|l]2)) + erc2(1 + Qoo ([|1]]2)) < €.
Now, note that
Wl (Qn,r+17 Qoo,rJrl) = Wl ((I)er (Qn,r)a CI)ET (Qoo,r))

To control this expression, we provide a lemma, proved in App. G.3, which establishes the pseudo-
Lipschitzness of the one-step SVGD mapping ®..

Lemma 12 (Wasserstein pseudo-Lipschitzness of SVGD). Suppose that, for some cy,co > 0,
sup,ega [|[V=(Vlogp(2)k(x, 2) + Vak(x, 2))llop < e1(1 + [lz]l2)  and
supera [|[Va(Viogp(2)k(z, 2) + Vak(z, 2))[lop < c2(1 4 [2]2)-

Then, for any € > 0 and probability measures |1, V,
Wi (@e(p), Pe(v) < Wilp, v)(1 4 ecr(1+ p([]ll2)) + eca(1 4 v([|]]2)))-

Our pseudo-Lipschitz assumptions (7) and Lemma 12 imply
Wl((I)er (Qn,r)v (I)sr (Qoo,r)) S Wl (Qn,r; Qoo,r)(l + Ercl(l + QTLJ(””Q)) + 67’62(1 + Qoo,r(HHQ)))
§ ClWl(Qn,ra Qoo,r) — 07

proving our first claim.

Inductive proof of W1 (Q},, Qn ) — 0 For our base case we have, W1 (Q}y, Qn,0) = 0.

Now fix any r > 0, let £ be the event on which W} (Qﬁ’r, Qnr) — 0asn — oo, and assume
P(&) = 1. Since W1(Qn,rs Qoo,r) — 0, on € we find that W1(Q7',, Q) — 0 and hence
co(1 + ||-||2) is uniformly Q7" , -integrable and uniformly @, ,-integrable by [17, Proof of Cor. 1].

n,r
Therefore, on £, there exists a constant C' such that

sup,>1 1+ i (1+ Q' ([ l2) + erca(1 4+ @ur([l-ll2)) < C

By the triangle inequality,
Wl(Qﬁ,T‘-‘rl? Qn,r+1) =W ((I)Z:,n( n ) €r (Qn r))
S W1 ((bm n( nm'r) (bfr( n,'r)) + Wl(q)er( :lrL,T')? q)ET(QnJ'))'
On &, our growth assumptions (8), the uniformly Q}", -integrability of co(1+|-[|2), and the following
lemma, proved in App. G.4, establish that the Wasserstein distance W1 (@7, (Q},), ., (Q7),.))

n,r n,r

between one step of SSVGD and one step of SVGD from a common starting point converges to 0
almost surely as n grows.

Lemma 13 (One- step convergence of SSVGD to SVGD). Fix any trlangular array of points
(77)igm)n>1 in RY, and define the discrete probability measures v, = + Zl 1 07 . Suppose

V log py (1)K (-, 2) is continuous for each z € R and o € ([L]) and let
fo(@) = 8Up_ g pe ) |V 108 1o () ool (2, 2)],
Fi@) 2 50D ) IV (V oz (@) (. )

If fo is vy -uniformly integrable and fy, f1 are bounded on each compact set, then, for any € > 0,
Wl(tbz’fn(yn), D (vn)) 2 0asn — oo

In addition, on &, our pseudo-Lipschitz assumptions (7) and Lemma 12 imply

Wi(®e, (Q7), e, (Qn.r)) < Wi(Q7 s Qnr) (1 + €ca(1+ Q([1-]2) + eca(l + Qnr([I-]l2)))
S CWl( ann'r) _>0

Hence, on &, W1(Q7 1, Qn,ri1) %30, proving our second claim.
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G.3 Proof of Lemma 12: Wasserstein pseudo-Lipschitzness of SVGD

Assume that ¢4 and v have integrable means (or else the advertised claim is vacuous), and select
(X', Z') to be an optimal 1-Wasserstein coupling of (u, /). The triangle inequality, Jensen’s inequality,
and our pseudo-Lipschitzness assumptions imply that

[The(x) = Te(2) ]2

< ||$ — 2|2

+ €||E[Viogp(Xk(X',z) + Vu k(X' ) — (Viog p(X)k(X', 2) + VE(X', 2))]|2

+ el[E[VIog p(X")K(X', 2) + Vaur k(X', 2) = (Vg p(Z)k(Z', 2) + Vo k(Z', 2))][|2

<z = 2ll2(1 + ecr (1 + E[|| X]2]) + e[| X" = Z"[[2J(1 + [[2]]2)

= |l = zll2(1 + eca (1 + p(ll-[|2)) + ecaWr (s, ) (1 + |[2]]2)-

Since T), (X') ~ @ () and T}, (Z") ~ ®.(v), we conclude that
Wi(@c(p), @c(v)) S E[|[Tye(X') = Tpe(Z')]2]

SE[[X" = Z"2J(1 + ecs (1 + p(ll-ll2)) + ecaWi(u, v) (1 + E[[[ Z']]2])
= Wi, v)(1+ ecr(T+ p(]-ll2) + ec2 (X +v([][2)))-

G.4 Proof of Lemma 13: One-step convergence of SSVGD to SVGD

Note that the random one-step SSVGD mapping takes the form

T (@) = 0 4 (Vg k(@) + () 3 e 1) Vo (V log o (Jk (-, 2))

for v,y = (é )L iy Bjs0,r and Bj, = I[o = 0;]. Moreover, by Kantorovich-Rubinstein
duality, we may write the 1-Wasserstein distance as

Wi(®, (1), e (vn))
ZSUPf;Ml( y<1 Pl (v (vn)(f) = @e(vn)(f)
= SUPf.ar (f <1nZz 1f( Vn,en( ))_f(Tun,e(x?))
< LS T @) = T ()2
= (5) eI, Eva(Viogps (Vk(2)) — o (V 1og po (- k(- 2}z
< (07, L (V1og po (k- 20)) — Vo (V108 po (VR (- 2)) e
< eVd(E) S, suppen, o (h) — Lvn(h)] (15)

where we have used the triangle inequality and norm relation ||-|| < v/d||-||o in the penultimate
display and H ; is defined in the statement of Lemma 8.

For each o € (1)) since | fo| is uniformly v,,-integrable, and vy, (| folIx) < (%) L v, (| fol i) for
every compact set K, we find that | fy| is uniformly v,,,-integrable for each o. Letting I, (z) =

I[|lz]|2 < R], for each o, since vy, (hip,) — %yn(hIBR) %30 for any R > 0 and any bounded h

by Lemma 10, we have supj,cy;, [Vno(h) — Ly, (h)| “3 0 by Lemma 8. The result now follows

from the bound (15).
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