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1 Inefficiency in using GNNs for solving MILPs in parallel

In this section, we argue that the GNN architecture looses its advantages in the face of solving
multiple MILPs at the same time. In the applications like multi-objective optimization [4], where
multiple MILPs are solved in parallel, a GNN for each MILP needs to be initialized on the GPU
because of the sequentially asynchronous nature of solving MILPs. Not only is there a limit to the
number of such GNNs that can fit on a single GPU because of memory constraints, but also several
GNNs on a single GPU results in an inefficient GPU utilization.

One can, for instance, try to time multiple MILPs such that there is a need for a single forward
evaluation on a GPU, but, in our knowledge, it has not been done and it results in frequent interruptions
in the solving procedure. An alternative, much simpler, method is to pack multiple GNNs on a single
GPU such that each GNN is dedicated to solving one MILP. For example, we were able to put 25
GNNs on Tesla V100 32 GB GPU. Figure 1 shows the inefficient utilization of GPUs when multiple
GNNs are packed on a single GPU.
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Figure 1: Packing several GNNs together on a GPU keeps it underutilized. “Size” is the number
of inputs batched together (unrealistic scenario) or number of inputs simultaneously put on a GPU
separately.
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2 Input Features

We use the features that were used by Gasse et al. [1] and Khalil et al. [3]. The list of features in G
are described in the Table 1. There are a total of 92 features that we use for X as described in the
Table 2. We follow the preprocessing procedure as described in Gasse et al. [1].

Table 1: Features of G. It is constructed as a variable-constraint bipartite graph, where the vertices of
this graph have features as described here. These features are same as used in Gasse et al. [1].

Type Description

Variable Features (Total -13)

Variable type (1) Categorical Allowed values - Binary, Integer, Continuous, Implied
Integer

Normalized coefficient (1) Real Objective coefficient of the variable normalized by the
euclidean norm of its coefficients in the constraints

Specified bounds (2) Binary Does the variable has a lower bound (upper bound)?
Solution bounds (2) Binary If the variable is currently at its lower bound (upper

bound)?
Solution bractionality (1) Real ∈ [0, 1) Fractional part of the variable i.e. x− bxc, where x is

the value of the decision in variable in the current LP
solution

Basis (1) Categorical One of 4 classes - Lower (variable is at the lower bound),
Basic (variable has a value between the bounds), Upper
(variable is at the upper bound), Zero (rare case)

Reduced cost (1) Real Amount by which objective coefficient of the variable
should decrease so that the variable assumes a positive
value in the LP solution

Age (1) Real Number of LP iterations since the last time the variable
was basic normalized by total number of LP iterations

Solution value (1) Real Value of the variable in the current LP solution
Primal value (1) Real Value of the variable in the current best primal solution
Average primal value (1) Real Average value of the variable in all of the previously

observed feasible primal solutions

Constraint Features (Total - 5)

Cossine similarity (1) Real Cossine of angle between the vector represented by ob-
jective coefficients and the coefficients of this constraint

Bias (1) Real Right hand side of the constraint normalized by the eu-
clidean norm of the row coefficients

Age (1) Real Number of iterations since the last time the constraint
was active normalized by total number of LP iterations

Normalized dual value (1) Real Value of dual variable corresponding to the constraint
normalized by the product of norms of the row coeffi-
cients and the objective coefficients

Bounds (1) Binary If the constraint is currently at its bounds?

Edge Features (Total - 1)

Normalized coefficient (1) Real Coefficient of the variable normalized by the norm of
the coefficients of all the variables in the constraint

Table 2: Features in X, an input to MLP.
count

Variable features from G 13

Variable features from Khalil et al. [3] 72
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3 Preliminary results on running times of various architectures

In order to have a rough idea of relative improvement in runtimes across various architectures, we
considered 20 instances in each difficulty level for each problem class and use the solver to obtain
observations at each node. Different functions are then used to evaluate decisions at each node, and
the total time taken for all the function evaluations across the nodes in an instance is observed. Note
that the quality of decision is not important here; we are only interested in time taken per decision.

Specifically, we considered 5 forms of architectures as listed in Table 3. To cover the entire spectrum
of strong inductive biases, we constructed an attention mechanism as explained in 4. At the same
time, to cover the spectrum of cheaper architectures we consider simple dot product as the form of
predictor. Finally, we consider a scenario where we only consider MLPs as predictors everywhere in
the B&B tree.

