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1 Details of Grounding Networks

In this section, we introduce the video grounding network VGN and image grounding network IGN
in detail, where we mainly adopt some widely-used and mature components.

1.1 Video Grounding Network

Encoder Module. We first extract the visual features {vi}Fi=1 of the given video using a pretrained
feature extractor (e.g. 3D-ConvNet [11]). We then apply a Bi-GRU network [3] to learn contextual
features {fi}Fi=1. Next, we define T moment proposals. Each proposal is defined by the boundaries
(s,e) and the proposal feature is given by ht = MaxPooling({fi}ei=s). For language queries, we first
extract the embedding for each word token by a pre-trained Glove embedding [8] and employ another
Bi-GRU network to learn word features {sn}Nn=1.

Interaction Module. Given the proposal features {ht}Tt=1 and word features {sn}Nn=1, we apply
a widely-used cross-modal interaction [18, 2] to incorporate language clues into proposal features.
Specifically, we first conduct a proposal-to-word attention to aggregate word features for each
proposal by

γtn = w>mtanh(Wm
1 ht +Wm

2 sn + bm),

γ̃tn =
exp(γtn)∑N
n=1 exp(γtn)

, ct =

N∑
n=1

γ̃tnsn,
(1)

where Wm
1 , Wm

2 are projection matrices, bm is the bias and w>m is the row vector. The ct is the
aggregated language feature relevant to the t-th proposal. Next, we employ the gate-based fusion [18]
between each pair (ht, ct) by

gvt = σ(Wvht + bv), gst = σ(Wsct + bs),

ct = ct � gvt , ht = ht � gst ,
(2)

where gvi is a visual gate and gti is a textual gate. σ is the sigmoid function and � means the
element-wise multiplication. After it, we obtain the multi-modal features {lt}Tt=1 by lt = [ht; ct].
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Relation Module. We first define an undirected static graph G on proposals. Specifically, if the
temporal IoU of two proposals is larger than 0.3, we connect them with an undirected edge. We then
apply the two-layer GAT [12] to capture proposal-proposal relationships by

{pt}Tt=1 = GAT({lt}Tt=1,G), (3)

where {pt}Tt=1 is the final proposal features. And we next apply a linear layer to estimate the score
for each proposal by

kt = σ(Wkpt + bk), (4)

where σ is the sigmoid function and we finally select a top-R aggregation function Agg(·) to compute
the alignment score by Agg({kt}Tt=1) =

1
R

∑
t∈Stop kt, where Stop is the set of R highest scores.

Implementation Details. We set the dimension of hidden states of each direction in the Bi-GRU
network to 128. We set the dimension of almost parameter matrices and bias to 256, including
the Wm

1 , Wm
2 , bm in the proposal-to-word attention, Wv, Ws, bv, bs in the gate-based fusion,

projection matrices in the GAT layers and Wk, bk in the last linear layer. In the aggregation function
Agg(·), we set the number R to 32. If we need select multiple moments during inference, we apply
the non-maximum suppression (NMS) with a threshold 0.55.

1.2 Image Grounding Network

Encoder Module. We first use the pre-trained Faster R-CNN [9] to extract visual features ht and
spatial features hst = [xst , y

s
t , w

s
t , h

s
t ] of each region proposal, where (xst , y

s
t ) are the normalized

center coordinates of the proposal and (wst , h
s
t ) are the normalized width and height. And we apply a

Bi-GRU to learn the word features {sn}Nn=1 based on the word embeddings.

Interaction Module. Similar to video grounding, given the proposal features {ht}Tt=1 and word
features {sn}Nn=1, we first conduct a proposal-to-word attention to aggregate word features by

δtn = w>a tanh(W
a
1ht +Wa

2sn + ba),

δ̃tn =
exp(δtn)∑N
n=1 exp(δtn)

, ct =

N∑
n=1

δ̃tnsn,
(5)

where ct is the aggregated language feature relevant to the t-th region proposal. Next, we simply fuse
them by lt = Wl[ht; ct] + bl.

Relation Module. We first define a directed spatial graph with multi-type edges as in [15, 14, 13].
Concretely, given two region proposals ri and rj with the normalized location features [xsi , y

s
i , w

s
i , h

s
i ]

and [xsj , y
s
j , w

s
j , h

s
j ]. We can compute the IoUij of two proposals, the relative distance dij between

their centers, the relative angle θij ∈ [0, 360) (i.e. the angle of the vector from the center of proposal
ri to that of proposal rj), and the ratio φij between the relative distance dij and the diagonal length
of the image. We then define the type tpij of the edge between proposals ri and rj as following
rules: (1) if ri completely contains rj , tpij = 1, which means "inside"; (2) if ri is inside rj , tpij = 2,
which means "cover"; (3) if above two cases are false and IoUij > 0.5, tpij = 3, which means
"overlap"; (4) otherwise, when the ratio φij < 0.5, tpij depends on the relative angle θij , where

tpij =
⌈
θij
45

⌉
+ 3 ∈ [4, 11]; and (5) if φij > 0.5 and IoUij < 0.5, there is no edge between two

proposal and we set tpij to 0.

