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A Proofs and Derivations

A.1 Proof of Theorem 1 and Further Analysis of the Potential Bias

Theorem 1. Assuming that ∀θ ∈ Θ, ∃φ ∈ Φ such thatD(q(h|v;φ)||p(h|v;θ)) = 0,∀v ∈ supp(q),
we have∇θJ (θ) = ∇θJBi(θ,φ∗(θ)).

Proof. Suppose θ ∈ Θ, φ0 ∈ Φ satisfies that q(h|v;φ0) = p(h|v;θ) for all v ∈ supp(q), then
G(θ,φ0) = Eq(v,ε)D(q(h|v;φ0)||p(h|v;θ)) = 0. By the definition of φ∗(θ), we have 0 ≤
G(θ,φ∗(θ)) ≤ G(θ,φ0) = 0, and thereby G(θ,φ∗(θ)) = 0. It means that φ∗(θ) also satisfies that
q(h|v;φ∗(θ)) = p(h|v,θ) for all v ∈ supp(q). Finally, we have

JBi(θ,φ∗(θ)) =Eq(v,ε)Eq(h|v;φ)F
(
∇v log

p̃(v,h;θ)

q(h|v;φ)
, ε,v

)
|φ=φ∗(θ)

=Eq(v,ε)Ep(h|v;θ)F
(
∇v log

p̃(v,h;θ)

p(h|v;θ)
, ε,v

)
=Eq(v,ε)Eq(h|v;φ)F (∇v log p̃(v;θ), ε,v)

=Eq(v,ε)F (∇v log p̃(v;θ), ε,v) = J (θ),

and thereby∇θJ (θ) = ∇θJBi(θ,φ∗(θ)).

When the assumptions in Theorem 1 don’t hold, we can still bound the bias between J (θ) and
JBi(θ,φ∗(θ)) by the minimum of G(θ,φ) up to a constant under the following surrogate assump-
tions:

1. There exists a set of conditional densities R = {r(h|v;η) : η ∈ H} parameterized by η
including both {p(h|v;θ)|θ ∈ Θ} and {q(h|v;φ)|φ ∈ Φ}, and the divergence between two
conditional densities in R can be bounded by the distance of their parameterizations from
below, i.e., ∃C1 > 0, ∀η1,η2 ∈ H , C1||η1 − η2|| ≤ Eq(v,ε)D(r(h|v;η1)||r(h|v;η2)).

2. J ′Bi(θ,η) := Eq(v,ε)Er(h|v;η)F
(
∇v log p̃(v,h;θ)

r(h|v;η) , ε,v
)

is Lipschitz continuous w.r.t. η on
H , with C2 as its Lipschitz constant, and C2 is independent of θ.
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Based on assumption 1, there exists a mapping Tp from Θ to H and a mapping Tq from Φ to H , s.t.
p(h|v;θ) = r(h|v;Tp(θ)) and q(h|v;φ) = r(h|v;Tq(φ)). The bias can be bounded as

|JBi(θ,φ∗(θ))− J (θ)| =|J ′Bi(θ, Tq(φ∗(θ)))− J ′Bi(θ, Tp(θ))|
≤C2||Tq(φ∗(θ))− Tp(θ)||

≤C2

C1
Eq(v,ε)D(r(h|v;Tq(φ

∗(θ)))||r(h|v;Tp(θ)))

=
C2

C1
Eq(v,ε)D(q(h|v;φ∗(θ)||p(h|v;θ))

=
C2

C1
G(θ,φ∗(θ)) =

C2

C1
min
φ∈Φ
G(θ,φ).

Thereby, to ensure |JBi(θ,φ∗(θ)) − J (θ)| < δ, it’s enough to ensure min
φ∈Φ
G(θ,φ) < C1

C2
δ. We

notice that the assumption does not necessarily hold, especially in the context of deep learning and
we leave a deeper analysis for the future work.

A.2 Derivation of Divergences used in the Lower Level Problem

We now derive the equivalent forms of divergences used in the lower level optimization. If the KL
divergence is used, we have:

DKL (q(h|v;φ)||p(h|v;θ)) =Eq(h|v;φ) log
q(h|v;φ)

p(h|v;θ)

=Eq(h|v;φ) log
q(h|v;φ)p(v;θ)Z(θ)

p̃(v,h;θ)

=Eq(h|v;φ)

[
log

q(h|v;φ)

p̃(v,h;θ)

]
+ log p(v;θ) + logZ(θ)

≡Eq(h|v;φ) log
q(h|v;φ)

p̃(v,h;θ)
,

where the last equivalence holds because we optimize the divergence only with respect to φ.

If the Fisher divergence is used, we have:

DF (q(h|v;φ)||p(h|v;θ))

=
1

2
Eq(h|v;φ)

[
||∇h log q(h|v;φ)−∇h log p(v,h;θ)||22

]
=

1

2
Eq(h|v;φ)

[
||∇h log q(h|v;φ)−∇h log p̃(v,h;θ)−∇h logZ(θ)||22

]
=

1

2
Eq(h|v;φ)

[
||∇h log q(h|v;φ)−∇h log p̃(v,h;θ)||22

]
.