Table 3: Different architectures considered for preliminray runtime comparison.
Type Description

GNN ALL Use a Graph Convolution Neural Network (GNN) [1] at all tree nodes
ATTN ALL Attention mechanism (section 4) at all nodes
GNN DOT Use GNN at the root nodes and a dot product with X to compute scores at every node
ATTN DOT Use attention mechanism at the root node and dot product with X to compute scores at every node
MLP ALL Use a 3-layer multilinear perceptron at all the nodes
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Figure 2: Relative time performance of various methods with respect to GNN ALL on CPU (average
values). A value of 10 implies that the method is 10 times faster (on arithmetic average) than GNN
ALL implying that one can afford to perform 10 times worse than GNN ALL in iterative performance
when using CPUs. Note that this is just a rough estimation.

Figure 2 shows the relative performance (rel. to GNN) of various deep learning architectures across
4 sets of problems. It is evident that MLP ALL and GNN DOT are favored across the problem
sets. This observation inspired the range of hybrid architectures that we explored in the paper. We
also observe that a superior inductive bias like that of attention mechanism and transformers [7]
has a better runtime performance on GPUs as illustrated in Figure 3, which we suspect is massive
parallelization employed in the computations of attention. However, their performance on CPUs is
not better than GNNs.
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Figure 3: Relative time performance of various methods with respect to GNNALL on GPU (average
values). A value of 10 implies that the method is 10 times faster (on arithmetic average) than
GNNALL implying that one can afford to perform 10 times worse than GNNALL in iterative
performance when using CPUs. Note that this is just a rough estimation.

4 Attention Mechanism for MILPs

To cover the entire spectrum of computational complexity and expressivity of inductive bias, we
implemented a transformer [7] as an architecture to replace GNNs. Specifically, we let the variables
(constraints) attend to all other variables (constraints) via multi-headed self-attention mechanism.
Finally, a modulated attention mechanism between variable representations as queries and constraint
representation as keys outputs final variable representations, which is passed through the softmax
layer for classification objective. Here, we use modulation scheme as explained in Shaw et al. [6].
Precisely, an edge in variable-constraint graph is used to increment the attention score with a learnable
scalar value.

Figure 4: Multi-Head Attention mechanism where a variable or constraint can attend to all other vari-
ables or constraints. Finally,variables are used as a query to attend to constraints, where the attention
is modulated through variable-constraint features. Modulation of attention scores follow Shaw et al.
[6]
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5 Data Generation & Training Specifications

For our experiments, we used 10,000 training instances for the training dataset and collected 150,000
observations from the tree nodes of those instances. In a similar manner, we generated 20,000
instances each for the validation and testing set, resulting in 30,000 observations each for validation
and testing respectively.

We held all the training parameters fixed across the models. Specifically, we used a learning rate of
1e−3, training batch size of 32, a learning rate scheduler to reduce learning rate by 0.2 if there is no
improvement in the validation loss for 15 epochs, and an early stopping criterion of 30 epochs. Our
epoch consisted of 10K training examples and 2K validation samples. We used a 3 layered MLP with
256 hidden units in each layer, while we used GNN model with an embedding size of 64 units. We
used this configuration across all the models discussed in the main paper. Due to the large size of
instances in capacitated facility location, we used a learning rate of 0.005, early stopping criterion of
20 epochs with a patience of 10 epochs.

Further, for knowledge distillation we used T = 2 (temperature) and α = 0.9 (convex mixing
of soft and hard objectives). These are the recommended settings in Hinton et al. [2]. We did a
hyperparameter search for β = {0.01, 0.001, 0.0001} for ED and MHE. Following are the values for
β that resulted in the best performing models.

Table 4: Best AT models
AT

Capacitated Facility Location MHE
Combinatorial Auctions MHE
Set Covering ED
Maximum Independent Set MHE

We implemented all the models using PyTorch [5], and ran all the CPU evaluations on an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz. GPU evaluations for GNN were performed on NVIDIA-
TITAN Xp GPU card with CUDA 10.1.

6 Depth-dependent loss weighting scheme

In Figure 5 we plot the sorted ratio of number of nodes to the minimum number of nodes observed
for an instance across all the weighting schemes. Here we attempt to breakdown the performance of
different branching strategies learned using different loss-weighting schemes. We observe that the
sigmoidal scheme achieves the best performance.
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Figure 5: Performance of different weighing schemes across "big" instances. "Sigmoidal" evolves
slowest among all.
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7 Model Results

The table below is a list of all the architectures along with their performance on the test sets. Please
note that training with auxiliary task is not possible with HyperSVM type of architecture so their
results are not reported in the table.

