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Abstract

Second-order information, in the form of Hessian- or Inverse-Hessian-vector prod-
ucts, is a fundamental tool for solving optimization problems. Recently, there
has been significant interest in utilizing this information in the context of deep
neural networks; however, relatively little is known about the quality of existing
approximations in this context. Our work examines this question, identifies issues
with existing approaches, and proposes a method called WoodFisher to compute a
faithful and efficient estimate of the inverse Hessian.

Our main application is to neural network compression, where we build on
the classic Optimal Brain Damage/Surgeon framework. We demonstrate that
WoodFisher significantly outperforms popular state-of-the-art methods for one-
shot pruning. Further, even when iterative, gradual pruning is allowed, our method
results in a gain in test accuracy over the state-of-the-art approaches, for standard
image classification datasets such as ImageNet ILSVRC. We examine how our
method can be extended to take into account first-order information, as well as
illustrate its ability to automatically set layer-wise pruning thresholds and perform
compression in the limited-data regime. The code is available at the following link,
https://github.com/IST-DASLab/WoodFisher.

1 Introduction
The recent success of deep learning, e.g. [1, 2] has brought about significant accuracy improvement in
areas such as computer vision [3, 4] or natural language processing [5, 6]. Central to this performance
progression has been the size of the underlying models, with millions or even billions of trainable
parameters [4, 5], a trend which seems likely to continue for the foreseeable future [7].

Deploying such large models is taxing from the performance perspective. This has fuelled a line of
work where researchers compress such parameter-heavy deep neural networks into “lighter,” easier to
deploy variants. This challenge is not new, and in fact, results in this direction can be found in the
early work on neural networks, e.g. [8–10]. Thus, most of the recent work to tackle this challenge can
find its roots in these classic references [11], and in particular in the Optimal Brain Damage/Surgeon
(OBD/OBS) framework [8, 10]. Roughly, the main idea behind this framework is to build a local
quadratic model approximation based on the second-order Taylor series expansion to determine the
optimal set of parameters to be removed. (We describe it precisely in Section 4.)

A key requirement to apply this approach is to have an accurate estimate of the inverse Hessian
matrix, or at least to accurate inverse-Hessian-vector-products (IHVPs). In fact, IHVPs are a central
ingredient in many parts of machine learning, most prominently for optimization [12–15], but also in
other applications such as influence functions [16] or continual learning [17]. Applying second-order
methods at the scale of model sizes described above might appear daunting, and so is often done via
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coarse-grained approximations (such as diagonal, block-wise, or Kronecker-factorization). However,
relatively little is understood about the quality and scalability of such approximations.

Motivation. Our work centers around two main questions. The first is analytical, and asks if
second-order approximations can be both accurate and scalable in the context of neural network
models. The second is practical, and concerns applications of second-order approximations to neural
network compression. In particular, we investigate whether these methods can be competitive with
both industrial-scale methods such as magnitude-based pruning [18], as well as with the series of
non-trivial compression methods proposed by researchers over the past couple of years [19–24].
Contribution. We first examine second-order approximation schemes in the context of convolu-
tional neural networks (CNNs). In particular, we identify a method of approximating Hessian-Inverse
information leveraging the structure of the empirical Fisher information matrix to approximate
the Hessian, in conjunction with the Woodbury matrix identity to provide iteratively improving
approximations of Inverse-Hessian-vector products. We show that this method, which we simply call
WoodFisher, can be computationally-efficient, and that it faithfully represents the structure of the
Hessian even for relatively low sample sizes. We note that early variants of this method have been
considered previously [10, 25], but we believe we are the first to consider its accuracy, efficiency, and
implementability in the context of large-scale deep models, as well as to investigate its extensions.

To address the second, practical, question, we demonstrate in Section 4 how WoodFisher can be
used in conjunction with variants of the OBD/OBS pruning framework, resulting in state-of-the-art
compression of popular convolutional models such as ResNet50 and MobileNet on the ILSVRC
(ImageNet) dataset [26]. We investigate two practical application scenarios.