A.3 Some Mathematical Pre-knowledge for Proof of Theorem 2

Let x be a vector in Cn and ||x|| be the 2-norm of x. Let A ∈ Cn×m be a matrix and
||A|| := sup

x∈Cm\{0}

||Ax||
||x|| be the natural norm of A induced by the 2-norm. Let ||f ||Lip :=

sup
x1 6=x2∈X

||f(x2)−f(x1)||
||x2−x1|| be the Lipschitz constant of a function f mapping from a normed vec-

tor space (or a subset of it) to another normed vector space, and ||f ||∞ := sup
x∈X
||f(x)|| be the norm

superior of a function taking values in a normed vector space.

Lemma 1. Suppose A ∈ Rn×n is a symmetric positive semi-definite matrix, then ||A|| =

sup
x∈Cn,||x||=1

〈Ax,x〉. Furthermore, if A is invertible, then ||A−1|| =
(

inf
x∈Cn,||x||=1

〈Ax,x〉
)−1

.
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Proof. By the property of Hermitian matrix, we have ||A|| = sup
x∈Cn,||x||=1

| 〈Ax,x〉 |. Since A is

positive semi-definite, we have 〈Ax,x〉 ≥ 0 and ||A|| = sup
x∈Cn,||x||=1

〈Ax,x〉.

If A is invertible, then

||A−1|| = sup
x∈Cn,x 6=0

||A−1x||
||x||

= sup
x∈Cn,x 6=0

||x||
||Ax||

=

(
inf

x∈Cn,x 6=0

||Ax||
||x||

)−1

=

(
inf

x∈Cn,||x||=1
||Ax||

)−1

=

(
inf

x∈Cn,||x||=1

(〈
A2x,x

〉) 1
2

)−1

=(λmin(A2))−
1
2 = (λmin(A))

−1
=

(
inf

x∈Cn,||x||=1
〈Ax,x〉

)−1

.

Lemma 2. Suppose A ⊂ Rn×n is a symmetric positive semi-definite matrix and α > 0, s.t.
α||A|| ≤ 1, then ||I − αA|| ≤ 1. Furthermore, if A is invertible, then ||I − αA|| = 1− α||A−1||−1.

Proof. By the property of Hermitian matrix, we have

||I − αA|| = sup
x∈Cn,||x||=1

| 〈(I − αA)x,x〉 | = sup
x∈Cn,||x||=1

|1− 〈αAx,x〉 |.

Since α||A|| = sup
x∈Cn,||x||=1

| 〈αAx,x〉 | ≤ 1, we have

sup
x∈Cn,||x||=1

|1− 〈αAx,x〉 || = sup
x∈Cn,||x||=1

1− 〈αAx,x〉 ≤ 1.

As a result, ||I − αA|| ≤ 1. If A is invertible, by Lemma 1, we have

sup
x∈Cn,||x||=1

1− 〈αAx,x〉 = 1− α inf
x∈Cn,||x||=1

〈Ax,x〉 = 1− α||A−1||−1

A.4 Proof of Theorem 2

For clarity, we explicitly write φ̂n(θ) as φ̂n(θ,φ0) to emphasize the dependence on φ0, and
φ̂n(θ,φ0) is recursively defined as

φ̂n(θ,φ0) = φ̂n−1(θ,φ0)− α∂Ĝ(θ,φ)

∂φ
|φ=φ̂n−1(θ,φ0), (1)

where we slightly abuse the notation for simplicity and φ0 is also denoted as φ̂0(θ,φ0).

Let Ĵ nBi(θ,φ0) := ĴBi(θ, φ̂n(θ,φ0)) be the surrogate loss, we firstly build the relationship between
the surrogate loss and the accurate loss ĴBi(θ, φ̂∗(θ)) by the following lemma.

Lemma 3. ĴBi(θ, φ̂∗(θ)) = Ĵ nBi(θ, φ̂∗(θ)) for all n ≥ 0.

Proof. Since ∂Ĝ(θ,φ)
∂φ |φ=φ̂∗(θ) = 0, we have φ̂1(θ, φ̂∗(θ)) = φ̂0(θ, φ̂∗(θ)) = φ̂∗(θ). Simi-

larly, we have φ̂n(θ, φ̂∗(θ)) = φ̂∗(θ) for all n ≥ 1 by the mathematical induction. As a result,
Ĵ nBi(θ, φ̂∗(θ)) = ĴBi(θ, φ̂n(θ, φ̂∗(θ))) = ĴBi(θ, φ̂∗(θ)).