Table 5: Top-1 accuracy of various models.
Combinatorial
Auctions

Capacitated Fa-
cility Location

Set Cover Maximum
Independent
Set

Expert GCNN 46.53 ± 0.12 68.47 ± 0.22 54.82 ± 0.14 58.73 ± 0.54

Existing methods
Extratrees 37.97 ± 0.1 60.06 ± 0.18 42.66 ± 0.22 19.35 ± 0.55
LMART 38.7 ± 0.16 63.28 ± 0.06 46.31 ± 0.28 50.98 ± 0.37
SVMRank 39.14 ± 0.12 63.47 ± 0.06 46.23 ± 0.11 49.29 ± 0.23

Simple Network MLP 43.53 ± 0.13 65.26 ± 0.16 49.53 ± 0.04 53.06 ± 0.03

Concatenate

CONCAT (Pre) 44.16 ± 0.03 65.5 ± 0.1 49.98 ± 0.18 52.85 +- 0.34
CONCAT (e2e) 44.09 ± 0.08 66.59 ± 0.04 50.17 ± 0.04 53.23 ± 0.41
CONCAT (e2e & KD) 44.19 ± 0.05 66.53 ± 0.13 50.11 ± 0.09 53.66 +- 0.32

Modulate

FiLM (Pre) 44.12 ± 0.09 65.78 ± 0.06 50.0 ± 0.09 53.16 ± 0.51
FiLM (e2e) 44.31 ± 0.08 66.33 ± 0.33 50.16 ± 0.05 53.23 ± 0.58
FiLM (e2e & KD) 44.1 ± 0.09 66.6 ± 0.21 50.31 ± 0.19 53.08 ± 0.3

HyperSVM HyperSVM (e2e) 43.19 ± 0.02 66.05 ± 0.06 49.78 ± 0.23 50.04 ± 0.31
HyperSVM (e2e & KD) 42.55 ± 0.03 66.07 ± 0.05 49.53 ± 0.13 49.34 +- 0.43

HyperSVM-FiLM HyperSVM-FiLM (e2e) 43.64 ± 0.18 65.54 ± 0.32 49.81 ± 0.27 50.17 ± 0.58
HyperSVM-FiLM (e2e & KD) 43.28 ± 0.48 65.52 ± 0.34 49.73 ± 0.05 49.73 +- 0.39

FiLM (e2e & KD & AT) 44.56 ± 0.13 66.85 ± 0.28 50.37 ± 0.03 53.68 ± 0.23

8 Overfitting in maximum independent set

Table 6 shows that the FiLM models overfit on small instances of maximum independent set. To
address this problem, we used a mini dataset of 2000 observations obtained by running data collection
on medium instances of maximum independent set. Further, we regularized the FiLM parameters of
the FiLM model to yield much simpler models based on the performance on this mini-dataset, which
is not too expensive to obtain owing to the size of observations. The results of the regularized models
are in Table 7 For a fair comparison, we regularized GNN and used the best performing model to
report evaluation results in the main paper.

Table 6: FiLM models for maximum independent set overfits on small instances
small medium big

Time Wins Nodes Time Wins Nodes Time Wins Nodes

FiLM 52.96 39/ 55 492 1515.19 9/ 17 2804 2700.02 0/ 0 nan
GNN-CPU 44.07 21/ 60 432 371.81 36/ 40 558 1981.43 10/ 10 6334
GNN-GPU 31.70 0/ 59 432 264.01 0/ 43 558 1772.12 0/ 13 6313

Table 7: Top-1 accuracy of regularized models on 2000 observations from medium random instances
of maximum independent set.

weight decay FiLM GNN

1.0 55.15 ± 0.07 31.6 ± 6.63
0.1 56.13 ± 0.32 37.23 ± 0.92
0.01 53.25 ± 0.95 26.8 ± 16.71
0.0 19.18 ± 4.24 34.08 ± 4.8
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9 Performance of HyperSVM architectures

HyperSVM architectures are the cheapest in computation. In this section we ask if we are willing
to lose machine learning accuracy by 1-2% in HyperSVM architecture, can we still get faster
running times with HyperSVM type of architectures? Table 8 compares solver performance by using
HyperSVM architecture and FiLM architecture. We observe that HyperSVM types of architectures
loose their ability to generalize on larger scale instances.