The first is one-shot pruning, in which the model has to be compressed in a single step, without
any re-training. Here, WoodFisher easily outperforms all previous methods based on approximate
second-order information or global magnitude pruning. The second scenario is gradual pruning,
allowing for re-training between pruning steps. Surprisingly, even here WoodFisher either matches
or outperforms state-of-the-art pruning approaches, including recent dynamic pruners [24, 27]. Our
study focuses on unstructured pruning, but we can exhibit non-trivial speedups for real-time inference
by running on a CPU framework which efficiently supports unstructured sparsity [28].

WoodFisher has several useful features and extensions. Since it approximates the full Hessian inverse,
it can provide a global measure of parameter importance, and therefore removes the need for manually
choosing sparsity targets per layer. Second, it allows us to apply compression in the limited-data
regime, where either e.g. 99% of the training is unavailable, or no data labels are available. Third, we
show that we can also take into account the first-order (gradient) term in the local quadratic model,
which leads to further accuracy gain, and the ability to prune models which are not fully converged.

2 Background
Deterministic Setting. We consider supervised learning, where we are given a training set S =
{
(
xi,yi

)
}Ni=1, comprising of pairs of input examples x ∈ X and outputs y ∈ Y . The goal is

to learn a function f : X 7→ Y , parametrized by weights w ∈ Rd, such that given input x,
the prediction f(x;w) ≈ y. We consider the loss function ` : Y × Y 7→ R to measure the
accuracy of the prediction. The training loss L is defined as the average over training examples, i.e.,
L(w) = 1

N

∑N
n=1 `

(
yn, f (xn;w)

)
.

The Hessian Matrix. For a twice differentiable loss L, the Hessian matrix H = ∇2
wL, takes into

account the local geometry of the loss at a given point w and allows building a faithful approximation
to it in a small neighbourhood δw surrounding w. This is often referred to as the local quadratic
model for the loss and is given by L(w + δw) ≈ L(w) +∇wL

>δw + 1
2δw

>H δw.

Probabilistic Setting. An alternative formulation is in terms of the underlying joint distribution
Qx,y = QxQy|x. The marginal distribution Qx is generally assumed to be well-estimated by the
empirical distribution Q̂x over the inputs in the training set. As our task is predicting the output
y given input x, training the model is cast as learning the conditional distribution Py|x, which
is close to the true Qy|x. If we formulate the training objective as minimizing the KL divergence
between these conditional distributions, we obtain the equivalence between losses `

(
yn, f(xn;w)

)
=

− log
(
pw(yn|xn)

)
, where pw is the density function corresponding to the model distribution.
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The Fisher Matrix. In the probabilistic view, the Fisher information matrix F of the model’s
conditional distribution Py|x is defined as,

F = EPx,y

[
∇w log pw(x,y)∇w log pw(x,y)>

]
. (1)

In fact, it can be proved that the Fisher F = EPx,y

[
−∇2

w log pw(x,y)
]

. Then, by expressing
Py,x = QxPy|x ≈ Q̂xPy|x and under the assumption that the model’s conditional distribution Py|x

matches the conditional distribution of the data Q̂y|x, the Fisher and Hessian matrices are equivalent.

The Empirical Fisher. In practical settings, it is common to consider an approximation to the
Fisher matrix introduced in Eq. (1), where we replace the model distribution Px,y with the empirical
training distribution Q̂x,y. Thus we can simplify the expression of empirical Fisher as follows,

F̂ = EQ̂x

[
EQ̂y|x

[
∇ log pw(y|x)∇ log pw(y|x)>

]]
(a)
=

1

N

N∑
n=1

∇` (yn, f (xn;w))︸ ︷︷ ︸
∇`n

∇` (yn, f (xn;w))>

where (a) uses the equivalence of the loss between the probabilistic and deterministic settings. In the
following, we will use a shorthand `n to denote the loss for a particular training example (xn,yn),
and refer to the Fisher as true Fisher, when needed to make the distinction relative to empirical Fisher.

3 Efficient Estimates of Inverse-Hessian Vector Products

Second-order information in the form of Inverse-Hessian Vector Products (IHVP) has several uses
in optimization and machine learning [29, 30]. Since computing and storing the Hessian and Fisher
matrices directly is prohibitive, we will focus on efficient ways to approximate this information.

