DiffGCN: Graph Convolutional Networks via
Differential Operators and Algebraic Multigrid
Pooling

Moshe Eliasof Eran Treister
Department of Computer Science Department of Computer Science
Ben-Gurion University of the Negev Ben-Gurion University of the Negev
Beer-Sheva, Israel Beer-Sheva, Israel
eliasof@post.bgu.ac.il erant@cs.bgu.ac.il

Abstract

Graph Convolutional Networks (GCNs) have shown to be effective in handling
unordered data like point clouds and meshes. In this work we propose novel
approaches for graph convolution, pooling and unpooling, inspired from finite
differences and algebraic multigrid frameworks. We form a parameterized convolu-
tion kernel based on discretized differential operators, leveraging the graph mass,
gradient and Laplacian. This way, the parameterization does not depend on the
graph structure, only on the meaning of the network convolutions as differential
operators. To allow hierarchical representations of the input, we propose pooling
and unpooling operations that are based on algebraic multigrid methods, which
are mainly used to solve partial differential equations on unstructured grids. To
motivate and explain our method, we compare it to standard convolutional neural
networks, and show their similarities and relations in the case of a regular grid. Our
proposed method is demonstrated in various experiments like classification and
part-segmentation, achieving on par or better than state of the art results. We also
analyze the computational cost of our method compared to other GCNs.

1 Introduction

The emergence of deep learning and Convolutional Neural Networks (CNNs) [, 2 3]] in recent
years has had great impact on the community of computer vision and graphics [4} 15 16l [7]. Over
the past years, multiple works used standard CNNs to perform 3D related tasks on unordered data
(e.g., point clouds and meshes), one of which is PointNet [8, 9], that operates directly on point
clouds. Along with these works, another massively growing field is Graph Convolutional Networks
(GCNs) [10]], or Geometric Deep Learning, which suggests using graph convolutions for tasks related
to three dimensional inputs, arising from either spectral theory [[11} 12} |13]] or spatial convolution
[14}[15L[16,[17]]. This makes the processing of unstructured data like point clouds, graphs and meshes
more natural by operating directly in the underlying structure of the data.

In this work we aim to bridge the gap between ordered and unordered deep learning architectures, and
to build on the foundation of standard CNNss in unordered data. To this end, we leverage the similarity
between standard CNNs and partial differential equations (PDEs) [18]], and propose a new approach
to define convolution operators on graphs that are based on discretization of differential operators on
unstructured grids. Specifically, we define a 3D convolution kernel which is based on discretized
differential operators. We consider the mass (self-feature), gradient and Laplacian of the graph, and
discretize them using a simple version of finite differences, similarly to the way that standard graph
Laplacians are defined. Such differential operators form a subspace which spans standard convolution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

kernels on structured grids. Leveraging such operators for unstructured grids leads to an abstract
parameterization of the convolution operation, which is independent of the specific graph geometry.

Our second contribution involves unstructured pooling and unpooling operators, which together with
the convolution, are among the main building blocks of CNNs. To this end, and further motivated by
the PDE interpretation of CNNs, we utilize multigrid methods which are among the most efficient
numerical solvers for PDEs. Such methods use a hierarchy of smaller and smaller grids to represent
the PDE on various scales. Specifically, algebraic multigrid (AMG) approaches [[19,20] are mostly
used to solve PDEs on unstructured grids by forming the same hierarchy of problems using coarsening
and upsampling operators. Using these building blocks of AMG, we propose novel pooling and
unpooling operations for GCNs. Our operators are based on the Galerkin coarsening operator of
aggregation-based AMG [21} 22], performing pure aggregation for pooling and smoothed aggregation
as the unpooling operator. The advantage of having pooling capability, as seen both in traditional
CNNs and GCNss [4 23] 151 16] are the enlargement of the receptive field of the neurons, and reduced
computational cost (in terms of floating operations), allowing for wider and deeper networks.