We can further bound the difference between the gradient of the surrogate loss ∂ĴBi(θ,φ̂
n(θ,φ0))

∂θ and

the gradient of the true loss ∂ĴBi(θ,φ̂
∗(θ))

∂θ as
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||∂ĴBi(θ, φ̂
n(θ,φ0))

∂θ
− ∂ĴBi(θ, φ̂∗(θ))

∂θ
|| = ||∂Ĵ

n
Bi(θ,φ

0)

∂θ
− ∂Ĵ nBi(θ, φ̂∗(θ))

∂θ
||

=||∂Ĵ
n
Bi(θ,φ

0)

∂θ
− ∂Ĵ nBi(θ,φ0)

∂θ
|φ0=φ̂∗(θ) −

∂Ĵ nBi(θ,φ0)

∂φ0
|φ0=φ̂∗(θ)

∂φ̂∗(θ)

∂θ
||

≤||∂Ĵ
n
Bi(θ,φ

0)

∂θ
− ∂Ĵ nBi(θ,φ0)

∂θ
|φ0=φ̂∗(θ)||+ ||

∂Ĵ nBi(θ,φ0)

∂φ0
|φ0=φ̂∗(θ)

∂φ̂∗(θ)

∂θ
|| (2)

The first term in Eqn. (2) has a bound in the form of (A+Bn)κn||φ0− φ̂∗(θ)|| and the second term
in Eqn. (2) has a bound in the form of Cκn, as shown in Theorem 2.
Theorem 2. Suppose the following assumptions hold:

1. Both Θ and Φ are compact and convex,

2. ĴBi(θ,φ) ∈ C2(Ω), Ĝ(θ,φ) ∈ C3(Ω), where Ω is an open set including Θ× Φ (i.e. ĴBi
and Ĝ are second and third order continuously differentiable on Ω respectively),

3. Ĝ(θ,φ) is strongly convex on Φ for all θ ∈ Θ,

4. ∀n ≥ 0,∀θ ∈ Θ,∀φ0 ∈ Φ, φ̂n(θ,φ0) ∈ Φ and φ̂∗(θ) ∈ Φ,

then when α is small enough, there exists A,B,C > 0 and κ ∈ (0, 1) independent of θ and φ0, s.t.,

||∂ĴBi(θ, φ̂
n(θ,φ0))

∂θ
− ∂ĴBi(θ, φ̂∗(θ))

∂θ
|| ≤ (A+Bn)κn||φ0 − φ̂∗(θ)||+ Cκn,

for all θ ∈ Θ, φ0 ∈ Φ and n ≥ 0.

Proof. By assumptions 1 and 2, when θ ∈ Θ and φ ∈ Φ, the norms of k order (0 ≤ k ≤ 2)
partial derivatives of ĴBi(θ,φ) can be bounded by a positive constant A1 and the norms of k order
(0 ≤ k ≤ 3) partial derivatives of Ĝ(θ,φ) can be bounded by a positive constant A2. By assumption
2 and 3, ∂

2Ĝ(θ,φ)
∂φ2 is positive definite and thereby invertible for all θ ∈ Θ and φ ∈ Φ. By assumptions

1, 2, 3 and the smoothness of matrix inverse operator, we have A3 := sup
θ∈Θ

sup
φ∈Φ
||(∂

2Ĝ(θ,φ)
∂φ2 )−1|| <∞.

We choose the learning rate α s.t. α ≤ 1
A2

. By Lemma 2 we have

||I − α∂
2Ĝ(θ,φ)

∂φ2
|| = 1− α||(∂

2Ĝ(θ,φ)

∂φ2
)−1||−1 ≤ 1− αA−1

3 , ∀θ ∈ Θ,∀φ ∈ Φ.

Taking partial derivative of Eqn. (1) w.r.t. φ0, we have

∂φ̂n(θ,φ0)

∂φ0
=
∂φ̂n−1(θ,φ0)

∂φ0
− α∂

2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0)

∂φ̂n−1(θ,φ0)

∂φ0

=(I − α∂
2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0))

∂φ̂n−1(θ,φ0)

∂φ0
,

||∂φ̂
n(θ,φ0)

∂φ0
|| ≤||I − α∂

2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0))|| ||

∂φ̂n−1(θ,φ0)

∂φ0
||

≤(1− αA−1
3 )||∂φ̂

n−1(θ,φ0)

∂φ0
||, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 1.

Thereby, we have

||∂φ̂
n(θ,φ0)

∂φ0
|| ≤ (1− αA−1

3 )n||∂φ̂
0(θ,φ0)

∂φ0
|| = (1− αA−1

3 )n, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.
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Taking partial derivative of Eqn. (1) w.r.t. θ, we have

∂φ̂n(θ,φ0)

∂θ
=
∂φ̂n−1(θ,φ0)

∂θ
− α∂

2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂n−1(θ,φ0)

− α∂
2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0)

∂φ̂n−1(θ,φ0)

∂θ

=(I − α∂
2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0))

∂φ̂n−1(θ,φ0)

∂θ

− α∂
2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂n−1(θ,φ0), (3)

||∂φ̂
n(θ,φ0)

∂θ
|| ≤||I − α∂

2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0)|| ||

∂φ̂n−1(θ,φ0)

∂θ
||

+ α||∂
2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂n−1(θ,φ0)||

≤(1− αA−1
3 )||∂φ̂

n−1(θ,φ0)

∂θ
||+ αA2, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 1.