As we saw above, the Hessian and Fisher matrices are equivalent if the model and data distribution
match. Hence, under this assumption, the Fisher can be seen as a reasonable approximation to
the Hessian. Due to its structure, the Fisher is positive semidefinite (PSD), and hence can be
made invertible by adding a small diagonal dampening term. This approximation is therefore
fairly common [15, 20, 31], although there is relatively little work examining the quality of this
approximation in the context of neural networks.

Further, one can ask whether the empirical Fisher is a good approximation of the true Fisher. The
latter is known to converge to the Hessian as the training loss approaches zero via relation to Gauss-
Newton. The Empirical Fisher does not enjoy this property, but is far more computationally-efficient
than the Fisher, as it can be obtained after a limited number of back-propagation steps. Hence, this
second approximation would trade off theoretical guarantees for practical efficiency. In the next
section, we examine how these approximations square off in practice for neural networks.

3.1 The (Empirical) Fisher and the Hessian: A Visual Tour

(a) H2,2 (b) F̂2,2 (c) H3,3 (d) F̂3,3

Figure 1: Hessian (H) and empirical Fisher (F̂ ) blocks for CIFARNET (3072→ 16→ 64→ 10)
corresponding to second and third hidden layers when trained on CIFAR10. Figures have been
smoothened slightly with a Gaussian kernel for better visibility. Both Hessian and empirical Fisher
have been estimated over a batch of 100 examples in all the figures.

We consider the Hessian (H) and empirical Fisher (F̂ ) matrices for neural networks trained on
standard datasets like CIFAR10 and MNIST. Due to practical considerations, we consider relatively
small models: on CIFAR10, we consider a fully-connected network with two hidden layers 3072→
16→ 64→ 10, which we refer to as CIFARNET.
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Figure 1 compares the Hessian and empirical Fisher blocks corresponding to the second and third
hidden layers of this network. Visually, there is a clear similarity between the structure of these
two matrices, for both the layers. A similar trend holds for the first hidden layer as well as the
cross-layer blocks, and for MNIST examples. Surprisingly, this behaviour occurs even if the network
is not at full convergence, where we would expect the data and model distribution to match, but
even at early stages of training (e.g., after one epoch of training). (Please see Appendix S3 for full
experiments.) This observation is consistent with recent work [32] finding high cosine similarity
between the Hessian and empirical Fisher matrices just after a few gradient steps.

As can be noted from the Figure 1, the main difference between these matrices is not in terms of
structure, but in terms of scale. As a result, we could consider that the empirical Fisher F̂ ∝ H,
modulo scaling, as long as our target application is not scale-dependent, or if we are willing to adjust
the scaling through hyper-parametrization. Assuming we are willing to use the empirical Fisher as a
proxy for the Hessian, the next question is: how can we estimate its inverse efficiently?

3.2 The WoodFisher Approximation

The Woodbury Matrix Identity. Clearly, direct inversion techniques would not be viable, since
their runtime is cubic in the dimension parameter. Instead, we start from the Woodbury matrix
identity2, providing the formula for computing the inverse of a low-rank correction to a given
invertible matrixA. The Sherman-Morrison formula is a simplified variant, given as

(
A+ uv>

)−1
=

A−1 − A−1uv>A−1

1+v>A−1u
. We can express the empirical Fisher as the recurrence,

F̂n+1 = F̂n +
1

N
∇`n+1∇`n+1

>, where F̂0 = λId. (2)

Above, λ denotes the dampening term, i.e., a positive scalar λ times the identity Id to render the
empirical Fisher positive definite. Then, the recurrence for calculating the inverse of empirical Fisher
becomes:

F̂−1n+1 = F̂−1n −
F̂−1n ∇`n+1∇`>n+1F̂

−1
n

N +∇`>n+1F̂
−1
n ∇`n+1

, where F̂−10 = λ−1Id. (3)

Finally, we can express the inverse of the empirical Fisher as F̂−1 = F̂−1N+1. Stretching the limits of
naming convention, we refer to this method of using the empirical Fisher in place of Hessian and
computing its inverse via the Woodbury identity as WoodFisher.

(a) LAYER1.0.CONV1 (b) LAYER2.0.CONV1 (c) LAYER3.0.CONV1

Figure 2: Approximation quality of the loss suggested by the local quadratic model using WoodFisher
with respect to the actual training loss. The three plots measure the quality of local quadratic model
along three different directions, each corresponding to pruning the respective layers to 50% sparsity.

