Supplementary Material:
Elastic-InfoGAN: Unsupervised Disentangled
Representation Learning in Class-Imbalanced Data

Utkarsh Ojha’ Krishna Kumar Singh!?> Cho-Jui Hsieh® Yong Jae Lee'

1UC Davis 2 Adobe Research 3UCLA

utkarshojha.github.io/elastic-infogan/

In this document, we first continue our discussion of the importance of constrastive learning of
representations to disentangle object identity. We then mathematically analyze the applicability of
contrastive loss in a generic class-imbalanced setting, studying how appropriate our assumptions
pertaining to Lj;.cnt are. We then demonstrate an application of our framework, making use
of the learned inference network for nearest neighbor classification. Finally, we discuss all the
implementation details, and provide detailed information about the random imbalanced splits used
for different datasets.

1 Importance of constrastive loss

In this section, we continue the discussion initiated in Sec. 4.4 of the main paper, about the importance
of Lyizent. Specifically, we discussed the potential cases where Ground-truth and Gumbel-Softmax
InfoGAN baselines (which could in theory produce accurate disentanglement) would perform poorly.
In Fig[l] we visualize these scenarios qualitatively. We highlight the cases where the mentioned
baselines produce undesirable groupings; i.e., generating cars having similar pose but different
identity for the same latent code. Our approach, for the same split of random classes, produces
groupings which are much more coherent; i.e., generating cars of same identity rendered in different
positions, for a latent code.

Finally, Table [T]and [2] cover the quantitative results presented in Table 1 of the main paper with error
bars (standard deviation). In general, the error bars for our method are lower than the baselines,
indicating more robustness is introduced via Ly ;,cn:. The numbers are over (i) 50 different runs for
MNIST (corresponding to 50 imbalanced splits), (ii) 25 runs for 3d-Cars/Chairs (refer to the main
paper about the creation of 25 splits), and (iii) 5 runs over the same imbalanced split for YouTube
Faces.

2 Analysing the constrastive loss in imbalanced scenarios

As mentioned in Sec. 3.2 of the main paper, we approximate negative samples with randomly
sampled pairs I;, I; (z # j) in a batch while using Ly¢zcnt. Since we don’t know the labels during
training, some of these sampled pairs could turn out to be false negatives (images belonging to the
same category). In this section, we quantify the extent to which these false negatives impact the
training of overall model.

Assume that the proportion of different classes in the dataset is denoted by p1, p2, p3, ..., pr (Where
k denotes the number of classes, and p; denotes i** class probability). Let’s say that in a batch,
the algorithm constructs N negative pairs, where each pair is equally likely to be a false negative.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

utkarshojha.github.io/elastic-infogan/

e o e s o SR BB Ly P e
| i P [| | S glg.‘ﬂ.l"‘ﬂ v--h P = 5

| S e e e NI e, | @ | B, @ (o
alaee/as/anse e Tt o = pe— | = o~ g
BTSN S 50 s e R 1 g i BaeD st 8e
28 e P oo .'ﬂﬁ.--ﬂlﬂﬁ‘ - ‘}“ o
- (||| | |z < e PR P N N e e
BB e e | B mlajlenjann e alm) @l gl o als
A e e i e S G E AL T PR PEED
) -P- b"‘. “L," & ey RS RS [N P O

Ground-truth InfoGAN Gumbel-Softmax InfoGAN Ours

Figure 1: Image generations on a random imbalanced 3D Cars split. Baselines which could potentially
capture object identity as a factor of variation, but lack L,,¢zent, SOmetimes generate undesirable
groupings, e.g. focusing on pose/orientation rather than object identity (groups highlighted with an
outline: red for Ground-truth InfoGAN, blue for Gumbel-Softmax InfoGAN). Our approach, for the
same set of object categories, produces better groupings focusing on identity and generating cars with
varying pose/orientation.