In what follows, we elaborate on existing unordered data methods in Section[2] and present our
method in Section[3} We discuss the similarity between traditional CNNs and our proposed GCN, and
motivate the use of differential operators as a parameterization to a convolution kernel in Section[3.3]
Furthermore, we compare the computational cost of our method compared to other message-passing,
spatially based GCNs in Section [3.5]. To validate our model, we perform experiments on point
cloud classification and segmentation tasks on various datasets in Section[d] Finally, we study the
importance and contribution of the different terms in the parameterization to the performance of our
method in Section

2 Related work

Unordered data come in many forms and structures — from meshes and point clouds that describe
3D objects to social network graphs. For 3D related data, a natural choice would be to voxelize the
support of the data, as in [24]]. Clearly, such approach comes at a high computational cost, while
causing degradation of the data. Other methods suggest to operate directly on the data - whether it is
a point cloud [8} 19, [25]] or a graph [[13} [15} [11} 12} 26].

Recent works like [15}[17]] assumed a system of local coordinates centered around each vertex. These
methods propose to assign weights to geometric neighborhoods around the vertices, in addition to
the filter weights. Masci et al. [15]] proposed assigning fixed Gaussian mixture weight for those
neighborhoods, and [17] goes a step further and learns the parameters of the Gaussians. These
methods require high computational costs, due to the computation of exponential terms (particularly
at inference time) as well as the overhead of additional learnable parameters.

Later, it was shown in [26] that adopting GCNs for point-cloud related tasks can be highly beneficial,
since the learned features of the graph vertices in different layers of the network can induce dynamic
graphs which reveal their underlying correlations. We follow the trend of employing GCNs for
point-cloud related tasks like shape classification and segmentation. Specifically, we choose to work
with spatial GCNss since they are most similar to standard structured CNNs. However, compared to
other works like DGCNN [27] and MPNN [16] which can be interpreted as non-directed discretized
gradient operators, we introduce directed gradients, as well as the addition of the Laplacian term of
the graph. The Laplacian is the key ingredient in spectral-based methods like [[13| [12]], but was not
used in spatial GCNs where the vertices have a geometric meaning, to the best of our knowledge.

Unlike traditional structured CNNs, where the pooling and unpooling operations are trivial, these
operations are more debatable in unordered methods, due to the lack of order or the metric between
points. Works like PointNet++ [9]] proposed using Furthest Point Sampling technique in order to
choose remaining points in coarsened versions of the inputs. Other works proposed utilizing £5 norm
of the features to determine which elements of the graph are to be removed in subsequent layers of
the network [6, 28]]. Recent works like DiffPool [29] proposed learning a dense assignment matrix
to produce coarsened version of an initial graph. However, learning a dense matrix is of quadratic
computational cost in the number of vertices and does not scale well for large scale point-clouds.
Also, DiffPool is constrained to fixed graph sizes, while our method is agnostic to the size of the
input.

Classification
scores.

' Segmentation
scores
Gl i
X
L 256 =
128
&

Figure 1: Our architectures for classification (upper part) and segmentation (lower part). STN denotes
a spatial transformer module [8]. Channel-wise concatenation is denoted by &. N; denotes the
number of vertices after the i-th Diff GCN block.

We focus on the employment of AMG as a concept to define our pooling and unpooling operations.
We use classical aggregation AMG [22], which is suitable for unstructured grids, similarly to works
that incorporated geometric multigrid concepts into structured grids CNNs [3, [30]. On a different
note, the recent work showed another connection between AMG and GCNSs, and proposed using
GCNs for learning sparse AMG prolongation matrices to solve weighted diffusion problems on
unstructured grids.

3 Method

We propose to parameterize the graph convolutional kernel according to discretized differential
operators defined on a graph. Therefore, we call our convolution DiffGCN. To have a complete set of
neural network building blocks, we also propose an AMG inspired pooling and unpooling operators
to enlarge the receptive fields of the neurons, and to allow for wider and deeper networks.

3.1 Convolution kernels via differential operators

To define the convolution kernels in the simplest manner, we use finite differences, which is a simple
and widely used approach for numerical discretization of differential operators. Alternatives, such as
finite element or finite volume schemes may also be suitable for the task, but are more complicated to
implement in existing deep learning frameworks. Using finite differences, the first and second order
derivatives are approximated as:

0f(@) _ flath) = fla=h) @) _fleth)=20@+fe=h)

oz 2h ’ 2 h? '

We harness these simple operators to estimate the gradient and Laplacian of the unstructured feature
maps defined on a graph.