Approximation quality for the local quadratic model. To evaluate the accuracy of our local
quadratic model estimated via WoodFisher, we examine how the loss predicted by it compares against
the actual training loss. (Since we use a pre-trained network, the first-order gradient term is ignored;
we will revisit this assumption later.) We test the approximation on three different directions, each
corresponding to the pruning direction (of the form H−1δw) obtained when compressing a particular
layer to 50% sparsity. We choose three layers from different stages of a pre-trained RESNET-20 on
CIFAR10, and Figure 2 presents these results.

2We chose Woodbury over Sherman-Morrison for the naming, since its general form can be used for
approximating the inverse of true-Fisher or Gauss-Newton, when they can be expressed as sum of outer-products
of the Jacobian.
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In all three cases, the local quadratic model using WoodFisher predicts an accurate approximation to
the actual underlying loss. Further, it is possible to use the dampening λ to control whether a more
conservative or relaxed estimate is needed. Overall, this suggests that the approach might be fairly
accurate, a hypothesis we examine in more detail in Section 4.

Computational Efficiency and Block-wise Approximation. While the expression in Eq. (3) goes
until n = N , in practice, we found the method only needs a small subset of examples, m, typically
ranging between 100 to 400. The runtime is this reduced from cubic to quadratic in d, which can still
be excessive for neural networks with millions of parameters.

Thus, for large models we will need to employ a block-wise approximation, whereby we maintain and
estimate limited-size blocks (‘chunks’) on the diagonal and ignore the off-diagonal parts. This block-
wise simplification is is motivated by the observation that Hessians tend to be diagonally-dominant,
and has been employed in previous work, e.g. [33]. Assuming uniform blocks of size c× c along the
diagonal, the runtime of this inversion operation becomesO(mcd), and hence linear in the dimension
d. This restriction appears necessary for computational tractability.

3.3 Context and Alternative Methods

There is a large body of work utilizing second-order information in machine learning and optimization,
to the extent that, it is infeasible to discuss every alternative in detail here. We therefore highlight
the main methods for estimating inverse Hessian-vector products (IHVPs) in our context of neural
networks. See Appendix S2 for detailed discussion.

A tempting first approach is the diagonal approximation, which only calculates the elements along
the diagonal, and inverts the resulting matrix. Variants of this approach have been employed in
optimization [13, 14] and model compression [20]. Yet, as we show experimentally (Figure 3a), this
local approximation can be surprisingly inaccurate. By comparison, WoodFisher costs an additional
constant factor, but provides significantly better IHVP estimates. Hessian-free methods are another
approach, which forgoes the explicit computation of Hessians [34] in favour of computing IHVP with
a vector v by solving the linear system Hx = v for some given x. Unfortunately, a disadvantage
of these methods, which we observed practically, is that they require many iterations to converge,
since the underlying Hessian matrix can be ill-conditioned. Neumann-series-based methods [35, 36]
exploit the infinite series expression for the inverse of a matrix with eigenspectrum in [0, 1]. This
does not hold by default for the Hessian, and requires using the Power method to estimate the largest
and smallest absolute eigenvalues, which increases cost substantially, while the Power method may
fail to return the smallest negative eigenvalue.

K-FAC. Kronecker-factorization (K-FAC) methods [15, 37] replace the expectation of a Kronecker
product between two matrices (that arises in the formulation of Fisher blocks between two layers) as
the Kronecker product between the expectations of two matrices. This is known to be a significant
approximation [15]. The main benefit of K-FAC is that the inverse can be efficiently computed [21,
22, 38, 39]. However, a significant drawback is that the Kronecker factorization form only exists
naturally for fully-connected networks. When applied to convolutional or recurrent neural networks,
the Kronecker structure needs to make further approximations [40, 41], limiting its applicability.
Furthermore, even in regards to its efficiency, often approximations like the chunking the layer blocks
or channel-grouping are required [42]. Also in Figure 3b, we show that when used for pruning
WoodFisher can outperform K-FAC, even for fully-connected networks.

WoodFisher. In this context, with WoodFisher, we propose a new method of estimating second-
order information that addresses some of the shortcomings of previous methods, and validate it in
the context of network pruning. We emphasize that a similar approach was used in the early works
of [10, 25] for the case of 1-hidden layer neural network with < 100 parameters. Our main contribution
is in significantly extending this idea by scaling it to modern network sizes and examining the
approximation relative to recent techniques (besides, other contributions like WoodTaylor, Section 6).