MNIST YTF Cars Chairs ShapeNet
JointVAE [2] 0.6801 £ 0.081 | 0.4472 +0.027 | 0.3915 £ 0.236 | 0.4478 £0.212 | 0.1892 & 0.075
Uniform InfoGAN 0.7765 £ 0.045 | 0.6656 &+ 0.005 | 0.4990 £ 0.205 | 0.2525 £+ 0.165 | 0.6382 % 0.088
Gumbel-softmax 0.8360 £ 0.048 | 0.7603 4 0.014 | 0.4003 £ 0.309 | 0.2356 & 0.134 | 0.6031 + 0.153
Gumbel-softmax + pos-Lptzent 0.8781 £0.061 | 0.7647 +0.011 | 0.5818 £ 0.127 | 0.4536 +0.172 | 0.7236 £ 0.062
Elastic-InfoGAN (Ours) 0.8893 + 0.044 | 0.7923 + 0.004 | 0.8504 + 0.068 | 0.6499 + 0.082 | 0.7900 + 0.077
Ground-truth InfoGAN 0.7827 £0.049 | 0.6941 +0.031 | 0.4512 £0.276 | 0.1738 +0.142 | 0.5492 £ 0.152
Ground-truth InfoGAN + L, 1 zernt | 0.8008 £ 0.052 | 0.7421 +0.023 | 0.7841 £0.092 | 0.5915 + 0.152 | 0.5314 £ 0.105

Table 1: Distentanglement quality measured by NMI (1 better). The first five methods do not have
knowledge of the ground-truth distribution, while the last two methods do. Our model outperforms
the baselines with/without the knowledge of ground-truth class distribution, for all datasets, with
relatively low error-bar

Consider one such pair, I; and I;: the probability that this pair will be a false negative (F.N.) is
k
P(EN.) =%/ p?

Since all pairs are sampled independently, the expected fraction of false negatives, E(F.N.) in the
batch hence becomes:

N x 25:12712 £ 2
N ;Pi (1

We wish for this value to be as small as possible. As expected, the minimum value is attained when
the dataset is balanced, i.e. p1 = pa... = p, = %, where E(F.N.) becomes % The maximum value,
on the other hand, is attained when one class completely dominates the other classes (p; = 1 for
some i, and p; = 0 (Vj # 7)), making E(F.N.) = 1. So, as long as there are even a few prominent
classes (among k), the expected false negatives remain considerable low. For instance, consider the
randomly created imbalanced splits for MNIST (total classes = 10; detailed in Sec[5.0.1)): the average
E(F.N.) for the 50 splits is 0.119 £ 0.008. This means that on average, 88% of the negative pairs
will be true negative, which is only 2% less than the ideal 90% (when E(F.N.) = %). We further
verified this hypothesis for the real-world imbalanced dataset used in this work, YouTube Faces (total
classes = 40; split detailed in Sec. The E(F.N.) for this dataset is 0.0363, which means 96%

of negative pairs are true negatives (only 1% less than ideal scenario).

We want to emphasize the key take away from this analysis: it is not that the datasets explored in
this work don’t have sufficient imbalance (the reader can verify this by looking at the actual splits
described in Sec[5.0.1]- Sec[5.0.5), but rather that the mathematical formulation of E(F.N.) happens
to allow a large spectrum of imbalanced datasets to be applicable while using L ¢zent-

MNIST YTF Cars Chairs ShapeNet
JointVAE [2] 0.7006 £ 0.134 | 1.7173 £0.022 | 1.0818 £0.526 | 1.9090 £ 0.438 | 1.0113 & 0.064
Uniform InfoGAN [1] 0.4569 £ 0.096 | 1.0312 +0.009 | 1.1075 £ 0.483 | 1.6626 £ 0.368 | 0.5318 & 0.141
Gumbel-softmax 0.3260 £ 0.101 | 0.7573 £0.014 | 1.3183 £0.702 | 1.6960 £ 0.305 | 0.6188 % 0.241

Gumbel-softmax + pos-Lntzent
Elastic-InfoGAN (Ours)

0.2347 £ 0.101
0.2130 + 0.088

0.7188 £ 0.006
0.6358 + 0.015

0.9188 £ 0.247
0.3026 + 0.147

1.2088 £ 0.417
0.7651 + 0.180

0.3973 £ 0.069
0.2972 + 0.104

Ground-truth InfoGAN

0.4196 £ 0.097

0.9611 £ 0.009

1.1907 £ 0.646

1.8369 £ 0.318

0.6730 £ 0.249

Ground-truth InfoGAN + Ly tzent | 0.3694 +0.094 | 07672 40.007 | 04373 +0.191 | 0.8851 0331 | 0.7162 +0.172
Table 2: Distentanglement quality measured by ENT (| better).
MNIST YTF 3D Cars 3D Chairs
Randomly initialized 0.4865 £ 0.009 | 0.9541 £0.003 | 0.3140 £ 0.055 | 0.2942 = 0.038
Uniform InfoGAN] | 0.8665 & 0.014 | 0.9581 4 0.026 | 0.7700 + 0.074 | 0.6438 = 0.109
Gumbel-Softmax 09113 £0.017 | 0.981240.013 | 0.6726 +0.073 | 0.6241 +0.119
Elastic-InfoGAN (Ours) | 0.9655 + 0.007 | 0.9985 £ 0.018 | 0.9852 & 0.005 | 0.9515 + 0.020

Table 3: INN classification accuracy (%) of different baselines. By learning to better disentangle
object identity from other factors, our method can infer much better representations needed for the
task of nearest neighbor classification.