Given an undirected graph G = (V, E) where V, E denote the vertices and edges of the graph,
respectively, we propose a formulation of the convolution kernel as follows:
0 0? 0 0? 0 0?
O)m il +0—+03-—+0—+0s-=+0—+0. 2
conv(G,) ~ 0, thag +ls55+ 48y+ 58y2+ 65, T 0753 (2)
This gives a 7-point convolution kernel which consists of the mass, gradient and Laplacian of the
signal defined over the graph.

We now formulate the operators in (2) mathematically. We first define that the features of the GCN
are located in the vertices v; € V of the graph, similarly to a nodal discretization. For each node
we have c;,, features (input channels). We start with the definition of the gradient (in x, y, 2), which
according to (T) is defined on the middle of an edge e;; € E connecting the pair v; and v;. Since the
edge direction may not be aligned with a specific axis, we project the derivative along the edge onto
the axes x, y, z. For example,
8 vy~ Jvj
@01 = Diey) = T (0~ apey)), ®

- dist(v;,v;)

Vi Vi

/\ /\

Vi /63,1 61,2,\ / €31 €12 \
V3 A va [v3 €23 BIRE €23 \%3

(a) Input Graph (b) Auxiliary Graph (c) Transposed Auxiliary Graph

Figure 2: An example of a graph and its auxiliary and transposed auxiliary graphs.

x(v;) is the z-coordinate of vertex v;, and f,, € R~ is the feature vector of size ¢;,, defined on
vertex v;. dist(v;, v;) is the Euclidean distance between v; and v;. Given this approach, we define
the gradient matrix of the graph by stacking the projected differential operator in each of the axes
x,y, 2

8%
Vg = (9% V] in = 3 |E] ¢ 4)

g . m n

9
This gradient operates on the vertex space and its output size is 3 times the edge space of the graph,
for the x, y, z directions. To gather the gradients back to the vertex space we form an edge-averaging
operator

A:3-|E| - cin —3-|V|- cCin, (Af)i:m > fe, (5)
N GEN (vi)
where N (v;) = {j : e;; € E} is the set of edges associated with vertex v;. The function f in (3)
is a feature map tensor defined on the edges of the graph. The three different derivatives in (@) are
treated as three different features for each edge.

In a similar fashion, the Laplacian of the graph with respect to each axis z, y, z is computed in two
steps. The first step is the gradient in equation (@). Then, we apply the following transposed first-order
derivative operators to obtain the second derivatives back on the vertices:

@)* o0 0
0 (0g)" 0 :3-|E| - cin — 3-|V]| - cin. (6)
0 0 (9z)"

The transposed gradient if often used to discretize the divergence operator, and the resulting Laplacian
is the divergence of the gradient. Here, however, we do not sum the derivatives (the Laplacian is the
sum of all second derivatives) so that the second derivative in each axis ends up as a separate feature
on a vertex, so it is weighted in our convolution operator in (Z). This construction is similar to the
way graph Laplacians and finite element Laplacians are defined on graphs or unstructured grids.

Implementation using PyTorch-Geometric To obtain such functionality while using common
GCN-designated software [32] and concepts [14}[16]], we define a directed auxiliary graph denoted
by G’ = (V’, E’), where in addition to the original set of vertices V', we have new dummy vertices,
representing the mid-edge locations e;; € E. Then, we define the connectivity of G such that each
vertex v; € V' has a direct connection to the mid-edge location e;; as in Fig. 2} More explicitly:

VI:VUE y El = {(vi,eij),(vj,eij) | €ij S E} (7)
We also use the transposed graph, which is an edge flipped version of G’, also demonstrated in Fig.

Given these two graphs, we are able to obtain the gradient and Laplacian terms of the signal defined
over the graph via mean aggregation of message passing scheme [[16, [14], where we perform two
stages of the latter. First, we use the auxiliary graph G’ to send the following message for each
(’Ui, ez-j) € E"

fo, x(v;) x(e45) -
e s e e N] Rl]

Here, each vertex gets two messages, and due to the subtraction of vertex locations in the message
followed by a sum aggregation

Jei; = MSGGrad(Vi — €ij, fo,) + MSgGraa(vj = €ij, fo;) €)

the discretized gradient in (3)-(@) is obtained on the edges. Following this, we return two messages
over the transposed graph G, returning both the gradient and the Laplacian of the graph on the
original vertex space V. The first part of the message returns the gradient terms from the edges to the
vertices simply by sending the identity message followed by mean aggregation:

Gradg(v; e 10
radg(v;) |N‘Zg“ (10)

This concludes Eq. (3). The second part of the message differentiates the edge gradients to obtain the
Laplacian back on the original vertices:

Gei; z(ey;) z(v;) R3ci
m y(eiz) | — |y(vi) € . (11)

mngdgeLap(eij — ’Uiageij) =
z(eq5) z(vi)

Then, we obtain the features described in Eq. (6 by performing mean aggregation:

1
Lapg(vi) = 17 Y, MSGnagerap(€ij; Vi)- (12)
Finally, we concatenate the mass, gradient and Laplacian to obtain the differential operators features:
fo, = fv, ® Gradg(v;) & Lapg(v;) € R7n (13)

where @ denotes channel-wise concatenation. Finally, we apply a multi-layer perceptron (MLP)—a
Cout X 7 - Cip point-wise convolution followed by batch normalization and ReLU— to the features in
Eq. (13).

The implementation above follows the mathematical formulation step by step, but it requires to
explicitly construct the auxiliary graph in Fig. [2 An equivalent and more efficient way to implement
our method, which is only implicitly based on those auxiliary graphs, is to construct a message
that contains 6 - ¢;;, features by combining Eq. (9) and (TI) in a single message followed by mean
aggregation as in Eq. (I2) and concatenation of the self feature, resulting in a feature fv € R7¢in,

3.2 Algebraic multigrid pooling and unpooling

An effective pooling operation is important to faithfully represent coarsened versions of the graph.
We propose to use AMG methods [22| 20]], namely, the Galerkin coarsening which we explain now.

In AMG methods the coarse graph vertices are typically chosen either as a subset of the fine graph
vertices (dubbed “C-points”) or as clusters of vertices called aggregates. We use the latter approach,

and apply the Graclus clustermg [33] to form the aggregates. Let {C J}IV“"””l be the aggregates,
each corresponds to a vertex in the coarse graph. Then, we define the restriction (pooling) operator:

1 1€Cy
Ryi= { 0 otherwise - (14)
Given a features matrix X and an adjacency matrix A, their coarsened counterparts are defined via

the Galerkin coarsening:
Xcoarse — RTX, Acoarse — RTAR c Rlvcoa'r'se‘X‘Vcoa’r'se" (15)

To perform the unpooling operator, also called prolongation, we may use the transpose of the
restriction operator (T4). However, when unpooling with an aggregation matrix, we get piece-wise
constant feature maps, which are undesired. To have a smoother unpooling operator, we propose to
allow the prolongation of soft clustering via smoothed aggregation [22] as follows:

P =(I—(D)'L)RT e RIVIXIVeourscl (16)

Where I, D, L are the identity matrix, degree and Laplacian matrix of the layer, respectively. To
unpool from a coarsened version of the graph, we apply the corresponding prolongation operator at
each level, until we reach the initial problem resolution.

3.3 Similarity between DiffGCN and standard CNN operators for structured grids

A standard CNN is based on learning weights of convolutional filters. The work [[18]] showed that
the 2D convolution kernel can be represented as a linear combination of finite difference differential
operators. These classical differential operators are obtained using our definitions in Eq. (3)-(6), in
the case of a structured regular graph. In 2D (without the z axis), Eq. will result in a 5-point
stencil represented as

000 0 0 0 0 0 0 0 1 0 0 1 0
0,10 1 0] +6,|-1 0 1|+65]1 —2 1|+6,]0 0 0| +65[0 —2 0] a7
000 0 0 0 0 0 0 0 -1 0 0 1 0

The Laplacian, together with the mass term allow the network to obtain low-pass filters, which are
highly important to average out noise, and to prevent aliasing when downsampling the feature-maps.
Gradient based methods like [26] can only approximate the Laplacian term via multiple convolutions,
leading to redundant computations. Furthermore, the work of [34] showed that the popular 3 x 3
convolution kernel can be replaced by this 5 point stencil without losing much accuracy. When
extending this to 3D, the common 3 x 3 x 3 kernel includes 27 weights, and the lighter version in (2)
ends in a star-shaped stencil using 7 weights only, which is a significant reduction from 27. We refer
the interested reader to [35 136} 137, 38}, 139} 140] for a more rigorous study of the connection between
ODEs, PDEs and CNNs.