The Woodbury matrix identity was also used in L-OBS [33] by defining separate layer-wise objectives,
and was applied to carefully-crafted blocks at the level of neurons. Our approach via empirical Fisher
is more general, and we show experimentally that it yields better approximations at scale (Figure S1).
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Use of Empirical Fisher. Kunstner et al. [30] questioned the use of empirical Fisher since, as the
training residuals approach zero, the empirical Fisher goes to zero while the true Fisher approaches
the Hessian. However, this rests on the assumption that each individual gradient vanishes for well-
optimized networks, which we did not find to hold in our experiments. Further, they argue that a
large number of samples are needed for the empirical Fisher to serve as a good approximation—in
our experiments, we find that a few hundred samples suffice for our applications (e.g. Figure 1).

4 Model Compression
This area has seen an explosion of interest in recent years–due to space constraints, we refer the reader
to the recent survey of [11] for an overview, and mainly focus on closely related work on unstructured
pruning. Broadly, existing methods can be split into four classes: (1) methods based on approximate
second-order information, e.g. [20, 22, 33], usually set in the classical OBD/OBS framework [8, 10];
(2) iterative methods, e.g. [19, 43, 44], which apply magnitude-based weight pruning in a series of
incremental steps over fully- or partially-trained models; (3) dynamic methods, e.g. [23, 24, 27, 45],
which prune during regular training and can additionally allow the re-introduction of weights during
training; (4) variational or regularization-based methods, e.g. [46, 47]. Recently, pruning has also
been linked to intriguing properties of neural network training [48]. WoodFisher belongs to the first
class of methods, but can be used together with both iterative and dynamic methods.

Optimal Brain Damage. We start from the idea of pruning (setting to 0) the parameters which,
when removed, lead to a minimal increase in training loss. Denote the dense weights by w, and
the new weights after pruning as w + δw. Using the local quadratic model, we seek to minimize
δL = L(w + δw) − L(w) ≈ ∇wL

>δw + 1
2δw

>H δw. It is often assumed that the network is
pruned at a local optimum, which eliminates the first term. (We revisit this in Section 6.)

If we consider the simple case where a single parameter, at index q, is removed, we get that
corresponding optimal perturbation δw∗ and change in loss δL∗ are, as detailed in Appendix S1.2:

δw∗ =
−wqH

−1eq
[H−1]qq

, and δL∗ =
w2

q

2 [H−1]qq
. (4)

Then, the best choice of q corresponds to removing that parameter wq which has the minimum value
for the change in loss δL∗, and we refer to this as the pruning statistic ρq. Extending this analysis
to multiple parameters is combinatorially hard. Therefore, as an approximation, when removing
multiple parameters, we sort the parameters by the pruning statistic ρq, removing those with the
smallest values. The overall weight perturbation in such a scenario is computed by adding the optimal
weight update, Eq. (4), for each parameter that we decide to prune. (We mask the weight update at
the indices of removed parameters to zero, so as to adjust for adding the weight updates separately.)
We call this resulting weight update the the pruning direction.

If the Hessian is assumed to be diagonal, we recover the pruning statistic of optimal brain damage [8],
δL∗OBD = 1

2w
2
q [H]qq. Further, if we let the Hessian be isotropic, we obtain the case of magnitude

pruning, one of the leading practical methods [44], as the statistic amounts to δL∗Mag = 1
2w

2
q .

Pruning using WoodFisher. We use WoodFisher to get estimates of the Hessian inverse required
in Eq. (4). Next, the decision to remove parameters based on their pruning statistic can be made
either independently for every layer, or jointly across the whole network. The latter option allows us
to automatically adjust the sparsity distribution across the various layers given a global sparsity target
for the network. As a result, we do not have to perform a sensitivity analysis for the layers or use
heuristics such as skipping the first or the last layers, as commonly done in prior work. We refer to
the latter as joint (or global)-WoodFisher and the former as independent (or layerwise)-WoodFisher.