Thereby, we have

||∂φ̂
n(θ,φ0)

∂θ
|| ≤(1− αA−1

3 )n(||∂φ
0(θ,φ)

∂θ
|| −A3A2) +A3A2

=(1− (1− αA−1
3 )n)A3A2 ≤ A3A2, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.

Taking partial derivative of Eqn. (3) w.r.t. φ0, we have

∂2φ̂n(θ,φ0)

∂φ0∂θ
=(−α∂

3Ĝ(θ,φ)

∂φ3
|φ=φ̂n−1(θ,φ0)

∂φ̂n−1(θ,φ0)

∂φ0
)
∂φ̂n−1(θ,φ0)

∂θ

+ (I − α∂
2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0))

∂2φ̂n−1(θ,φ0)

∂φ0∂θ

− α∂
3Ĝ(θ,φ)

∂φ∂θ∂φ
|φ=φ̂n−1(θ,φ0)

∂φ̂n−1(θ,φ0)

∂φ0
,

||∂
2φ̂n(θ,φ0)

∂φ0∂θ
|| ≤α||∂

3Ĝ(θ,φ)

∂φ3
|φ=φ̂n−1(θ,φ0)|| ||

∂φ̂n−1(θ,φ0)

∂φ0
|| ||∂φ̂

n−1(θ,φ0)

∂θ
||

+ ||I − α∂
2Ĝ(θ,φ)

∂φ2
|φ=φ̂n−1(θ,φ0)|| ||

∂2φ̂n−1(θ,φ0)

∂φ0∂θ
||

+ α||∂
3Ĝ(θ,φ)

∂φ∂θ∂φ
|φ=φ̂n−1(θ,φ0)|| ||

∂φ̂n−1(θ,φ0)

∂φ0
||

≤αA2 (1− αA−1
3 )n−1A2A3 + (1− αA−1

3 )||∂
2φ̂n−1(θ,φ0)

∂φ0∂θ
||

+ αA2(1− αA−1
3 )n−1, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 1.

Thereby, we have

||∂
2φ̂n(θ,φ0)

∂φ0∂θ
|| ≤n(1− αA−1

3 )n−1αA2(A2A3 + 1) + ||∂
2φ0(θ,φ)

∂φ0∂θ
||(1− αA−1

3 )

=n(1− αA−1
3 )n−1αA2(A2A3 + 1), ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.
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The derivative of Ĵ nBi(θ,φ0) w.r.t. θ is

∂Ĵ nBi(θ,φ0)

∂θ
=
∂ĴBi(θ,φ)

∂θ
|φ=φ̂n(θ,φ0) +

∂ĴBi(θ,φ)

∂φ
|φ=φ̂n(θ,φ0)

∂φ̂n(θ,φ0)

∂θ
.

Taking Lipschitz constant to both sides w.r.t. φ0 on Φ and by the convexity of Φ, we have

||∂Ĵ
n
Bi(θ, ·)
∂θ

||Lip ≤||
∂ĴBi(θ, ·)

∂θ
||Lip||φ̂n(θ, ·)||Lip + sup

φ∈Φ
||∂ĴBi(θ,φ)

∂φ
|| ||∂φ

n(θ, ·)
∂θ

||Lip

+ ||∂ĴBi(θ, ·)
∂φ

||Lip ||φ̂n(θ, ·)||Lip sup
φ0∈Φ

||∂φ̂
n(θ,φ0)

∂θ
||

≤ sup
φ∈Φ
||∂

2ĴBi(θ,φ)

∂φ∂θ
|| sup
φ0∈Φ

||∂φ̂
n(θ,φ0)

∂φ0
||

+ sup
φ∈Φ
||∂ĴBi(θ,φ)

∂φ
|| sup
φ0∈Φ

||∂
2φ̂n(θ,φ0)

∂φ0∂θ
||

+ sup
φ∈Φ
||∂

2ĴBi(θ,φ)

∂φ2
|| sup
φ0∈Φ

||∂φ̂
n(θ,φ0)

∂φ0
|| sup
φ0∈Φ

||∂φ̂
n(θ,φ0)

∂θ
||

≤A1(1− αA−1
3 )n +A1n(1− αA−1

3 )n−1αA2(A2A3 + 1)

+A1(1− αA−1
3 )nA3A2, ∀θ ∈ Θ,∀n ≥ 0. (4)

As a result, we can bound the first term of Eqn. (2) as

||∂Ĵ
n
Bi(θ,φ

0)

∂θ
− ∂Ĵ nBi(θ,φ0)

∂θ
|φ0=φ̂∗(θ)||

≤A1(1 +A2A3)(1 +
αA2

1− αA−1
3

n)(1− αA−1
3 )n||φ0 − φ̂∗(θ)||, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.