3 k-Nearest neighbour classification

We discussed in Sec. 1 and 3.2 of the main paper that disentangling object identity from other
factors can have downstream applications. One such application can be demonstrated via the trained
inference network (@), where it can be used to extract features pertaining to object identity of any
real image x. We present results in scenarios of class-imbalance, where it becomes difficult to
perform grouping based on object identity.

Table|3|summarizes the performance of different methods for the task of nearest neighbours classifi-
cation. Randomly initialized refers to using the same inference network architecture with random
weights. In particular, we create a 80/20 (train/test) split of real images, and report classification
accuracy when images from the test split are used as queries. We see that our method consistently
achieves superior performance across the four datasets. Note that the performance on YTF is remark-
ably good because images for each class are almost identical, so the embedding for image for each
class will be very close to each other, regardless of the encoder.

Fig. |2 illustrates some sample queries, and the corresponding nearest neighbors retrieved using
uniform InfoGAN and our method. The neighbors extracted using uniform InfoGAN suffer incon-
sistency, where sometimes the nearest neighbor has similarities in pose (3rd row), rough color (4th
row) etc. Our method, on the other hand, has much more success in retrieving images belonging
to the same category. Furthermore, note the variations among the query image and the extracted
images for our method. It is not possible to cover all these differences in pose, azimuth through
simple transformations (J) that we use in Lj,;zen:. This is an indication that our method is not simply
memorizing the transformations that we introduce, and is actually learning representations which
focus on object identity in general, leading to superior performance in 1NN classification.

4 Implementation details (continued)

4.1 MNIST

For MNIST, we operate on the original 28x28 images, with a 10-dimensional categorical code to
represent the 10 digit categories, and 62 noise variables sampled from a normal distribution. We
follow the exact architecture as described in InfoGAN [[1]: The generator network G takes as input
a 64 dimensional noise vector z ~ A(0,1) and 10 dimensional samples from a Gumbel-Softmax
distribution. The discriminator D and the latent code prediction network () share most of the layers
except the final fully connected layers.

The pre-trained classification architecture used for evaluation for MNIST consists of 2 Conv + 2 FC
layers, with max pool and ReLU after every convolutional layer.

Nearest neighbors Nearest neighbors
Ours Uniform InfoGAN

Em——

Query

o

b
|

¥
b

j
IEYERENEN

Q =, "“@ﬂ’% e

Figure 2: Nearest neighbors obtained using our method vs. uniform InfoGAN. We see that our method
retrieves diverse cars (in terms of azimuth, pose etc.) belonging to the same category. Neighbors
extracted using Uniform InfoGAN, on the other hand, suffer in terms of categorical consistency.

4.2 3D Cars and Chairs

We follow identical steps for 3D Cars and Chairs. For 3D Cars, we follow the procedure explained in
the main paper to select 10 categories. We resize all the renderings to 64x64 resolution, and use a 10
dimensional categorical code to represent 10 object identities, and use 100 noise variables to capture
other variations (pose/viewpoints etc.).

Our architecture is based on the one proposed in StackGANV2 [4], where we use its 1-stage version
for generating 64x64x3 resolution images. There is an initial fully connected layer which maps the
input (concatenation of z and c) to an intermediate feature representation. A series of a combination
of upsampling + convolutional layers (interleaved with batch normalization and Gated Linear Units)
increase the spatial resolution of the feature representation, starting from 1024 (feature size: 4 x 4 x
1024) channels to 64 (feature size: 64 x 64 x 64) channels. A convolutional network transforms the
feature representation into a 3 channel output, while maintaining the spatial resolution, which serves
as the fake image. The discriminator network consists of 4 convolutional layers interleaved with
batch normalization and leaky ReLU layers, which serve as the common layers for both the D and @
networks. After that, D has one non-shared convolutional layer, which maps the feature representation
into a scalar value reflecting the real/fake score. For (), we have a pair of non-shared convolutional
layers which map the feature representation into a 10 dimensional latent code prediction.