5 Experimental Results

We now apply WoodFisher for compressing CNNs on image classification tasks. We consider both
one-shot and gradual pruning, and investigate how the Fisher sample size and block-wise assumptions
affect the quality of the approximation, and whether this can lead to more accurate pruned models.
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5.1 One-shot pruning.

Assume that we are given a pre-trained neural network which we would like to sparsify in a single
step, without any re-training. This scenario might arise when having access to limited data, making
re-training infeasible, and allows us to directly compare approximation quality.

RESNET-20, CIFAR10. First, we consider a pre-trained RESNET-20 [4] network on CIFAR10
with ∼ 300K parameters. We compute the inverse of the diagonal blocks corresponding to each
layer. Figure 3a contains the test accuracy results for one-shot pruning in this setting, averaged across
four seeds, as we increase the percentage of weights pruned. Despite the block-wise approximation,
we observe that both independent- and joint-WoodFisher variants significantly outperform magnitude
pruning and diagonal-Fisher based pruning.

We also compare against the global version of magnitude pruning, which can re-adjust sparsity across
layers. Still, we find that the global magnitude pruning is worse than WoodFisher-independent until
about 60% sparsity, beyond which it is likely that adjusting layer-wise sparsity is becomes essential.
WoodFisher-joint performs the best amongst all the methods, and is better than the top baseline of
global magnitude pruning - by about 5% and 10% in test accuracy at the 70% and 80% sparsity levels.
Notice also the improvement relative to block size. Finally, diagonal-Fisher performs worse than
magnitude pruning for sparsity levels higher than 30%. This finding was consistent, and so we omit it
in the sections ahead. (We used 16,000 samples to estimate the diagonal Fisher, whereas WoodFisher
performs well even with 1,000 samples.)

(a) RESNET-20 on CIFAR10. (b) MLPNET on MNIST

Figure 3: One-shot pruning results of WoodFisher compared with: (a) magnitude and diagonal Fisher
based pruning (b) K-FAC based pruning. Also, see the comparison against L-OBS [33] in Figure S1.

Comparison against K-FAC. We consider the scenario of one-shot pruning of MLPNET on
MNIST. For both WoodFisher and K-FAC, we utilize a block-wise estimate of the Fisher (with
respect to the layers, i.e., no further chunking). Figure 3b illustrates these results for the ‘joint’
pruning mode (however, similar results can be observed in the ‘independent’ mode too). The number
of samples used for estimating the inverse is the same across K-FAC and WoodFisher (i.e., 50, 000
samples)3. This highlights the better approximation quality provided by WoodFisher, which unlike
K-FAC does not make major assumptions. Note that, for convolutional layers, K-FAC needs to make
additional approximations, so we can expect WoodFisher results to further improve over K-FAC.

ResNet-50, IMAGENET. We performed a similar experiment for the larger RESNET-50 model on
ImageNet (25.5M parameters), which for efficiency we break into layer-wise blocks (chunks) of size
1K. We found that this suffices for significant performance gain over layer-wise and global magnitude
pruning (as well as the L-OBS method [33]), as shown in Figure 4a. As a practical trick, we found it
useful to replace individual gradients in the definition of the empirical Fisher with gradients averaged
over a mini-batch of samples. Typically, we use 80 or 240 such averaged gradients over a mini-batch
of size 100.

Additionally, Figure 4a , shows that the accuracy is further improved if we allow recomputation of
the Hessian inverse estimate during pruning (but without retraining), as the local quadratic model

3For the sake of efficiency, when using 50, 000 samples in the case of WoodFisher, we utilize 1000 averaged
gradients over a mini-batch size of 50. But even otherwise, we notice similar gains over K-FAC.
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(a) One-shot pruning (b) Gradual pruning to 98% sparsity

Figure 4: Results for RESNET-50, IMAGENET.

is valid otherwise only in a small neighbourhood or trust-region. The detailed results are present in
Appendix S5.1, where we also show one-shot pruning results of MOBILENETV1 on IMAGENET, as
well as ablation for the effect of chunk-size, dampening λ, # of samples used for Fisher computations.

