
Learning to Prove Theorems by Learning to Generate
Theorems Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A. Task setup1

We use the standard theorem proving setup in prior work Irving et al. (2016); Bansal et al. (2019a);2

Whalen (2016). Suppose we have a sequence of theorems (t1, t2, ..., tn), where each theorem appear3

at the order it is proved by mathematicians. For each theorem ti, we construct a proof task that4

proving ti (as the target theorem) using all its preceding theorems (t1, ..., ti−1) (as the background5

theorems), such that the prover has the same set of known facts as mathematicians to prove ti. Then6

we randomly split the five proof tasks into three sets for training, validation and testing.7

It is important to note that a theorem can serve both as a target theorem in the test set and as a8

background theorem in the training set. This is a standard setup and is not “training on the test9

set”—a background theorem is used as a known fact in a training proof task and only its statement is10

provided, not its proof; seeing the statement of a background theorem during training does not tell us11

how to prove it during testing.12

B. Checking reachability between expressions13

For an expression e, let re be the root node of the parse tree of e. Each node in the parse tree represents14

either a generating axiom (if internal node) or a token (if leaf node). We check if expression b can15

reach expression a by comparing their parse trees ra and rb through the following procedure:16

1. Initialize the substitution φ as empty.17

2. Compare the two root nodes.18

• If root node rb represents a variable f , do the following:19

– If the substitute expression φ(f) is not determined, let φ(f) ← ra. Return True20

(i.e. reachable).21

– If φ(f) = ra, return True (i.e. reachable) because we can replace f with ra.22

– Otherwise return False (unreachable), because ra conflicts with the current substi-23

tution φ.24

• If the two root nodes represent the same generating aixom or constant, repeat Step 2 to25

check if each child of ra is reachable from the corresponding child of rb.26

– If every child of ra is reachable from the corresponding child of rb, return True.27

– Otherwise return False.28

• Otherwise return False, because the two root nodes have different values and they can29

not be matched.30

This procedure is summarized in Algorithm 1.31

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Algorithm 1 Function Reachable(na, nb, φ)
Input: node na, node nb, substitution φ
Output: True if nb could reach na, otherwise False
if nb represents a variable f then

if f in φ then
if φ(f) = na then

return True {Consistent with the current substitution}
else

return False {Conflict with a preceding branch}
end if

else
φ(f) = na {Variable f should be replaced by na}
return True

end if
else

if na and nb represent the same generating axiom or constant then
for i = 1 to len(cna) do

{cn is the list of children of node n}
if Reachable(cna

[i], cnb
[i], φ) = false then

{A pair of child nodes doesn’t match}
return False

end if
end for
{Every child of nb could reach a child of na}
return True

else
return False {Two nodes have different values}

end if
end if

C. Pseudo-code for MetaGen32

Algorithm 3 summarizes the procedure to construct a proof step and the set S of existing proof trees.33

Algorithm 4 summarizes the complete procedure of MetaGen.34

D. Meaningless theorems35

Tree “grafting” can potentially introduce meaningless theorems by combining conflicting hypotheses.36

For example, suppose the shallow tree proves that x2 = 1 and x > 0 entail x = 1, we can replace the37

leaf node x > 0 with a subtree proving x = 5 entails x > 0, which leads to a new tree proving that38

x = 5 and x2 = 1 entail x = 1, which is meaningless. Unfortunately, there does not appear to be39

an easy way to avoid meaningless theorems resulting from tree grafting, because this would require40

checking the consistency of an arbitrary set of expressions, which can be as hard as general theorem41

proving. Despite this limitation, however, we still perform tree grafting because a lot of interesting42

mathematics do result from nontrivial combination of hypotheses.43

E. Holophrasm44

In this section we provide more background on the Holophrasm prover Whalen (2016). we refer the45

reader to Whalen (2016) for more details.46

Backward Reasoning To construct a proof tree of a target theorem, a straightforward strategy is47

to search backwards. We start with a single root node—the assertion of the new theorem—and48

pick a proof step that establishes the entailment of the root node. We expand the tree by adding the49

preconditions of this proof step as children of the root node. We repeatedly expand the tree by adding50

children to leaf nodes, until each leaf node is either empty or a hypothesis of the target theorem. This51

construction process can be understood as recursive goal decomposition: the assertion of the target52