(5)

For the second term of Eqn. (2), the partial derivative ∂Ĵn
Bi(θ,φ

0)
∂φ0 |φ0=φ̂∗(θ) can be expanded as

∂Ĵ nBi(θ,φ0)

∂φ0
|φ0=φ̂∗(θ) =

∂ĴBi(θ,φ)

∂φ
|φ=φ̂∗(θ)

∂φ̂n(θ,φ0)

∂φ0
|φ0=φ∗(θ),

and thereby

||∂Ĵ
n
Bi(θ,φ

0)

∂φ0
|φ0=φ̂∗(θ)|| ≤||

∂ĴBi(θ,φ)

∂φ
|φ=φ̂∗(θ)|| ||

∂φ̂n(θ,φ0)

∂φ0
|φ0=φ∗(θ)||

≤A1(1− αA−1
3 )n, ∀θ ∈ Θ,∀n ≥ 0.

For calculating ∂φ̂∗(θ)
∂θ , we take partial derivative to ∂Ĝ(θ,φ)

∂φ |φ=φ̂∗(θ) = 0 w.r.t. θ and get

∂2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂∗(θ) +

∂2Ĝ(θ,φ)

∂φ2
|φ=φ̂∗(θ)

∂φ̂∗(θ)

∂θ
= 0,

and thereby
∂φ̂∗(θ)

∂θ
= −(

∂2Ĝ(θ,φ)

∂φ2
|φ=φ̂∗(θ))

−1 ∂
2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂∗(θ),

||∂φ̂
∗(θ)

∂θ
|| ≤ ||(∂

2Ĝ(θ,φ)

∂φ2
|φ=φ̂∗(θ))

−1|| ||∂
2Ĝ(θ,φ)

∂θ∂φ
|φ=φ̂∗(θ)|| ≤ A3A2, ∀θ ∈ Θ.
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Thus, the second term of Eqn. (2) can be bounded as

||∂Ĵ
n
Bi(θ,φ

0)

∂φ0
|φ0=φ̂∗(θ)

∂φ̂∗(θ)

∂θ
|| ≤||∂Ĵ

n
Bi(θ,φ

0)

∂φ0
|φ0=φ̂∗(θ)|| ||

∂φ̂∗(θ)

∂θ
||

≤A1(1− αA−1
3 )nA3A2, ∀θ ∈ Θ,∀n ≥ 0. (6)

By Eqn. (2,5,6), we get

||∂ĴBi(θ, φ̂
n(θ,φ0))

∂θ
− ∂ĴBi(θ, φ̂∗(θ))

∂θ
||

≤A1(1 +A2A3)(1 +
αA2

1− αA−1
3

n)(1− αA−1
3 )n||φ0 − φ̂∗(θ)||

+A1(1− αA−1
3 )nA3A2, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.

Let A := A1(1 + A2A3), B := A1(1 + A2A3) αA2

1−αA−1
3

, C := A1A2A3, κ := 1 − αA−1
3 , then

A,B,C > 0 and κ ∈ (0, 1) are constants independent of θ and φ0 and

||∂ĴBi(θ, φ̂
n(θ,φ0))

∂θ
− ∂ĴBi(θ, φ̂∗(θ))

∂θ
||

≤(A+Bn)κn||φ0 − φ̂∗(θ)||+ Cκn, ∀θ ∈ Θ,∀φ0 ∈ Φ,∀n ≥ 0.

A.5 Proof of Corollary 3

Corollary 3. (BiSM finds δ-stationary points) For any accuracy level δ > 0, assuming Theorem 2
holds, using a sufficiently large N , i.e. asymptotically O(log 1

δ ), and a proper learning rate scheme
β [1], Algorithm 1 in the main text converges to a δ-stationary point of BiSM, namely,

||∂ĴBi(θ, φ̂
∗(θ))

∂θ
|| ≤ δ,

and further a δ-stationary point of SM if Theorem 1 also holds.

Proof. For any δ > 0 and θ ∈ Θ, assuming that

||∂ĴBi(θ, φ̂
∗(θ))

∂θ
|| > δ,

we have

2〈∂ĴBi(θ, φ̂
∗(θ))

∂θ
,
∂ĴBi(θ, φ̂N (θ))

∂θ
〉

=||∂ĴBi(θ, φ̂
∗(θ))

∂θ
||2 + ||∂ĴBi(θ, φ̂

N (θ))

∂θ
||2 − ||∂ĴBi(θ, φ̂

∗(θ))

∂θ
− ∂ĴBi(θ, φ̂N (θ))

∂θ
||2

≥||∂ĴBi(θ, φ̂
∗(θ))

∂θ
||2 − ||∂ĴBi(θ, φ̂

∗(θ))

∂θ
− ∂ĴBi(θ, φ̂N (θ))

∂θ
||2

>δ2 − ||∂ĴBi(θ, φ̂
∗(θ))

∂θ
− ∂ĴBi(θ, φ̂N (θ))

∂θ
||2.