5.2 Gradual Pruning

Top-1 accuracy (%) Relative Drop Sparsity

Method Dense (D) Pruned (P ) 100× (P−D)
D

(%)

DSR [49] 74.90 71.60 -4.41 80.00
Incremental [19] 75.95 74.25 -2.24 73.50
DPF [24] 75.95 75.13 -1.08 79.90
GMP + LS [18] 76.69 75.58 -1.44 79.90
VD [44, 46] 76.69 75.28 -1.83 80.00
RIGL + ERK [45] 76.80 75.10 -2.21 80.00
SNFS + LS [23] 77.00 74.90 -2.73 80.00
STR [27] 77.01 76.19 -1.06 79.55
Global Magnitude. 77.01 76.60 -0.53 80.00
DNW [50] 77.50 76.20 -1.67 80.00
WoodFisher 77.01 76.73 -0.36 80.00

GMP + LS [18] 76.69 73.91 -3.62 90.00
VD [44, 46] 76.69 73.84 -3.72 90.27
RIGL + ERK [45] 76.80 73.00 -4.94 90.00
SNFS + LS [23] 77.00 72.90 -5.32 90.00
STR [27] 77.01 74.31 -3.51 90.23
Global Magnitude 77.01 75.09 -2.49 90.00
DNW [50] 77.50 74.00 -4.52 90.00
WoodFisher 77.01 75.26 -2.27 90.00

GMP [18] 76.69 70.59 -7.95 95.00
VD [44, 46] 76.69 69.41 -9.49 94.92
VD [44, 46] 76.69 71.81 -6.36 94.94
RIGL + ERK [45] 76.80 70.00 -8.85 95.00
DNW [50] 77.01 68.30 -11.31 95.00
STR [27] 77.01 70.40 -8.58 95.03
Global Magnitude. 77.01 71.65 -6.96 95.00
WoodFisher 77.01 72.16 -6.30 95.00

Table 1: Comparing WoodFisher gradual pruning results
with the state-of-the-art approaches. LS denotes label
smoothing, ERK refers to Erdős-Renyi Kernel.

So far, the two best methods we iden-
tified in one-shot tests are WoodFisher
(joint/global) and global magnitude prun-
ing. We now compare these methods ex-
tensively against several previous methods.
To facilitate comparison, we demonstrate
our results on the pre-trained RESNET-
50 and MOBILENETV1 models of the
STR method [27], which claims state-of-
the-art results. As in [27], all our IMA-
GENET experiments are run for 100 epochs
on 4 NVIDIA V100 GPUs (i.e., ∼ 2.5
days for RESNET-50 and ∼ 1 day for
MOBILENETV1). In terms of the prun-
ing schedule, we follow the polynomial
scheme of [19] (see illustration in Fig-
ure 4b right), and run WoodFisher and
global magnitude in identical settings. See
Appendix S4 for further details.

Table 1 presents our results with compar-
isons against numerous baselines for prun-
ing RESNET-50 at the sparsity levels of
80%, 90%, and 95%. To take into ac-
count that some prior work uses differ-
ent dense baselines, we also report the
relative drop. WoodFisher outperforms
all baselines, across both gradual and dy-
namic pruning approaches, in every spar-
sity regime. Compared to STR [27], Wood-
Fisher improves accuracy at all sparsity lev-
els, with a Top-1 test accuracy gain of ∼ 1% and 1.7% respectively at the 90% and 95% sparsity
levels. The results averaged over multiple runs are similar and can be found in Appendix S5.4.

We also find that global magnitude (GM) is quite effective, surpassing many recent dynamic pruning
methods, which also adjust the sparsity distribution across layers [24, 27, 45]. Comparing GM
and WoodFisher, the latter outperforms at all sparsity levels, with higher gain at higher sparsities,
e.g., > 1% boost in accuracy at 98% sparsity (see Table S4 of the Appendix). WoodFisher also
outperforms Variational Dropout (VD) [46], the top-performing regularization-based method, on all
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Top-1 accuracy (%) Relative Drop Sparsity

Method Dense (D) Pruned (P ) 100× (P−D)
D

(%)

Incremental 75.95 73.36 -3.41 82.60
SNFS 75.95 72.65 -4.34 82.00
DPF 75.95 74.55 -1.84 82.60
WoodFisher 75.98 75.20 -1.03 82.70

Table 2: Comparison with state-of-the-art
DPF [24] in a more commensurate setting by
starting from a similarly trained dense base-
line. The numbers for Incremental & SNFS
are taken from [24].

sparsity targets, with a margin of∼ 1.5% at 80% and 90% sparsity. VD is also to be quite sensitive to
initialization and hyperparameters [44], which can be partly seen from its results in the 95% regime,
where a 0.02% difference in sparsity affects the obtained accuracy by over 2%.