2



Algorithm 2 Initializing existing proof trees
Input: existing theorems E, existing proofs P
Output: existing proof trees G
G← ∅
for theorem t in E do

for hypothesis h in ht do
Add h to G

end for
Add t to G as a one-step proof tree

end for
for proof tree p in P do

for node e in p do
g ← the largest subtree of p rooted at e.
Add g to G

end for
end for

Algorithm 3 Constructing a proof step
Input: existing proof trees G, invocable theorems I
Output: proof step (t, φ), proof trees S
Sample an invocable theorem t ∈ I
φ, S ← ∅, ∅
for hypothesis h in ht do
C ← { g | g ∈ G ∧ Reachable(h, rg, φ) }
{rg is the root node of proof tree g. C is the set of compatible existing proof trees}
Sample a proof tree g ∈ C using softmax of the relevance network scores
φ′ ← the substitution that transforms h to rg
Add φ′, g to φ, S

end for
for variable f in b do

if f not in φ then
Generate an expression e using the substitution network
φ(f)← e

end if
end for

Algorithm 4 MetaGen
Input: existing theorems E, existing proofs P , int N
Output: generated theorems
Initialize existing proof trees G from E and P
repeat

Construct a proof step (t, φ) with proof trees S
g ← the one-step proof tree of (t, φ)
for hypothesis h in ht do

{h(φ) is a leaf node of the one-step proof tree g}
Find s ∈ S such that rs = h(φ)
Replace h(φ) with s in g {tree grafting}

end for
Add the new tree g to G

until G reaches the expected volume N

theorem is the original goal; by picking a proof step we decompose the original goal into subgoals,53

which are the preconditions of the proof step; then for each subgoal we repeat this process until all54

subgoals are resolved.55

Obviously, each time we expand the tree, we may have multiple choices of proof steps and most56

of them will lead to dead ends. We thus need to explore multiple alternatives, which gives rise to57

3



Table 1: Training details of the relevance network and the substitution network of the prover.

Network Human Ratio of synthetic Training Initial Epoch to halve
proofs proofs steps per batch epochs learning rate learning rate

RELEVANCE 0% 100% 5 10−4 -
SUBSTITUTION 0% 100% 5 5× 10−4 -

RELEVANCE 10% 70% 20 10−4 [8, 12, 16]
SUBSTITUTION 10% 70% 60 5× 10−4 [15, 30, 45]

RELEVANCE 100% 50% 16 10−4 [5, 12, 14]
SUBSTITUTION 100% 50% 24 5× 10−4 [10, 15, 20]

a search process where we need to keep track of what paths have been explored and decide which58

paths to explore further.59

Proof search Backward reasoning in Holophrasm Whalen (2016) is implemented with a proof search60

tree, which keeps track of the exploration of multiple branches of actions to search for a complete61

proof tree. A proof search tree has two kinds of nodes, expressions and proof steps. An expression62

node has multiple proof steps as children and each proof step establishes the entailment of this63

expression by the preconditions. A proof step node has its preconditions as children. A expression is64

labeled solved if it is a hypothesis of the target theorem or any proof step in its children is solved. A65

proof step is labeled solved if it has no precondition or all of its preconditions are solved. A complete66

proof is found if the root node, which is the assertion of the target theorem, is solved.67

Holophrasm maintains a payoff of each node in the proof search tree and uses Monte Carlo Tree68

Search (MCTS) to extend the proof search tree. The prover runs in iterations. In each iteration, it69

travels down from the root node. After visiting an expression, it either creates a new proof step as70

a new child or visits its best-performing child according to the UCB (Kocsis & Szepesvári, 2006)71

algorithm. After visiting a proof step, it travels to its worst-performing child with the lowest payoff.72

When an expression node is created, it is assigned an initial payoff and has no children. When a proof73

step node is created, its preconditions are also created as its children and the payoff of this proof step74

is the lowest payoff among its children. A pass continues until a new proof step is created.75

The main heuristics of the prover are how to construct a proof step and what is the initial payoff of an76

expression. Similar to the generator, the prover constructs a proof step by using a relevance network77

to pick a background theorem, and a substitution network to generate a substitution for the selected78

background theorem. The initial payoff of an expression is calculated by a payoff network.79

Relevance network of Holophrasm The relevance network of the prover is a deep network trained80

to pick a background theorem b to establish the entailment of an expression e, for the purpose of81

proving a target theorem t. It takes as input two sequences of symbols. One sequence represents the82

assertion and hypotheses of b. Another one represents e and the hypotheses of t. Two GRU encoders83

convert each sequence to an embedding vector, followed by a bilinear layer to output a score from two84

embeddings. The background theorem with the highest score is selected to construct the next proof85

step. The relevance network is trained to pick the background theorem that is used in the groundtruth86

proof step.87

Substitution network of Holophrasm The substitution network generates the substitution for a88

target variable of a background theorem b for the purpose of proving a target theorem t. It is a89

sequence-to-sequence model with an encoder-decoder GRU network. It takes as input a sequence of90

symbols that represents the hypotheses of t and the hypotheses of b. The target variable is replaced91

by a special token. It is trained to generate the substitutions of groundtruth proof steps under teacher92

forcing. When it is called by the prover, it generates multiple substitution candidates for each target93

variable via beam search.94

Payoff network of Holophrasm The payoff network calculates the payoff of an expression as the95

probability of this expression being used in the proof tree of a target theorem. It consists of a GRU96

network followed by two linear layers and the sigmoid, and takes as input a sequence of symbols that97

represents the expression to be evaluated and the hypotheses of the target theorem.98