3.4 DiffGCN architectures

We show the architectures used in this work in Fig. |I} We define a DiffGCN block which consists of
two DiffGCN convolutions, with a shortcut connection, as in ResNet [23] for better convergence and
stability. Pooling is performed before the first convolution in each block, besides the first opening
layer. We use concatenating skip-connections to fuse feature maps from shallow and deep layers.
Before this concatenation, unpooling is performed to resize the point-cloud to its original dimensions.

3.5 Computational cost of DiffGCN

Typically, spatial GCNs like [[14, (16} 26} [15] employ the convolutions K times per vertex, where K
is the neighborhood size. More explicitly, a typical convolution can be written as

;= jENihG(f(xi’ 5)), (19

where N; is the set of neighbors of vertex v; € V/, [J is a permutation invariant aggregation operator
like max or sum and hg is an MLP [8] parameterized by the set of weights ©. f is a function that is
dependent on a vertex and its neighbors. For instance, in DGCNN [26] f(z;, ;) = z; & (2; — x;).
By design, our convolution operation first gathers the required differential terms, and then feeds their
channel-wise concatenation through a MLP. That is, our convolution can be written as

z; = he(O g(@i, 25), (19)
where ¢ is a function that constructs the desired differential operator terms. Thus, we reduce the
feed-forward pass of our convolution by an order of K, which decreases the number of FLOPs
required in our convolution. In other words, the MLP operation in our convolution is independent
of the number of neighbors K, since we aggregate the neighborhood features prior to the MLP. If s
is the stencil size (e.g.,DGCNN [26]] uses s = 2, while ours is s = 7), N is the input size, and ¢;;,
, Cout are the number of input and output channels, respectively, then the number of floating point
operations of a method defined via Eq. (I8) is O(s x N X K X ¢in X Cout), While the cost of our
method in Eq. @]) reduces to O(s X N X ¢ X Cout)- In Tablewe report the required FLOPs and
latency for various convolutions with 1, 024 points input and ¢;,, = 64 , ¢, = 128. For VoxNet
[24] we use a 3 x 3 x 3 kernel and 12 x 12 x 12 input. For PointCNN, DGCNN and ours, we set the
neighborhood size K = 10.

4 Experiments

To demonstrate the effectiveness of our framework, we conducted three experiments on three different
datasets - classification (ModelNet40 [41]), part segmentation (ShapeNet Parts [42]) and semantic

Table 1: A comparison of single convolution FLOPs and latency
VoxNet [24] PointNet (MLP) [8] PointCNN [25] DGCNN [26] DiffGCN (ours)
FLOPs[M] 382.2 8.4 122.6 167.8 61.3
LATENCY [ms] 224 21 - 121 58

Table 2: Classification results on ModelNet40.

Method Mean Class Accuracy Overall Accuracy
3DShapeNets [41] 77.3 84.7
VoxNet [24] 83.0 85.9
Subvolume [47]] 86.0 89.2
VRN (single view) [48]] 88.98 —
VRN (multiple views) [48] 91.33 —
ECC [14] 82.3 87.4
PointNet [§]] 86.0 89.2
PointNet++ [9] — 90.7
Kd-net [49] — 90.7
PCNN [50] — 92.3
PointCNN [25]] 88.1 92.2
KCNet [51] — 91.0
DGCNN [26] (K=20) 90.2 92.9
DGCNN [26] (K=10) 88.9 91.4
LDGCNN [52] 90.3 92.9
Ours (K=20) 90.4 93.5
Ours (K=20, pooling) 90.7 93.9

segmentation (S3DIS [43]]). We also report an ablation study to obtain a deeper understanding of
our framework. In all the experiments, we start from a point-cloud, and at each DiffGCN block
we construct a K-nearest-neighbor graph according to the features of the points. As noted in [14],
spectral methods generally lead to inferior results than spatial methods - thus we omit them in our
experimental evaluations.

We implement our work using the PyTorch [44] and PyTorch Geometric [32] libraries. We use the
networks shown in Fig. |1} For the semantic segmentation task on S3DIS we do not use a spatial
transformer. Throughout all the experiments we use ADAM optimizer [45] with initial learning rate
of 0.001. We run our experiments using NVIDIA Titan RTX with a batch size 20. Our loss function
is the cross-entropy loss for classification and focal-loss [46] for the segmentation tasks.