The classifier used for evaluating results on 3D Cars/Chairs is a ResNet-50 network, trained on the
complete data with a 80/20 train/validation split (different pre-trained networks for different sets of
10 classes chosen).

4.3 YouTube-Faces

For YouTube-Faces, we crop the faces using the provided bounding box annotations, and then resize
them to 64x64 resolution, and use a 40-dimensional categorical code to represent 40 face identities
(first 40 categories sorted in alphabetical manner, as done in [3]]), and 100 noise variables.

The architecture for the Generator/Discriminator is very much similar to that used for 3D Cars/Chairs,
except that we have one more stage, which takes in the 64 x 64 x 64 resolution intermediate features
and translates that into another fake image. We apply our losses on images from both the stages, and
the images generated from the second stage are used for evaluation purposes.

The classifier used for evaluating results on YouTube-Faces is also ResNet-50 network (similar to the
one used for 3D Cars/Chairs), but we pretrain it on VGGFace2, before fine-tuning on YouTube-Faces.

4.4 Training details

We employ a similar way of training the generative and discriminative modules as described in
[1]. We first update the discriminator based on the real/fake adversarial loss. In the next step, after
computing the remaining losses (mutual information + Ly,;,cn:), We update the generator (G) + latent
code predictor ((Q) + latent distribution parameters (p;,) at once. Our optimization process alternates
between these two phases. Ly ,cn: is computed on features obtained from penultimate layer, after
the leaky ReLU activation. One good reason to not use ReLU instead is that it will produce bias for
cosine similarity distance, since all the feature values will be positive. We use Adam optimizer, with
a learning rate of 0.0002. For MNIST, we train all baselines for 200 epochs, with a batch size of 64.
For 3D Cars/Chairs, we train for 600 epochs, with a batch size of 50. For YouTube-Faces, we train
until convergence, as measured via qualitative realism of the generated images, using a batch size of
50. Az in Lnq is set to 10 to balance the magnitude of the different loss terms. 7 = 0.1 is used for
sampling from Gumbel-Softmax, which results in samples having very low entropy (very close to
one hot vectors from a categorical distribution).

JointVAE details: We use the KL term for both continuous as well as discrete variables, to follow
the standard normal (N (0, 1)) and uniform categorical distribution (Cat(p = 1/k)), respectively. We
use uniform categorical because of the unsupervised nature of the problem (L53-5, 83-4). We use the
same weight () for both KL loss terms (similar to JointVAE paper), the value of which was first
decided empirically based on image reconstruction quality - we observed that a value in 100s (e.g.
100-300) resulted in poor reconstruction quality. After that, we report the results for best performing
model by ablating .o+ and By;sc from the set {10, 20, 30, 40, 50}.

Finally, one behavior we observe is that if the random initialization of class probabilities is too
skewed (only few classes have high probability values), then it becomes very difficult for them to get
optimized to the ideal state. We hence initialize them with the uniform distribution, which makes
training much more stable.

Experiments on MNIST, which involve running 50 versions, can be done in parallel across 4 NVIDIA
Tesla V100 GPUs (16 GB RAM). On each of them, around 6 (out of 50) can run in parallel. In this
manner, it takes about 8 hours to complete the training on 50 MNIST imbalanced splits. For 3D
Cars/Chairs, it takes about 4-5 hours if proper parallelism is employed on the same system. For YTF,
it takes about 4 hours to run 5 versions on the same imbalanced split (while running in parallel).

5 Ground truth class imbalance

Here we describe the exact class imbalance used in our experiments. For MNIST, we include below
the 50 random imbalances created. For 3D Cars/Chairs, we first describe the class ids of the randomly
chosen 10 categories for all the 5 sets, then we describe the 5 random imbalanced splits used on each
of these sets. For YouTube-Faces, we include the true ground truth class imbalance in the first 40
categories. The imbalances reflect the class frequency.