If Theorem 2 holds, using a sufficiently large N , i.e. asymptotically O(log 1
δ ), we have

||∂ĴBi(θ, φ̂
∗(θ))

∂θ
− ∂ĴBi(θ, φ̂N (θ))

∂θ
||2 ≤ δ2,

which implies that

〈∂ĴBi(θ, φ̂
∗(θ))

∂θ
,
∂ĴBi(θ, φ̂N (θ))

∂θ
〉 > 0.
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Therefore, using a proper learning rate scheme β such that
∑∞
k=1 βk = ∞,

∑∞
k=1 β

2
k < ∞ [1],

Algorithm 1, i.e. stochastic gradient descent based on ∂ĴBi(θ,φ̂
N (θ))

∂θ , will decrease ||∂ĴBi(θ,φ̂
∗(θ))

∂θ ||
in expectation until it converges to a δ-stationary point of BiSM such that ||∂ĴBi(θ,φ̂

∗(θ))
∂θ || ≤ δ,,

according to Corollary 4.12 in Bottou et al. [1], whose regularity conditions are covered by the
assumptions in Theorem 2. Further, if a δ-stationary point of BiSM is also a δ-stationary point of SM
if Theorem 1 also holds.

B Experimental Settings

B.1 GRBM

The batch size is 100 on both the checkerboard dataset and the Frey face dataset2. We train 100,000
iterations on the checkerboard dataset and 20,000 iterations on the Frey face dataset. The noise
level [14] of DSM and BiDSM is 0.05 on the checkerboard dataset and 0.3 for on the Frey face dataset.
The type of random directions [12] of SSM and BiSSM is the multivariate Rademacher distribution
on both datasets. We choose q(h|v;φ) as a Bernoulli distribution for all BiSM methods and use the
Gumbel-Softmax trick [7] for reparameterization of q(h|v;φ) with 0.1 as the temperature.

On both datasets, we tune the learning rate in {10−4, 3× 10−4, 10−3, 3× 10−3, 10−2} according to
the visual quality of density plots and samples respectively. On the checkerboard dataset, all methods
achieve similar results with the learning rates 10−3, 3× 10−3 and 10−2 and we choose 10−3 as the
default value. On the Frey face dataset, we find that both DSM and BiDSM can work on the learning
rate 10−4 and 3× 10−4 and we choose 2× 10−4 as the final learning rate. We also split a validation
dataset from the Frey face dataset to choose the best model according to their corresponding loss on
the validation dataset. We run 10 evaluations of the validation dataset during training.

On the Frey face dataset, we tune the noise level in {0.01, 0.03, 0.1, 0.3, 1} for DSM and BiDSM
and both methods only work on the noise level 0.3, so we choose 0.3 as the final noise level.

We run 1,000 steps Gibbs sampling to sample from GRBM on both datasets and all methods.

B.2 Deep EBLVM

The batch size is 100 on both the MNIST, CIFAR10 and CelebA datasets. We scale the CelebA
datasets to 32×32 and 64×64 and explicitly denote them as CelebA32 or CelebA64 when necessary.
Following [9], we train 100,000 iterations on the MNIST dataset and 300,000 iterations on the
CIFAR10 and the CelebA datasets; the noise level is geometrically distributed in the range [0.1, 3.0]
on the MNIST dataset and uniformly distributed in the range [0.05, 1.2] on the CIFAR10 and the
CelebA dataset; σ0 (see [9]) is 0.1 on both datasets. We choose q(h|v;φ) as a Gaussian distribution
parameterized by a 3-layer convolutional neural network for BiMDSM.

The energy function is E(v,h;θ) = g3(g2(g1(v;θ1),h);θ2) for the deep EBLVM trained by
BiMDSM and is E(v;θ) = g3(g1(v;θ1);θ2) for the fully visible deep EBM trained by the baseline
MDSM. g1(·) is a 12-layer ResNet for MNIST, a 18-layer ResNet for CIFAR10 and CelebA32
following [9], or a 24-layer ResNet for CelebA64. For the EBLVM, an extra fully connected layer is
introduced in g1(·) to match the dimension of h. g2(·, ·) is an additive coupling layer [3] to make the
features output by g1(·) and the latent variables strongly coupled. g3(·) consists of a fully connected
layer with an ELU activation function and use the square of 2-norm to output a scalar.

To sample from the deep EBLVM, we firstly resample data from the training dataset and inference
their approximate posterior mean. We then sample from p(v|h) given h equal to the approximate
posterior mean. Although it introduces bias due to the difference between p(h|v) and q(h|v), we
find this sampling procedure can increase sample quality and diversity compared to directly sampling
from p(v,h). Besides, this sampling procedure is not to reconstruct the training data since p(v|h) is
multimodal, as shown in Fig. 5. To sample from deep EBM, we directly sample from p(v). We use
the annealed Langevin dynamics [9] as our sampling technique. Following [9], we choose [1, 100]
as the range of temperature and 0.02 as the step length for annealed Langevin dynamics on both
EBLVM and EBM.