4.1 Classification results

For the classification task we use ModelNet-40 dataset [41] which includes 12,311 CAD meshes
across 40 different categories. The data split is as follows: 9,843 for training and 2,468 for testing.
Our training scheme is similar to the one proposed in PointNet [8], in which we rescale each mesh to
a unit cube, and then we sample 1,024 random points from each mesh at each epoch. We also use
random scaling between 0.8 to 1.2 and add random rotations to the generated point cloud. We report
our results with &' = 20, with and without pooling. The results of our method are summarized in
Table[2] We obtained higher accuracy than [26,[511/52] which also use GCNGs for this task. We suggest
that the difference stems mainly from the addition of the Laplacian term to our convolution, and the
contribution of the pooling module. Note, the work HGNN [53] which is based on hyper-graphs,
using features that are of size 4,096 (and not only 3), extracted from MVCNN [54] and GVCNN [55],
therefore, we do not include it in Table 2}

4.2 Segmentation results

We test our method on two different segmentation datasets - Shapenet part segmentation [42] and
Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [43]. We use the lower part network in Fig.

Table 3: ShapeNet part segmentation. Results shown in mean intersection over union metric.

Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate

Aero Bag Cap Car Chair Table Mean

phone board

Shapes 2690 76 55 898 3578 69 787 392 1547 451 202 184 283 66 152 5271

PointNet |8 834 787 825 749 896 73.0 915 859 80.8 95.3 652 930 812 579 728 80.6 837
PointNet++ [9 824 790 877 773 90.8 718 91.0 859 837 95.3 71.6 941 813 58.7 764 826 85.1
KD-Net [49 80.1 746 743 703 88.6 735 90.2 872 810 94.9 574 867 78.1 51.8 699 803 823
LocalFeature [57] 86.1 73.0 549 774 888 550 90.6 865 752 96.1 573 917 831 539 725 838 843
PCNN [0 824 80.1 855 795 908 732 91.3 86.0 85.0 95.7 732 948 833 51.0 750 81.8 85.1
PointCNN [25 84.1 8645 860 808 90.6 79.7 923 884 853 96.1 772 953 842 64.2 80.0 83.0 86.1
KCNet [51 828 815 864 776 903 768 91.0 872 845 95.5 692 944 816 60.1 752 813 847
DGCNN [26 840 834 867 778 90.6 747 91.2 875 828 95.7 663 949 811 63.5 745 826 852
LDGCNN [52 840 83.0 849 784 906 744 91.0 881 834 95.8 674 949 823 59.2 760 819 85.1
Ours 85.1 831 872 809 909 798 92.1 878 852 96.3 76.6 958 842 61.1 715 83.6 864

Ours (pooling) 85.1 837 8.0 803 911 80.0 92.0 875 853 95.8 76.0 959 838 65.6 773 837 864

Table 4: Semantic segmentation results on Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS).
Results shown in mean intersection over union metric.

Method mloU Overall Accuracy
PointNet (baseline) [8] 20.1 53.2
PointNet [S8]] 47.6 78.5

MS + CU(Q) [59] 47.8 79.2

G + RCU [59] 49.7 81.1
PointCNN [25]] 65.4 —
DGCNN [26] 56.1 84.1
DCM-Net [58]] 64.0 —

Ours 61.1 85.3

Ours (pooling) 61.4 85.5

[1l with K = 20, 10, 5 in each of the DiffGCN blocks, respectively. For Shapenet part segmentation
dataset, our objective is to classify each point in a point-cloud to its correct part category. There are
16,881 3D shapes across 16 different categories, with a total of 50 part annotation classes, where
each shape is annotated with 2-6 parts. We sample 2,048 points from each shape and use the training,
validation and testing split in [56]. The results are reported in Table [3] Our method achieves the
highest mIoU out of all the considered networks.

The Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) contains 3D scans of 272 room from 6
different areas. Each point is annotated with one of 13 semantic classes. We adopt the pre-processing
steps of splitting each room into 1m x 1m blocks with random 4,096 points at the training phase,
and all points during, where each point represented by a 9D vector (XYZ, RGB, normalized spatial
coordinates). We follow the training, validation and testing split from [8]]. We follow the 6-fold
protocol for training and testing as in [43]], and report the results of this experiment in Table [d] We
obtained higher accuracy than the popular point-based network PointNet [8] as well as the graph
based network DGCNN [26]. Note that [25]] uses different pre-processing steps. Namely, the blocks
were of 1.3m x 1.3m, where the added 0.3m on each dimensions is used for location context, and
is not part of the objective at each block. In addition, we compare our work with a recent work,
DCM-Net [58]], which differs from our method by its approach of combining geodesic and Euclidean
data, decoupling the data by utilizing parallel networks.

4.3 Ablation study

‘We measure the contribution of each component of our model, as well as different combinations of
them, on classification with ModelNet40. Our results read that as expected, using each component
on its own (e.g., mass term only) reduces accuracy. However, by combining the different terms -
accuracy increases. We found that using the mass and Laplacian term is more beneficial than the mass
and gradient term. This shows the representation power of the Laplacian operator which is widely
used in classical computer graphics and vision [60, |61} [62]]. That is in addition to spectral-based
GCNs which are parameterized by polynomials of the graph Laplacian [[13} |12, 163].

Table 5: Ablation study results on ModelNet40.

Variation Mean Class Accuracy Overall Accuracy
Mass+Grad+Lap (K=10) 89.1 92.7
Mass+Grad+Lap (K=10, w.pooling) 89.5 93.1
Mass+Grad+Lap (K=5) 88.7 92.1
Mass+Grad+Lap (K=5, w.pooling) 88.9 92.3
Mass Only (K=20) 85.4 88.2
Grad Only (K=20) 79.9 85.0
Lap Only (K=20) 79.2 83.2
Mass + Grad (K=20) 88.3 91.0
Mass + Lap (K=20) 88.6 91.9

In addition, we experiment with different number of neighbors, with and without pooling, reading
slight reduction in performance, but with less FLOPs and memory requirements. We note that the
pooling operations lead to better performance since they enlarge the receptive fields of the neurons.

5 Conclusion

We presented a novel graph convolution kernel based on discretized differential operators, which
together with our AMG pooling and unpooling operators form the most important components of a
CNN. Our GCN network shows on par or better performance than current state-of-the-art GCNs. We
also draw an analogy between standard structured CNNs and our method, and the reduced cost of
ours compared to other GCNs.

Broader Impact

The method we propose can be used for additional tasks in which the data have a geometric meaning.
For instance, data sourced from geographic information systems (GIS) can be used for prediction of
elections results [[64]]. Thus, it may have an impact on other fields. In addition, our method is lighter
than other GCNs, which can be beneficial for power and time consumption. We are not aware of an
ethical problem or negative societal consequences.

Acknowledgments and Disclosure of Funding

The research reported in this paper was supported by the Israel Innovation Authority through Avatar
consortium, and by grant no. 2018209 from the United States - Israel Binational Science Foundation
(BSF), Jerusalem, Israel. ME is supported by Kreitman High-tech scholarship.

References

[1] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. Adv Neural Inf Process Syst, 61:1097-1105, 2012.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In European Conference on Computer Vision, pages 630-645. Springer, 2016.

[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234-241. Springer, 2015.

[5] Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence, 40(4):834-848, 2017.

[6] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or. Meshcnn: a
network with an edge. ACM Transactions on Graphics (TOG), 38(4):90, 2019.

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]
[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]
(29]

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3907-3916, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 652-660, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5099-5108, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-
hensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in neural information processing systems, pages 3844—
3852, 2016.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3693-3702, 2017.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic convolu-
tional neural networks on riemannian manifolds. In Proceedings of the IEEE international conference on
computer vision workshops, pages 3745, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural mes-
sage passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1263-1272. JMLR. org, 2017.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115-5124, 2017.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations. Journal
of Mathematical Imaging and Vision, pages 1-13, 2019.

John W Ruge and Klaus Stiiben. Algebraic multigrid. In Multigrid methods, pages 73—130. SIAM, 1987.

Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver. SIAM
Journal on Scientific Computing, 34(4):B499-B522, 2012.

Eran Treister and Irad Yavneh. On-the-fly adaptive smoothed aggregation multigrid for markov chains.
SIAM Journal on Scientific Computing, 33(5):2927-2949, 2011.