Next, we apply the two-layer GCN with edge-wise gates [5, 15, 13] to model the proposal relations.
The first layer of GCN aggregate the context feature along the edges for each proposal, given by
←−x 1
i =

∑
eij>0

gij(
←−
Wr1lj + br1tyij ),

−→x 1
i =

∑
eji>0

gij(
−→
Wr1lj + br1tyij ), x

1
i = W

r1
lj + b

r1
, (6)

where tyij selects the bias vector for each type of edges,
←−
Wr1 and

−→
Wr1 are projection matrices for

in-edges and out-edges. The←−x 1
i and −→x 1

i are the aggregated features from in-edges and out-edges,
and x1

i is the updated feature for itself. The gij is a scale factor from a edge-wise gate, given by

gij = σ(W̃r1lj + b̃r1tyij ), (7)
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Query:	The	person	immediately	opened	a	window.

GT

SCN

8.00s 15.20s

8.00s 15.78s

6.39 13.40

7.23s 16.33s

VGN

VGN+CCL

(a) Charades-STA

Query:	The	man	raises	the	woman	and	they	turn	around	and	continue	dancing.

GT

SCN

167.33s 209.17s

153.67s 209.17s
84.23s 191.34s

95.12s 189.51s

VGN

VGN+CCL

(b) ActivityCaption

Figure 1: Typical examples of video grounding results from the Ground Truth, SCN, VGN and
VGN+CCL models, where we show one example for each dataset.

where σ is the sigmoid function and tyij select the bias vector for each type of edges. We then
aggregate these features and obtain the output of the first layer of GCN by

x1
i = ReLU(←−x 1

i +
−→x 1
i + x1

i ). (8)

Likewise, the second layer of GCN operates on features {x1
t}Tt=1 and we denote the output by

{xt}Tt=1, where we omit the superscript for convenience. Next, we fuse proposal features with the
spatial features by pt = [xt;W

phst ], where Wp projects the 4-d hsi to 128-d. Similar to video
grounding, we finally apply a linear layer to estimate the score for each proposal based on pt and use
the same top-R aggregation function to calculate the alignment score.

Implementation Details. Likewise, we set the dimension of hidden states of each direction in the
Bi-GRU network to 128. And the dimension of almost parameter matrices and bias is set to 256,
including the Wa

1 , Wa
2 , ba in the proposal-to-word attention, Wl, bl in the fusion layer, matrices

and biases in the GCN layer and Wp in spatial feature projection. In the aggregation function Agg(·),
we set the number R to 12.

2 Dataset Details

In this section, we introduce the details of five large-scale vision-language grounding datasets.

Charades-STA [4]: The Charades-STA dataset is constructed on the Charades dataset [10], where
Gao et al. [4] generate the natural language descriptions for video moments by a semi-automatic
method. This dataset includes 9,848 videos about indoor human activities and the average duration of
these videos is 29.8s. There are 12,408 query-moment pairs for training and 3,720 for testing.

ActivityCaption [1]: This dataset includes 19,209 videos about the complex human activities in
daily life and the average duration of these videos is about 2 minutes. Since the testing set is not
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Ground Truth

Query: Left	ambulance.

IGNARN IGN+CCL

(a) RefCOCO

Ground Truth

Query: Elephant	behind	the	middle	one's	butt.

IGNARN IGN+CCL

(b) RefCOCO+

Ground Truth

Query: Snowboarder	in	dark	green	jacket	holding	a	snowboard.

IGNARN IGN+CCL

(c) RefCOCOg

Figure 2: Typical examples of image grounding results from the Ground Truth, ARN, IGN and
IGN+CCL models, where we show one example for each dataset.

public yet, we follow previous works [18, 17] and regard the val_1 set as the validation set and
val_2 set as the testing set. There are 37,417, 17,505 and 17,031 sentence-moment pairs for training,
validation and testing, respectively. This is the largest video grounding dataset currently.

RefCOCO [16]: The RefCOCO dataset includes 142,209 queries for 50,000 objects in 19,994
images from MSCOCO [6]. There are 120,624, 10,834, 5,657 and 5,095 query-object pairs in the
training, validation, Test A and Test B set. Each image in RefCOCO contains at least 2 objects of the
same type.

RefCOCO+ [16]: The RefCOCO+ dataset contains 141,564 queries for 49,856 objects in 19,992
images from MSCOCO [6]. There are 120,191, 10,758, 5,726 and 4,889 query-object pairs in the
training, validation, Test A and Test B set. Different from RefCOCO, the RefCOCO+ dataset forbids
the absolut location descriptions in queries.

RefCOCOg [7]: The RefCOCOg dataset contains 95,010 queries for 49,822 regions in 25,799
images from MSCOCO [6]. There is no public testing set of RefCOCOg. And 80,512 and 4,896
query-object pairs are provided in the training and validation set. Compared with RefCOCO and
RefCOCO+, RefCOCOg has the longer referring expression to describe the appearance and location
of objects.

3 Qualitative Analysis

In this section, we display some examples of grounding results to qualitatively verify the effectiveness
of our CCL paradigm, where we show one example for each dataset.
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Concretely, as shown in Figure 1, we display two examples for video grounding from Charades-STA
and ActivityCaption datasets. By intuitive comparison, we can find the grounding accuracy of the
basic VGN is close to that of the baseline SCN, and the VGN+CCL significantly improves model
performance. This fact verifies the effectiveness of our contrastive training between counterfactual
results. As for image grounding, we show three examples from RefCOCO, RefCOCO+ and Ref-
COCOg in Figure 1, where the language query of RefCOCO is relatively simple and the queries from
RefCOCO+ and RefCOCOg are longer and more complicated. We can find the image often contains
multiple objects with the same type to confuse the grounding network. Similar to video grounding,
our CCL paradigm can still boost the grounding accuracy of the basic IGN to distinguish the target
one from plausible proposals.
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