2http://www.cs.nyu.edu/~roweis/data.html
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For MNIST, MDSM spends about 4 hours training a deep EBM and BiMDSM spends about 8 hours
training a deep EBLVM. For CIFAR10, MDSM spends about 32 hours training a deep EBM and
BiMDSM spends about 48 hours training a deep EBLVM. For CelebA32, BiMDSM spends about
48 hours training a deep EBLVM. The above experiments on deep EBLVMs and deep EBMs are
conducted on 1 GeForce RTX 2080 Ti GPU. For CelebA64, BiMDSM spends about a week training
a deep EBLVM on 4 GeForce RTX 1080 Ti GPUs.

C Additional Results

C.1 GRBM

C.1.1 Sensitivity analysis on N

(a) DSM (b) BiDSM (N=0) (c) BiDSM (N=1) (d) BiDSM (N=5) (e) BiDSM (N=10)

Figure 1: Samples from GRBMs trained by DSM and BiDSM on different N (0, 1, 5 and 10)
according to the best validation performance on the Frey face dataset.

Fig. 1 shows samples from GRBMs trained by DSM and BiDSM on different N . The sample quality
of BiDSM increases as N increases, and is comparable to DSM when N=10. The result is consistent
with the test Fisher divergence quantitative results in Tab. 1 in the full paper.

C.1.2 Sensitivity analysis on K

(a) DSM (b) BiDSM (K=0) (c) BiDSM (K=1) (d) BiDSM (K=5) (e) BiDSM (K=10)

DSM BiDSM (K=0) BiDSM (K=1) BiDSM (K=5) BiDSM (K=10)

-5885.09 -3775.31 -5684.97 -5780.18 -5795.52

(f) Test Fisher divergence ↓ (subtracted by the same unknown constant only relevant to the data)

Figure 2: Samples from GRBMs trained by DSM and BiDSM on different K (0, 1, 5 and 10)
according to the best validation performance on the Frey face dataset.

Fig. 2 shows samples and test Fisher divergence from GRBMs trained by DSM and BiDSM on
different K. The sample quality of BiDSM increases as K increases and the test Fisher divergence
decreases as K increases. When K = 0, the variational posterior q(h|v;φ) doesn’t change during
training, leading to a much worse result than others.
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C.1.3 Sensitivity analysis on dimensions of h

(a) DSM (50) (b) DSM (100) (c) DSM (200) (d) DSM (400) (e) DSM (500)

(f) BiDSM (50) (g) BiDSM (100) (h) BiDSM (200) (i) BiDSM (400) (j) BiDSM (500)

50 100 200 400 500

DSM -5703.89 -5728.65 -5798.64 -5885.09 -5895.96
BiDSM -5609.25 -5670.93 -5736.73 -5800.17 -5814.74

(k) Test Fisher divergence ↓ (subtracted by the same unknown constant only relevant to the data)

Figure 3: Samples (a-j) and test Fisher divergence (k) of GRBMs trained by DSM and BiDSM on
different dimensions of h (50, 100, 200, 400 and 500) according to the best validation performance
on the Frey face dataset. N is 10 for BiDSM.

Fig. 3 shows samples and test Fisher divergence from GRBM trained by DSM and BiDSM on different
dimensions of h. Both the sample quality and test Fisher divergence of BiDSM are comparable to
DSM on different dimensions of h.

C.1.4 Time Complexity Comparison

Table 1: Time complexity comparison in GRBMs on the Frey face dataset. The time is the averaged
training time of 100 iterations. All experiments are conducted on one GeForce GTX 1080 Ti GPU.

(a) Comparison on N

Methods Time (s)

BiDSM (N=0, K=5) 4.35
BiDSM (N=1, K=5) 5.07
BiDSM (N=5, K=5) 8.61
BiDSM (N=10, K=5) 13.78

(b) Comparison on K

Methods Time (s)

BiDSM (K=1, N=5) 7.30
BiDSM (K=2, N=5) 7.75
BiDSM (K=5, N=5) 8.61

BiDSM (K=10, N=5) 10.82

(c) Comparison between different methods

Methods CD-5 SSM DSM VNCE BiDSM (N=0,K=5) BiDSM(N=K=5)