4



The payoff network is trained as a binary classifier to distinguish the expressions in groundtruth proof99

trees (called positive expressions) from other expressions. Since the payoff network is used to evaluate100

an expression added to the proof search tree, which is a precondition of a newly generated proof101

step, the training examples of the payoff network are generated in a similar way. For each positive102

expression, proof steps that establish the entailment of this expression are constructed by using103

the pretrained relevance and substitution network. The positive expressions from the preconditions104

of these proof steps are filtered out and the payoff network is trained to distinguish the positive105

expressions from the rest of preconditions.106

F. Additional Implementation details107

We implement MetaGen and Holophrasm with the same network architectures as used by Whalen108

(2016). For all of our networks in the generator and the prover, we use bidirectional GRUs to encode109

input sequences, and use the Adam (Kingma & Ba, 2014) optimizer to update parameters. The batch110

size is 100 unless otherwise noted.111

Task setup It is important to note that a theorem can serve both as a target theorem in the test set and112

as a background theorem in the training set. This is a standard setup and is not “training on the test113

set”—a background theorem is used as a known fact in a training proof task and only its statement is114

provided, not its proof; seeing the statement of a background theorem during training does not tell us115

how to prove it during testing.116

Input representation of the relevance and substitution network Here we provide more details on117

the input representation of the relevance and substitution network, which take sequences as input. We118

use the same form of input representations as used by Whalen (2016).119

To represent an expression in a sequential form, one option is to use its “surface form”. For example,120

“(1+1)=2” is simply given as such. Another option is to serialize its parse tree. The parse tree of121

“(1+1)=2” has two generating axioms. The first axiom is the root node of its parse tree and generates122

an expression in the form of “A=B”. The second axiom is the left child of the root node and generates123

an expression in the form of “(C+D)” and this expression is used to substitute the variable A in the124

first axiom. The right child of the first axiom is the token “2”. Both of the left child and the right125

child of the second axiom are the token “1”. Then we can represent “(1+1)=2” as a sequence of126

symbols (t=, t+, 1, 1, 2), where each symbol is a node in the parse tree and t= and t+ represent two127

generating axioms. This new sequence is obtained by traversing the parse tree in pre-order. Following128

Whalen (2016), we use the second option to represent expressions as input to our network.129

Following Whalen (2016), we also make use of the graph structure of the parse tree. Each node in130

the input sequence is converted to a feature vector by a learnable embedding layer. Then the feature131

of this node is concatenated with another four-dimension vector describing the depth of the node,132

the degree of the node, the degree of its parent, and its position into the children of its parent. The133

concatenated vector is fed into the GRU encoder of the relevance and substitution network.134

Multiple expressions are represented by their concatenation.135

F.1. Generator136

Configuration of GRUs All of the GRUs in the generator have two layers and 128-dimensional137

hidden units.138

Training relevance network of MetaGen-IL The relevance network of MetaGen-IL is updated to139

minimize the cross-entropy loss. Each training sample has one groundtruth proof tree and 10 negative140

candidates that are randomly sampled from compatible proof trees. It is trained for 60 epochs. The141

learning rate is set to 10−4 initially and halved after 30, 40 and 50 epochs.142

Training substitution network of MetaGen-IL The substitution network of MetaGen-IL is trained143

for 40 epochs. The learning rate is set to 5× 10−4 initially and halved after 20, 26 and 32 epochs.144

Training of MetaGen-RL To train MetaGen-RL-LM, we learn the language model of human-written145

theorems by utilizing a one-layer GRU with 64-dimensional hidden units. It is trained for 200 epochs.146

The learning rate is set to 5× 10−4 initially and halved after 80, 120 and 160 epochs.147

5



Table 2: Examples of synthetic theorems from MetaGen-IL trained on all human proofs.

Hypothesis Assertion Comment

∅ (3× 1) + (1 + 0) = 1 + 3 SIMPLE ARITHMETIC.

∅ (log e)×A = A e = 2.71828...