Besides the comparison in Table 1, we further compare against another recent state-of-the-art DPF [24]
in a more commensurate setting by starting from a similarly trained baseline. We follow their protocol
and prune all layers except the last: see Table 2. In this setting as well, WoodFisher significantly
outperforms DPF and the related baselines. The Appendix S5.3 contains additional experiments
against the gradual magnitude pruning (GMP) baseline of [44], and on MOBILENETV1, against
STR and Global Magnitude. We find that WoodFisher provides higher accuracy across all these cases.

To sum up, results show that WoodFisher outperforms state-of-the-art approaches, from each class of
pruning methods, in all the considered sparsity regimes, setting a new state-of-the-art in unstructured
pruning for these common benchmarks. The rationale behind its performance is provided in Figure 4b,
showing how the methods behave during the course of gradual pruning. After almost every pruning
step, WoodFisher provides a better pruning direction, and even with substantial retraining in between
and after, global magnitude fails to catch up in terms of accuracy. This shows the benefit of using the
second order information via WoodFisher to perform superior pruning steps.

FLOPs and Inference Costs. It is interesting to consider the actual speedup which can be obtained
via these methods, as the total theoretical FLOP counts can be lower for methods such as STR. For
this, we use the inference framework of [28], which supports the efficient execution of unstructured
sparse convolutional models on CPUs. At batch size 1 (real-time inference), the dense baseline
executes ResNet50 in 7.1 ms, whereas the STR 87%-pruned model executes in 4.1 ms, with Top-1
74.3% accuracy. By contrast, the WoodFisher uniformly-pruned model at 90% executes in 4.3 ms,
with accuracy 75.23%. For the same models at batch size 64, the times are: Dense = 296 ms, STR
= 146 ms, and WoodFisher = 157 ms. Thus, at a relatively minor increase in inference time, there is
a higher accuracy gain with WoodFisher models. Full results are given in the Appendix S6.

6 Discussion
Extensions. (i) WoodTaylor: Pruning at a general point: Incorporating the first-order gradient
term in the Optimal Brain Damage framework should result in a more faithful estimate of the pruning
direction, as many times in practice, the gradient is not exactly zero. Or it might be that pruning is
being performed during training like in dynamic pruning methods. Hence, we redo the analysis by
accounting for the gradient (see Appendix S9) and we refer to this resulting method as ‘WoodTaylor’.
Note, an advantage of dynamic pruning methods is that the pruning is performed during training itself,
although we have seen in Table 1, better results are obtained when pruning is performed post-training.
Current dynamic pruning methods like [24] prune via global magnitude, and a possible future work
would be to use WoodTaylor instead. Figure S13 presents some early results in this context, where
pruning a partially trained network, yields an accuracy gain of ∼ 5% over global magnitude pruning.

(ii) Unlabeled Data. While empirical Fisher inherently uses the label information when computing
gradients, it is possible to avoid that and instead use a single sample from the model distribution, thus
making it applicable to unlabeled data. (Appendix S7 shows this does not impact the results much).

Future Work. A few of the many interesting directions to apply WoodFisher, include, e.g.,
structured pruning which is easily facilitated by the OBD framework [21], pruning popular models
used in NLP like Transformers, providing efficient IHVP estimates for influence functions, etc.

Conclusion. In sum, our work revisits the theoretical underpinnings of neural network pruning,
and shows that foundational work can be successfully extended to large-scale settings, yielding
state-of-the-art results. We hope that our findings can provide further momentum to the investigation
of second-order properties of neural networks, and be extended to applications beyond compression.
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Broader Impact

Our work provides a general method for estimating second-order information at the scale of neural
networks, and applies it to obtain state-of-the-art results on model compression. Our aim in doing
so is to improve the performance of such machine learning applications. We apply our method to
image classification, but our methods could be extended to any applications of neural networks. Our
work could enable new, highly-accurate compressed models reducing inference times and resources
required. The impact of any such application, such as for instance in surveillance, would need to
be analyzed on a case-by-case basis and goes back to broader questions about the applicability of
machine learning.
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