Table 8: FiLM architecture generalizes to larger instances better than the HyperSVM types of
architectures. We compare the performance of the best FiLM architecture from the Table 5 with the
best HyperSVM architecture in the same table.

small medium big
Time Wins Nodes Time Wins Nodes Time Wins Nodes

FiLM 24.67 53/ 60 109 136.42 51/ 60 336 531.70 46/ 57 345
HyperSVM 27.26 7/ 60 110 158.97 9/ 60 345 614.36 11/ 57 346
MLP 27.61 4/ 60 114 156.30 11/ 60 347 595.31 9/ 56 334

(a) Capacitated Facility Location

small medium big
Time Wins Nodes Time Wins Nodes Time Wins Nodes

FiLM 8.73 59/ 60 147 63.75 60/ 60 2169 1843.24 24/ 26 38530
HyperSVM-FiLM 9.73 1/ 60 148 72.53 0/ 60 2217 2061.56 1/ 22 47277
MLP 9.98 0/ 60 157 77.48 0/ 60 2299 1984.26 1/ 24 40188

(b) Set Cover

10 Scaling to 2 × Big instances

In this section we investigate the generalization power of FiLM models trained on dataset obtained
from small instances. Specifically, we generate 20 random instances of size double that of big
instances, and use the trained models of FiLM and GNN to compare their performance against RPB.
We use the time limit of 7200 seconds, i.e. 2 hours to account for longer solving running times as one
scales out to bigger instances. We observe that the power to generalize is largely dependent on the
problem family. For example, FiLM models can still outperform other strategies on scaling out on
capacitated facility location problems. However, we found that RPB remains competitive on setcover
problems. We note that this shortcoming of the FiLM models can be overcome via larger size of
hidden layers and training on slightly larger instances than what has been used in the main paper.
Table 9 shows these results.

Table 9: Performance of branching strategies on twice the size of biggest instances (2 × Big)
considered in the main paper. 20 "Bigger" instances were solved using 3 seeds each resulting in a
total of 60 runs. We see that FiLM models still remain competitive, and it is highly dependent on the
family of problem.

facilities setcover
Model Time Wins Nodes Time Wins Nodes

RPB 7200.14 0 / 0 n/a 6346.17 9 / 12 135 132
GNN 7111.83 1 / 5 n/a 7200.25 0 / 0 n/a

FILM (ours) 7052.27 4 / 4 n/a 6508.78 3 / 10 107 187
GNN-GPU 6625.55 – / 13 n/a 6008.14 – / 12 93 909

11 Effect of different training protocols on B&B performance

Table 10 shows the performance of different training protocols on B&B performance. Although the
models trained with auxiliary tasks (AT) and knowledge distillation (KD) are a clear winner up until
problem sets of size medium, there is a tie between the models trained with KD and those trained
with KD & AT. However, it is worth noting that the difference in B&B performance across different
training protocols is not huge, and such performance evaluation can be read from the test accuracy of
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Table 10: Effect of training protocols on the performance of branching strategies. We report geometric
mean of solving times, number of times a method won (in solving time) over total finished runs, and
geometric mean of number of nodes. Refer to section 5 (main) for more details. The best performing
results are in bold. ∗Models were regularized to prevent overfitting on small instances.

Small Medium Big
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

e2e 25.05 22 / 60 114 154.12 4 / 60 340 550.03 15 / 57 339
e2e + KD 28.00 2 / 60 111 143.12 18 / 60 343 507.50 26 / 57 325

e2e + KD + AT 24.67 36 / 60 109 136.42 38 / 60 336 531.70 16 / 57 345
Capacitated Facility Location

e2e 9.70 1 / 60 152 71.18 1 / 60 2186 1869.57 4 / 25 40 341
e2e + KD 9.81 0 / 60 146 70.88 4 / 60 2173 1842.29 15 / 25 40 437

e2e + KD + AT 8.73 59 / 60 147 63.75 55 / 60 2169 1843.24 8 / 26 40 881
Set Covering

e2e 2.45 1 / 60 72 17.59 5 / 60 702 225.88 17 / 60 8939
e2e + KD 2.35 0 / 60 73 17.59 2 / 60 720 241.95 7 / 59 8846

e2e + KD + AT 2.13 59 / 60 73 15.71 53 / 60 686 217.02 36 / 60 8711
Combinatorial Auctions

e2e 205.63 2 / 54 559 1103.47 1 / 29 1137 2457.94 1 / 4 2268
e2e + KD 333.52 1 / 52 486 926.12 1 / 41 604 2503.65 0 / 7 1953

e2e + KD + AT 52.96 54 / 55 410 131.45 54 / 54 331 1823.29 14 / 15 3049
Maximum Independent Set∗

trained models. For example, as evident in Table 5, difference in test accuracy of FiLM (e2e & KD)
and FiLM (e2e & KD & AT) is not significant for problem sets - Capacitated Facility Location and
Set Covering, but its significant enough for problem sets - Combinatorial Auctions and Maximum
Independent Set. Given that the inference cost is independent of training protocols, to attain
better generalization performance, we recommend FiLM (e2e & KD & AT) only when these
models have significantly better accuracy than FiLM (e2e & KD).
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