A ∈ C sin(A+B) = (exp(i× (A+B)) C : COMPLEX NUMBER SET.
B ∈ C − exp(−i× (A+B))÷ (2× i) i =

√
−1.

∅ G ∈ R ∧ E ∈ R→ sin(G+E
2

+ 1) ∈ R R : REAL NUMBER SET.

φ→ F : X ↔ Y φ→ RAN(F ) ⊆ Y F: BIJECTION FROM X TO Y.
RAN(F ): RANGE OF F .

N = {x ∈ Z|M ≤ x} φ ∧K ∈ N → Z : INTEGER SET
M ∈ {x ∈ Z|M ≤ x ∧ x ≤ K}

r = q × 2× y mod p x = y → F (r × y) = F (s× x) MOD: MODULO OPERATION
s = q × 2× x mod p

To train MetaGen-RL-Adv, we train a binary classifier using the same architecture as the payoff148

network of Holophrasm, which contains a two-layer GRU with 128-dimensional hidden units and two149

subsequent linear layers. It is pretrained to distinguish human-written theorems from 300K synthetic150

theorems generated by MetaGen-Rand. Then it is updated on-the-fly to distinguish human-written151

theorems from the synthetic theorems generated in the most recent 20 episodes.152

For both MetaGen-RL-LM and MetaGen-RL-Adv, we train the generator for 700 episodes with the153

learning rate fixed to 10−4. We deploy 10 parallel threads to synthesize new theorems by utilizing154

the current generator. Each thread generates 50 theorems in one episode and synchronizes the set G155

of existing proof trees with other threads for every 20 episodes. We clip policy gradients whose norm156

is larger 5.157

F.2. Prover158

Configuration of GRUs In the relevance and substitution network of the prover, all GRUs have two159

layers and 256-dimensional hidden units. We found 256-dimensional GRUs have slightly better160

performance than the 128-dimensional GRUs that are used by Whalen (2016). The GRU in the payoff161

network of the prover has two layers and 128-dimensional hidden units.162

Training of the prover All three networks of the prover are trained by imitation learning. The163

relevance network and the substitution network are trained on both human-written proofs and164

synthetic proofs. The payoff network is trained on human-written proofs only.165

The relevance network of the prover is trained to minimize the cross-entropy loss. Each training166

sample contains one groundtruth background theorem and 10 negative candidates that are randomly167

sampled from all background theorems that can be applied in this step.168

Table 1 presents the settings of learning rate schedules and the ratio of synthetic training samples per169

batch, for the training of the relevance and substitution network of the prover.170

In all experiments, the payoff network is trained for 30 epochs. The learning rate is set to 10−4171

initially and halved after 15, 20 and 25 epochs.172

Evaluation protocol Following the evaluation protocol used by Whalen (2016), the prover attempts173

to prove each target theorem in the test set three times with the beam search width of the substitution174

network set to 1, 5, or 20. The prover stops if it has executed 10000 MCTS passes or hit the time175

limit of 5 minutes.176

F.3. Baseline177

Without human-written proofs, we compare our approach with a baseline that needs no training178

proofs. We remove the relevance network of the prover and pick a background theorem according to179

the tf-idf similarity between an expression and a background theorem, as proposed by Bansal et al.180

6



(2019b). We replace the substitution network of the prover with a language model trained on the181

statements of human-written theorems. We use this language model to generate an expression as the182

substitution of a target variable.183

G. Examples of generated theorems184

Some examples of synthetic theorems are presented in the Table 2. Some are trivial (first and185

fourth), whereas others are fairly interesting—the third theorem involves a non-trivial statement about186

trigonometric functions and complex numbers.187

References188

Bansal, K., Loos, S., Rabe, M., Szegedy, C., and Wilcox, S. Holist: An environment for machine189

learning of higher order logic theorem proving. In International Conference on Machine Learning,190

pp. 454–463, 2019a.191

Bansal, K., Loos, S. M., Rabe, M. N., and Szegedy, C. Learning to reason in large theories without192

imitation. arXiv preprint arXiv:1905.10501, 2019b.193

Irving, G., Szegedy, C., Alemi, A. A., Eén, N., Chollet, F., and Urban, J. Deepmath-deep sequence194

models for premise selection. In Advances in Neural Information Processing Systems, pp. 2235–195

2243, 2016.196

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint197

arXiv:1412.6980, 2014.198

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo planning. In European conference on199

machine learning, pp. 282–293. Springer, 2006.200

Whalen, D. Holophrasm: a neural automated theorem prover for higher-order logic. arXiv preprint201

arXiv:1608.02644, 2016.202

7