Eran Treister and Irad Yavneh. Non-galerkin multigrid based on sparsified smoothed aggregation. SIAM
Journal on Scientific Computing, 37(1):A30-A54, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778,
2016.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time object
recognition. In 2015 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), pages
922-928. IEEE, 2015.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on
x-transformed points. In Advances in neural information processing systems, pages 820-830, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018.

SY Wang, Kian Meng Lim, Boo Cheong Khoo, and Michael Yu Wang. An extended level set method for
shape and topology optimization. Journal of Computational Physics, 221(1):395-421, 2007.

Hongyang Gao and Shuiwang Ji. Graph u-nets. arXiv preprint arXiv:1905.05178, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical
graph representation learning with differentiable pooling. In Advances in Neural Information Processing
Systems, pages 4800—4810, 2018.

10

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(391

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid neural architectures. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6665-6673, 2017.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid using
graph neural networks, 2020.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Inderjit S Dhillon, Yugiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a multilevel
approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):1944-1957, 2007.

Jonathan Ephrath, Moshe Eliasof, Lars Ruthotto, Eldad Haber, and Eran Treister. Leanconvnets: Low-cost
yet effective convolutional neural networks. IEEE Journal of Selected Topics in Signal Processing, 2020.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1),
2017.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

E Weinan. A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics
and Statistics, 5(1):1-11, March 2017.

Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillaume Carlier. Deep relaxation:
partial differential equations for optimizing deep neural networks. Research in the Mathematical Sciences,
5(3):30, 2018.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. In International Conference on Machine Learning
(ICML), 2018.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pages 6571-6583, 2018.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912-1920, 2015.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla
Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (TOG), 35(6):1-12, 2016.

Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese.
3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1534-1543, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024—8035. Curran Associates, Inc., 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dolldr. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pages 2980-2988,
2017.

Charles R Qi, Hao Su, Matthias Niefner, Angela Dai, Mengyuan Yan, and Leonidas J Guibas. Volumetric
and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5648-5656, 2016.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative and discriminative voxel
modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236, 2016.

Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the recognition of 3d point
cloud models. In Proceedings of the IEEE International Conference on Computer Vision, pages 863-872,
2017.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension
operators. arXiv preprint arXiv:1803.10091, 2018.

11

[51]

[52]

(53]

[54]

[55]

(561

(571

(58]

(591

(60]

[61]

[62]

[63]

[64]

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local structures by kernel
correlation and graph pooling. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4548-4557, 2018.

Kuangen Zhang, Ming Hao, Jing Wang, Clarence W de Silva, and Chenglong Fu. Linked dynamic graph
cnn: Learning on point cloud via linking hierarchical features. arXiv preprint arXiv:1904.10014, 2019.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3558-3565, 2019.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on computer
vision, pages 945-953, 2015.

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. Gvcnn: Group-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 264-272, 2018.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Neighbors do help: Deeply exploiting local
structures of point clouds. arXiv preprint arXiv:1712.06760, 1(2), 2017.

Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, and Bastian Leibe.
DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and Bastian Leibe. Exploring spatial
context for 3d semantic segmentation of point clouds. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pages 716-724, 2017.

Raif M Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In
Proceedings of the fifth Eurographics symposium on Geometry processing, pages 225-233. Eurographics
Association, 2007.

Michael M Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-rigid shape
recognition. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 1704-1711. IEEE, 2010.

Dan Raviv, Michael M Bronstein, Alexander M Bronstein, and Ron Kimmel. Volumetric heat kernel
signatures. In Proceedings of the ACM workshop on 3D object retrieval, pages 39-44, 2010.

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. Generating 3d faces using convo-
lutional mesh autoencoders. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 704-720, 2018.

Mike Li, Elija Perrier, and Chang Xu. Deep hierarchical graph convolution for election prediction from
geospatial census data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 647-654, 2019.

12

	Introduction
	Related work
	Method
	Convolution kernels via differential operators
	Algebraic multigrid pooling and unpooling
	Similarity between DiffGCN and standard CNN operators for structured grids
	DiffGCN architectures
	Computational cost of DiffGCN

	Experiments
	Classification results
	Segmentation results
	Ablation study

	Conclusion