Time (s) 1.59 1.51 1.33 4.36 4.35 8.61

According to Algorithm 1, the time complexity and space complexity in a training iteration is
O(K + N) and O(N) respectively. In Tab. 1 (a-b), we show the time complexity comparison of
BiDSM on different N (0, 1, 5 and 10) and K (0, 1, 5 and 10). The training time is approximately
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linearly correlated to both N and K. In Tab. 1 (c), we show time complexity comparison between
different methods. VNCE and our BiDSM are two methods of learning nonstructural EBLVMs,
which require extra time to learn in a black-box manner compared to CD-5, SSM and DSM. While
VNCE and BiDSM (N=0,K=5) have the similar time complexity, to the best of our knowledge
VNCE hasn’t been shown feasible to scale up to natural images, including the Frey face dataset (it
doesn’t hurt the time complexity comparison on this dataset). Besides, as stated in Appendix B.2,
the training time of 100,000 iterations is 8h for BiMDSM in a deep EBLVM and 4h for MDSM in a
deep EBM on MNIST; the training time of 300,000 iterations is 48h for BiMDSM in a deep EBLVM
and 32h for MDSM in a deep EBM on CIFAR10. Thus, BiSM can learn general EBLVMs without a
prohibitive cost.

C.2 Deep EBLVM

C.2.1 Sensitivity analysis on dimensions of h

(a) BiMDSM (20) (b) BiMDSM (50) (c) BiMDSM (100)

(d) BiMDSM (20) (e) BiMDSM (50) (f) BiMDSM (100)

(g) CelebA32 (20) (h) CelebA32 (50) (i) CelebA32 (100)

Figure 4: Samples from EBLVMs trained by BiMDSM on the MNIST, CIFAR10 and CelebA32
datasets with different dimensions of h (20, 50 and 100).

Fig. 4 shows samples from EBLVMs trained by BiMDSM on the MNIST, CIFAR10 and CelebA32
datasets with different dimensions of h. The EBLVMs can produce meaningful samples in all
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settings. Notice that across different dimensions of h on one dataset, samples at the same position
are sometimes similar because we initialize the same random seeds for different dimensions of h.

C.2.2 Conditionally Sampling

(a) BiMDSM (20) (b) BiMDSM (50) (c) BiMDSM (100)

(d) BiMDSM (20) (e) BiMDSM (50) (f) BiMDSM (100)

Figure 5: Samples from conditional distribution p(v|h) of EBLVMs trained by BiMDSM on the
MNIST and CIFAR10 datasets with different dimensions of h (20, 50 and 100).

Fig. 5 shows samples from conditional distribution p(v|h) of EBLVMs trained by BiMDSM on the
MNIST and CIFAR10 datasets with different dimensions of h. Each subfigure is split to four parts,
and samples in the same part correspond to the same h, which is inferred from a training data via
the approximate posterior mean. On each dataset, we use the same four training data in all settings
to infer h. The samples from p(v|h) are highly diverse, suggesting that p(v|h) of an EBLVM
is multimodal. Intrinsically, this is because the deep EBLVMs used here defines the conditional
distribution p(v|h) in a highly nonstructural way, in contrast to the hierarchical manner used in
previous methods [8, 5, 6, 10]. Notice that it doesn’t contradict the inference results in Sec. C.2.3,
since p(v|h) ∝ p(v)p(h|v) and p(v|h) can be dominated by p(v).

C.2.3 Inference Results

(a) BiMDSM (20) (b) BiMDSM (50) (c) BiMDSM (100)

Figure 6: t-SNE [13] embedding of the approximate posterior mean for the test MNIST data on
different dimensions of h.
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Table 2: Test classification accuracy (%) ↑ of the approximate posterior mean of EBLVMs trained by
BiMDSM. We show results on the MNIST and CIFAR10 datasets with different dimensions of h (20,
50 and 100). We use default linear SVM [4] implemented by sklearn as the classifier.

BiMDSM (20) BiMDSM (50) BiMDSM (100) Linear SVM on raw data

MNIST 93.85 97.39 97.75 91.58
CIFAR10 34.83 39.58 46.46 28.19

Fig. 6 shows the t-SNE [13] embedding of the approximate posterior mean for the test MNIST data on
different dimensions of h. For MNIST, the embedding can be well separated on different dimensions
of h. For CIFAR10, the intra-class distance can sometime be larger than the inner-class distance, and
thereby the embedding can hardly be separated according to the class [2].

We train a linear SVM classifier3 using the posterior mean learned by BiMDSM as features. Tab. 2
shows the test classification accuracy. On both datasets, the accuracy increases as the dimension of
h increases. The results of BiMDSM are better than a linear SVM classifier trained on raw data,
suggesting that the features capture the underlying semantics of the images. We mention that previous
EBLVMs [6, 10, 11] apply a supervised fine-tuning procedure to obtain better classification results.
In contrast, we focus on a purely unsupervised learning setting here because our main goal is not to
achieve the state-of-the-art classification results but to validate that the deep EBLVMs learned by
BiSM can extract semantic features from natural images.

C.2.4 Results on CelebA64

Figure 7: Samples of 64×64 resolution from an EBLVM trained by BiMDSM on CelebA64. The
dimension of h is 20.

Fig. 7 shows promising results on scaling to images of higher resolutions. We show samples of
64×64 resolution from an EBLVM trained by BiMDSM on CelebA64, which are of high diversity.
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