5.0.1 MNIST

e (.147,0.037,0.033, 0.143, 0.136, 0.114, 0.057, 0.112, 0.143, 0.078
e 0.061,0.152, 0.025, 0.19, 0.12, 0.036, 0.092, 0.185, 0.075, 0.064
e 0.173,0.09, 0.109, 0.145, 0.056, 0.114, 0.075, 0.03, 0.093, 0.116

0.079, 0.061, 0.033, 0.139, 0.145, 0.135, 0.057, 0.062, 0.169, 0.121
0.053, 0.028, 0.111, 0.142, 0.13, 0.121, 0.107, 0.066, 0.125, 0.118
0.072, 0.148, 0.092, 0.081, 0.119, 0.172, 0.05, 0.109, 0.085, 0.073
0.084, 0.143, 0.07, 0.082, 0.059, 0.163, 0.156, 0.063, 0.074, 0.105
0.062, 0.073, 0.065, 0.183, 0.099, 0.08, 0.05, 0.16, 0.052, 0.177
0.139, 0.113, 0.074, 0.06, 0.068, 0.133, 0.142, 0.13, 0.112, 0.03
0.046, 0.128, 0.059, 0.112, 0.135, 0.164, 0.142, 0.125, 0.051, 0.037
0.107, 0.057, 0.154, 0.122, 0.05, 0.111, 0.032, 0.044, 0.136, 0.187
0.129, 0.1, 0.039, 0.112, 0.119, 0.095, 0.047, 0.14, 0.156, 0.064
0.146, 0.08, 0.06, 0.072, 0.051, 0.119, 0.176, 0.11, 0.158, 0.028
0.035, 0.051, 0.112, 0.143, 0.033, 0.165, 0.082, 0.165, 0.054, 0.161
0.041, 0.1, 0.073, 0.054, 0.155, 0.117, 0.091, 0.124, 0.142, 0.104
0.052, 0.139, 0.128, 0.133, 0.104, 0.107, 0.058, 0.137, 0.036, 0.107
0.055, 0.138, 0.059, 0.074, 0.08, 0.135, 0.085, 0.064, 0.172, 0.139
0.141, 0.156, 0.119, 0.062, 0.08, 0.022, 0.043, 0.159, 0.101, 0.118
0.11, 0.088, 0.033, 0.062, 0.089, 0.176, 0.161, 0.105, 0.144, 0.032
0.157,0.111, 0.125, 0.099, 0.036, 0.119, 0.036, 0.05, 0.147, 0.121
0.119, 0.121, 0.117, 0.152, 0.026, 0.174, 0.027, 0.065, 0.151, 0.049
0.057, 0.07, 0.134, 0.118, 0.058, 0.185, 0.07, 0.13, 0.116, 0.063
0.102, 0.082, 0.135, 0.046, 0.128, 0.106, 0.116, 0.085, 0.133, 0.066
0.057, 0.193, 0.2, 0.123, 0.022, 0.154, 0.115, 0.025, 0.065, 0.047
0.056, 0.196, 0.168, 0.052, 0.116, 0.062, 0.099, 0.133, 0.065, 0.053
0.04, 0.022, 0.2, 0.194, 0.038, 0.033, 0.161, 0.097, 0.159, 0.056
0.04, 0.036, 0.119, 0.204, 0.16, 0.103, 0.089, 0.061, 0.136, 0.052
0.112, 0.189, 0.145, 0.163, 0.113, 0.031, 0.028, 0.062, 0.045, 0.112
0.071, 0.099, 0.113, 0.175, 0.082, 0.068, 0.03, 0.066, 0.133, 0.164
0.134, 0.074, 0.111, 0.091, 0.051, 0.119, 0.044, 0.085, 0.144, 0.148
0.103, 0.126, 0.084, 0.117, 0.084, 0.127, 0.131, 0.092, 0.117, 0.019
0.096, 0.121, 0.026, 0.046, 0.043, 0.124, 0.165, 0.04, 0.127, 0.213
0.117, 0.115, 0.125, 0.128, 0.081, 0.103, 0.073, 0.044, 0.137, 0.077
0.037, 0.021, 0.143, 0.165, 0.075, 0.111, 0.028, 0.132, 0.134, 0.154
0.154, 0.049, 0.128, 0.089, 0.082, 0.072, 0.034, 0.138, 0.108, 0.146
0.078, 0.141, 0.084, 0.139, 0.085, 0.062, 0.035, 0.174, 0.15, 0.053
0.112,0.112,0.128, 0.112, 0.107, 0.142, 0.032, 0.142, 0.063, 0.049
0.084, 0.091, 0.128, 0.129, 0.045, 0.105, 0.05, 0.091, 0.089, 0.188
0.062, 0.136, 0.112, 0.153, 0.091, 0.046, 0.089, 0.03, 0.161, 0.12
0.143, 0.1, 0.046, 0.166, 0.107, 0.191, 0.026, 0.078, 0.097, 0.047
0.077, 0.174, 0.05, 0.098, 0.028, 0.173, 0.067, 0.106, 0.096, 0.13
0.105, 0.022, 0.183, 0.056, 0.045, 0.103, 0.081, 0.135, 0.119, 0.149
0.083, 0.127, 0.126, 0.028, 0.209, 0.03, 0.066, 0.125, 0.1, 0.107
0.138, 0.142, 0.074, 0.091, 0.103, 0.067, 0.12, 0.04, 0.1, 0.124
0.058, 0.039, 0.088, 0.113, 0.093, 0.055, 0.162, 0.069, 0.168, 0.155
0.02, 0.162, 0.133, 0.138, 0.137, 0.051, 0.069, 0.032, 0.118, 0.14
0.071, 0.046, 0.134, 0.119, 0.159, 0.057, 0.039, 0.135, 0.057, 0.184

