Appendix for: 3D Self-Supervised Methods for
Medical Imaging

Aiham Taleb "*, Winfried Loetzsch ", Noel Danz T, Julius Severin ', Thomas Gaertner "7,
Benjamin Bergner ", and Christoph Lippert '**

IDigital Health & Machine Learning, Hasso-Plattner-Institute, Potsdam University, Germany
“{firstname.lastname}@hpi.de
f{firstname.lastname}@student.hpi.uni-potsdam.de

1 Implementation and training details for all tasks

It is noteworthy that our attached implementations are flexible enough to allow for evaluating several
types of network architectures for encoders, decoders, and classifiers. We also provide implementa-
tions for multiple losses, augmentation techniques, and evaluation metrics. More information can
be found in the README . md file in our attached code-base. We rely on tensorflow v2.1 [[1] with
Keras API in our implementations. Below, we provide the training details we used in implementing
our 3D self-supervised tasks (and their 2D counterparts), and when fine-tuning them in subsequent
downstream tasks.

Architecture details. For all 3D encoders ge,,., which are pretrained with our 3D self-supervised
tasks and later fine-tuned on 3D segmentation tasks, we use a 3D U-Net [2]-based encoder (the
downward path), which consists of five levels of residual convolutional blocks. The numbers of
filters in these blocks are 32, 64, 128, 256, 512, respectively. The U-Net decoder (the upward path)
is added in the downstream fine-tuning stage, and it includes five levels of deconvolutional blocks
with skip connections from the U-Net encoder blocks. For the 2D encoders, we use a standard
Densenet-121 [3] architecture, which is fine-tuned later on 2D classification tasks. When training
our 3D self-supervised tasks, we follow [4] in adding nonlinear transformations (a hidden layer with
ReLU activation) before the final classification layers. These classification layers are removed when
fine-tuning the resulting encoders g.,,. in downstream tasks.

Optimization details. In all self-supervised and downstream tasks, we use Adam [5] optimizer
to train the models. The initial learning rate we use is 0.001 in 3D self-supervised tasks, 0.00001
in 3D segmentation tasks, 0.0005 in 2D self-supervised tasks, and 0.00005 in 2D classification
tasks. When we fine-tune our pretrained encoders in subsequent downstream tasks, we follow a
warm-up procedure inspired from [6] by keeping the encoder weights frozen for a number of initial
warm-up epochs while the network decoders or classifiers are trained. These warm-up epochs are
5 in 2D classification tasks, and 25 epochs in 3D segmentation tasks. The alternative options we
evaluated were: 1) fine-tuning the encoder directly with a randomly initialized decoder, 2) keeping
the encoder frozen throughout the training procedure. And the 3™ option we followed in the end was
the hybrid approach of warm-up epochs described above, as it provided a performance boost over the
other alternatives. For segmentation tasks, in particular, where a decoder is used in the architecture,
these warm-up epochs prove indispensable. Otherwise, training the whole model with a randomly
initialized decoder, while the encoder is not frozen, may harm the encoder representations.

Input preprocessing. For all input scans, we perform the following preprocessing steps:

o In self-supervised pretraining using 3D scans, we find the boundaries of the brain or the
pancreas along each axis, and then we crop the remaining empty parts from the scan. This

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

step reduces the amount of empty background voxels, as they might confuse patch-based
self-supervised methods with no additional semantic information. This step is not performed
when fine-tuning on 3D downstream tasks.

e Then, we resize each 3D image from BraTS or Pancreas to a unified resolution of 128 x
128 x 128, and to the resolution 224 x 224 for 2D images from Diabetic Retinopathy.

e Then, each image’s intensity values are normalized by scaling them to the range [0, 1].

Processing multimodal inputs. In the first downstream task of brain tumor segmentation with 3D
multimodal MRI, we pretrain using the UK Biobank [7]] corpus, as mentioned earlier. Brain scans
obtained from UKB contain 2 MRI modalities (T1 and T2-Flair), which are co-registered. This allows
us to stack these 2 modalities as color channels in each input sample, similar to RGB channels. This
form of early fusion [[8]] of MRI modalities is common when they are registered, and is a practical
solution for combining all information that exist in these modalities. However, as mentioned earlier,
we use the BraTS [9}[10] dataset for fine-tuning, and each scan consists of 4 different MRI modalities,
as opposed to only 2 in UKB that is used for pretraining. This difference only affects the input layer
of the pretrained encoder, as fine-tuning on an incompatible number of input channels causes this
process of fine-tuning to fail. We resolve this issue by duplicating (copying) the weights of only the
pretrained input layer. This minor modification only adds a few additional parameters to the input
layer, but allows us to leverage its weights. The other alternative for this solution would have been
to discard the weights of this input layer, and initialize the rest of the model layers from pretrained
models normally. But we believe our solution for this issue takes advantage of any useful information
encoded in these weights. This multimodal inputs problem does not occur in the other downstream
tasks, as the inputs include only one modality/channel.