5.0.2 3D Cars

List of class ids for different (total 5) sets of randomly chosen classes:

009, 002, 004, 007, 001, 025, 026, 024, 043, 023
096, 118, 040, 052, 024, 046, 123, 187, 150, 072
112, 019, 030, 037, 069, 056, 161, 193, 190, 061
038, 111, 104, 159, 035, 037, 086, 043, 173, 196
113, 009, 031, 016, 022, 078, 083, 060, 098, 100

Imbalances splits applied on each of these sets:

0.141, 0.116, 0.128, 0.077, 0.104
0.035, 0.137, 0.027, 0.068, 0.175
0.081, 0.076, 0.117, 0.109, 0.079
0.134, 0.108, 0.048, 0.143, 0.107
0.033,0.111, 0.155, 0.160, 0.167

5.0.3 3D Chairs

List of class ids for different (total 5) sets of randomly chosen classes:

e (965, 0960, 0710, 0045, 1332, 0996, 1074, 0236, 0098, 1196
e (241, 0307, 0091, 1071, 1317, 0104, 1098, 1064, 0158, 0784
e 0565, 0326, 0892, 0308, 0858, 1212, 0802, 0236, 0257, 0749
o (241, 0574, 0864, 0401, 1372, 1032, 1101, 0439, 0528, 0264
e 0561, 0334, 1036, 0724, 1314, 0766, 0572, 0840, 1338, 0991

Imbalances splits applied on each of these sets:

e 0.190, 0.040, 0.107, 0.170, 0.101
0.164, 0.204, 0.060, 0.164, 0.055
0.084, 0.119, 0.188, 0.067, 0.070
0.035, 0.178, 0.130, 0.102, 0.173
0.044, 0.060, 0.191, 0.100, 0.022

5.0.4 YouTube-Faces

e 0.019, 0.013, 0.024, 0.020, 0.028, 0.022, 0.053, 0.010, 0.062, 0.031, 0.037, 0.005, 0.011, 0.027, 0.034, 0.033,
0.009, 0.006, 0.011, 0.016, 0.024, 0.047, 0.028, 0.069, 0.012, 0.006, 0.024, 0.005, 0.006, 0.024, 0.005, 0.037,
0.028, 0.056, 0.059, 0.026, 0.008, 0.006, 0.028, 0.028

5.0.5 ShapeNet
e (.1851,0.1481,0.1111, 0.2592, 0.2962

Results are reported averaged over 5 different runs on this imbalance split.

References

[1] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: In-

terpretable representation learning by information maximizing generative adversarial nets. In NeurlIPS,
2016.

[2] Emilien Dupont. Learning disentangled joint continuous and discrete representations. In NeurIPS, 2018.
[3] Sohil Atul Shah and Vladlen Koltun. Deep continuous clustering. In arXiv, 2018.

[4] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas.
Stackgan++: Realistic image synthesis with stacked generative adversarial networks. TPAMI, 2018.

	Importance of constrastive loss
	Analysing the constrastive loss in imbalanced scenarios
	k-Nearest neighbour classification
	Implementation details (continued)
	MNIST
	3D Cars and Chairs
	YouTube-Faces
	Training details

	Ground truth class imbalance
	MNIST
	3D Cars
	3D Chairs
	YouTube-Faces
	ShapeNet