Task specific training details.

e 3D-CPC and 3D-Exe: we use latent representation code size of 1024 in these tasks.
3D-Jig and 3D-RPL: We split the input 3D images into 3 x 3 X 3 patches in this task. We
apply a random jitter of 3 pixels per side (axis).

Patch-based tasks (3D-CPC, 3D-RPL, 3D-Jig): each extracted patch is represented using
an embedding vector of size 64.

3D-Exe: the « value used for the triplet loss is 1.0.

3D-Jig: the complexity of the Jigsaw puzzle solving task relies on the number of permuta-
tions used in generating the puzzles, i.e. the more permutations used, the harder the task
is to solve. We follow the Hamming distance-based algorithm from [11] in sampling the
permutations for this task. However, in our 3D puzzles task, we sample permutations that
are more complex with 27 different entries. This algorithm works as follows: we sample a
subset of 1000 permutations which are selected based on their Hamming distance, i.e., the
number of different tile locations between 2 permutations. When generating permutations,
we ensure that the average Hamming distance across permutations is kept as high as possible.
This results in a set of permutations (classes) that are as far as possible from each other.

Augmentation in Exemplar. As mentioned earlier, we apply the following 3D transformations in
Exemplar: random flipping along an arbitrary axis, random rotation along an arbitrary axis, random
brightness and contrast, and random zooming. These augmentations are utilized to produce the
positive samples. We vary the percentages of applying these augmentations using these factors:
« = 0.5 for random rotations, 8 = 0.5 for color distortions (brightness and contrast), and v = 0.2 for
random zooming. When trying to omit a certain augmentation from the list above, we observe a drop
in downstream performance. This is consistent with the findings of [4]. However, performing such
transformations for high percentages is time-consuming, hence the reduced rates to 50%. Conducting
a more thorough analysis of what fypes of augmentations are desirable is a future work.

2 Detailed experimental results

o o, 0
0.60 0.60 0.60
0 0 0
9055 9055 9055
]] s
g S g
@ @ @
goso goso goso
a a a
° ° °
304 >0. H
3045 3045 3045

0.40 y —e— cpc 0.40 y —o— rpl 0.40 —e— jigsaw
#— baseline *— baseline #— baseline
[[L]
5 10 25 50 5 10 25 50 100 5 10 25 50 100
Percentage of labelled images Percentage of labelled images Percentage of labelled images
(a) CPC 3D vs. baseline (b) RPL 3D vs. baseline (c) Jigsaw 3D vs. baseline
0. 0.
0.60- 0.60-
Soss Soss
5 5
g g
E E
050 9050
2 2
a a
50.45 50 5
040 —e— rotation 040 —e— exemplar
~&— baseline ~&— baseline
I J
5 10 100 5 10 100

25 50 25 50
Percentage of labelled images Percentage of labelled images

(d) Rotation 3D vs. baseline (e) Exemplar 3D vs. baseline

Figure 1: Pancreas segmentation: Detailed data-efficiency results per method (blue) vs. the supervised
baseline (orange). Our methods consistently outperform the baseline in low-data cases

nQ 0 Q. Q.
2. 2. 2 0.
H H H
20. 20. 20.
Qao. Qao. ao.
28 28 28
< < <
» » Il » {
< —e— cpc sl | e sl | —e— jigsaw
1 ~&— baseline 1 ~&— baseline 1 ~&— baseline
0 50 100 150 200 250 300 350 40(N 0 50 100 150 200 250 300 350 40(B 0 50 100 150 200 250 300 350 40(
Epochs Epochs Epochs
(a) CPC 3D vs. baseline (b) RPL 3D vs. baseline (c) Jigsaw 3D vs. baseline
0o 0o
go. 20
5 5
g g
3¢ H
20. 20.
Qao. Qao.
2 2
>0.28 >0.28
.26
< .24 < .. g
.22 .22
.20 .20 f
8 ol —e— rotation 8 ol —e— exemplar
.14- 1 #— baseline 4 1 #— baseline
BHiL, BHin,
N 0 50 100 150 200 250 300 350 40(N 0 50 100 150 200 250 300 350 40(

Epochs Epochs

(d) Rotation 3D vs. baseline (e) Exemplar 3D vs. baseline

Figure 2: Pancreas segmentation: Detailed speed of convergence results per method (blue) vs. the
supervised baseline (orange). This benefit of our methods helps achieve high results using only few
epochs

o 0.75 0.75
070 0.70 0.70
0.65 0.65 065
0.60- 0.60- 0.60-
055 0.55 055
©0.50 8050 ©0.50
2045 Boas 8045
Loao 2040 £ 0.0
2035 2035 2035
So30 9030 S0
2 0.25 i 0.25 E 0.25
0.20- 0.20- 0.20-
0.15 0.15 0.15
010 —e— cpc 2D 0.10 —e— 1l 2D 010 —e— jigsaw 2D
005 baseline 2D 0.05 baseline 2D 0.051~ o baseline 2D
0.00 0.00 0.00{ ¢
5 10 100 5 10 100 5 10 100

25 50 25 50 25 50
Percentage of labelled images Percentage of labelled images Percentage of labelled images

(a) CPC 2D vs. baseline (b) RPL 2D vs. baseline (c) Jigsaw 2D vs. baseline

0.75 0.75
0.70- 0.70-
0.65 0.65
0.60- 0.60-
0.55 0.55
gD 50 ®0.50
%0.45 %0.45
¥ 0.40- ¥ 0.40
g 0.35 g 0.35
0.30 0.30:
g‘ﬂ 25 90.25
< 0.20 < 0.20-
0.15 0.15
010 —e— rotation 2D 010 —e— exemplar 2D
005 -~ baseline 20 0.05 4 -~ baseline 20
0.001 & 0.00{ &%
5 10 25 50 100 5 10 25 50 100
Percentage of labelled images Percentage of labelled images
(d) Rotation 2D vs. baseline (e) Exemplar 2D vs. baseline

Figure 3: Retinopathy detection: Detailed data-efficiency results per method (blue) vs. the supervised
baseline (orange). Our methods consistently outperform the baseline in low-data cases

92
P se—y = <

—a=gro<{=e = = : % . g
¥ : 86
. .84-
. .82
. .80-
20 > »0.78
g g 2076
go: g £o.74
50 H 5072

H 3 H
go g go7o
<0. < < 0.68-
59 d 598
> > >0%
X .60
]

—e— cpc 2D X —e— 1pl 2D .54 —e— jigsaw 2D
, o baseline 2D 23] o o baseline 2D 23 > baseline 2D
0.0 25 5.0 7.5 10.0 125 15.0 17.5 0.0 25 5.0 7.5 10.0 125 15.0 17.5 0.0 25 5.0 7.5 10.0 125 15.0 17.5
Epochs Epochs Epochs

(a) CPC 2D vs. baseline (b) RPL 2D vs. baseline (c) Jigsaw 2D vs. baseline

Val Accuracy

co000000000000000000000

S rrre 0200 I IR R e e B e 00
Val Accuracy

—e— rotation 2D —e— exemplar 2D

B EEE302RBIN T A SBERBESL

EREEE328BIN T A5 IVRRBE8E

o Y < baseline 2D ¥ baseline 2D
0.0 25 5.0 75 10.0 125 15.0 17.5 0.0 25 5.0 7.5 10.0 125 15.0 17.5
Epochs. Epochs.
(d) Rotation 2D vs. baseline (e) Exemplar 2D vs. baseline

Figure 4: Retinopathy detection: Detailed speed of convergence results per method (blue) vs. the
supervised baseline (orange). This benefit of our methods helps achieve high results using only few
epochs

References

(1]

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

(1]

tensorflow.org. Tensorflow v2.1, 2020 (accessed June 3, 2020). URL https://www.tensorflow.org/
versions/r2.1/api_docs/python/tfl

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, pages 234-241,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2261-2269, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL http:
//arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a conference paper at the
3rd International Conference for Learning Representations, San Diego, 2015.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual representation
learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul
Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill Pell, Alan Silman, Alan
Young, Tim Sprosen, Tim Peakman, and Rory Collins. Uk biobank: An open access resource for identifying
the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3):1-10, 03 2015.
doi: 10.1371/journal.pmed.1001779. URL https://doi.org/10.1371/journal.pmed.1001779.

Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. Early versus late fusion in semantic video
analysis. In Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA
’05, pages 399-402, New York, NY, USA, 2005. ACM. ISBN 1-59593-044-2. doi: 10.1145/1101149.
1101236. URL http://doi.acm.org/10.1145/1101149.1101236.

Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin Kirby,
Yuliya Burren, and et al. The multimodal brain tumor image segmentation benchmark (brats). IEEE
Transactions on Medical Imaging, 34(10):1993-2024, 2015.

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin S. Kirby, John B.
Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the cancer genome atlas glioma mri
collections with expert segmentation labels and radiomic features. Scientific Data, 4:170117 EP —, 09
2017.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision — ECCV
2016, pages 69-84, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46466-4.

https://www.tensorflow.org/versions/r2.1/api_docs/python/tf
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1371/journal.pmed.1001779
http://doi.acm.org/10.1145/1101149.1101236

	Implementation and training details for all tasks
	Detailed experimental results

