
Bayesian filtering unifies adaptive and non-adaptive

neural network optimization methods

Laurence Aitchison
Department of Computer Science

University of Bristol
Bristol, UK, BS8 1UB

laurence.aitchison@bristol.ac.uk

Abstract

We formulate the problem of neural network optimization as Bayesian filtering,
where the observations are backpropagated gradients. While neural network op-
timization has previously been studied using natural gradient methods which are
closely related to Bayesian inference, they were unable to recover standard opti-
mizers such as Adam and RMSprop with a root-mean-square gradient normalizer,
instead getting a mean-square normalizer. To recover the root-mean-square nor-
malizer, we find it necessary to account for the temporal dynamics of all the other
parameters as they are optimized. The resulting optimizer, AdaBayes, adaptively
transitions between SGD-like and Adam-like behaviour, automatically recovers
AdamW, a state of the art variant of Adam with decoupled weight decay, and has
generalisation performance competitive with SGD.

1 Introduction and Background

The canonical non-adaptive neural network optimization method is vanilla stochastic gradient descent
(SGD) with momentum which updates parameters by multiplying the exponential moving average
gradient, 〈g(t)〉, by a learning rate, ηSGD,

∆wSGD(t) = ηSGD

〈g(t)〉

minibatch size
. (1)

Here, we divide by the minibatch size because we define g(t) to be the gradient of the summed
loss, whereas common practice is to use the gradient of the mean loss. Following the convention
established by Adam (Kingma & Ba, 2015), 〈g(t)〉, is a debiased exponential moving average,

m(t) = β1m(t− 1) + (1− β1) g(t) 〈g(t)〉 =
m(t)

1− βt
1

. (2)

where g(t) is the raw minibatch gradient, and β1 is usually chosen to be 0.9. These methods typically
give excellent generalisation performance, and as such are used to train many state-of-the-art networks
(e.g. ResNet (He et al., 2016), DenseNet (Huang et al., 2017), ResNeXt (Xie et al., 2017)).

Adaptive methods change the learning rates as a function of past gradients. These methods date
back many years (e.g. vario-eta Neuneier & Zimmermann, 1998), and many variants have recently
been developed, including AdaGrad (Duchi et al., 2011), RMSprop (Hinton et al., 2012) and Adam
(Kingma & Ba, 2015). The canonical adaptive method, Adam, normalises the exponential moving
average gradient by the root mean square of past gradients,

∆wAdam(t) = ηAdam

〈g(t)〉
√

〈g2(t)〉
. (3)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



where,

v(t) = β2v(t− 1) + (1− β2) g
2(t) 〈g2(t)〉 =

v(t)

1− βt
2

, (4)

and where β2 is typically chosen to be 0.999. These methods are often observed to converge faster,
and hence may be used on problems which are more difficult to optimize (Graves, 2013), but can give
worse generalisation performance than non-adaptive methods (Keskar & Socher, 2017; Loshchilov &
Hutter, 2017; Wilson et al., 2017; Luo et al., 2019).

Obtaining a principled theory of adaptive optimization is important, as it should enable us to develop
improved optimizers. Here we formulated Bayesian inference as an optimization problem (Puskorius
& Feldkamp, 1991; Sha et al., 1992; Puskorius & Feldkamp, 1994, 2001; Feldkamp et al., 2003;
Ollivier, 2017), and carefully considered how optimization of the other parameters influences the
optimum of our parameter of interest. We were able to recover the standard root-mean-square
normalizer for RMSprop and Adam, and we recovered a state-of-the-art variant of Adam with
“decoupled” weight decay (Loshchilov & Hutter, 2017). We hope that by pursuing our dynamical
Bayesian approach further it will be possible to develop improved adaptive optimization algorithms.

2 Related work

Previous work has considered the relationships between adaptive stochastic gradient descent methods
and variational online Newton (VON), which is very closely related to natural gradients (Khan &
Lin, 2017; Khan et al., 2017, 2018) and Bayes (Ollivier, 2017). Critically, this work found that
direct application of VON/Bayes gives a sum-squared normalizer, as opposed to a root-mean-squared
normalizer as in Adam and RMSProp. In particular, see Eq. 7 in Khan et al. (2018), which gives
the Variational-online Newton (VON) updates, and includes a mean-squared gradient normalizer.
To provide a method that matches Adam and RMSProp more closely, they go on to provide an
ad-hoc modification of the VON updates, with a root-mean-square normalizer, saying “Using ... an
additional modification in the VON update, we can make the VON update very similar to RMSprop.
Our modification involves taking the square-root over s(t+ 1) in Eq. (7)”. In contrast, our approach
gives the root-mean-square normalizer directly, without any ad-hoc modifications, and automatically
recovers decoupled weight decay (Loshchilov & Hutter, 2017) which is not recovered by VON (again,
see Eq. 7 in Khan et al., 2018).

An alternative view on these results is given by considering equivalence of online natural gradients
and Kalman filtering (Ollivier, 2017). Through this equivalence, they have the same issues as in
(Khan & Lin, 2017; Khan et al., 2017, 2018): having a mean-square rather than root-mean-square
form for the gradient normalizer. Further, note that they do consider a “fading memory” approach,
they “multiply the log-likelihood of previous points by a forgetting factor (1− λt) before each new
observation. This is equivalent to an additional step Pt−1 → Pt−1/(1− λt) in the Kalman filter, or
to the addition of an artificial process noise Qt proportional to Pt−1”, where Pt−1 is their posterior
covariance matrix. Critically, their “artificial process noise ... proportional to Pt−1” again gives a
mean-square form for the gradient normalizer (see Appendix C for details). In contrast, we give an
alternative motivation for the introduction of fixed process noise, and show that fixed process noise
recovers the root-mean-square gradient normalizer in Adam.

3 Methods

Here, we set up the problem of neural network optimization as Bayesian inference. Typically, when
performing Bayesian inference, we would like to reason about correlations in the full posterior over all
parameters jointly (Fig. 1A). However, neural networks have so many parameters that reasoning about
correlations is intractable: instead, we are forced to work with factorised approximate posteriors. To
understand the effects of factorised approximate posteriors, consider the ith parameter. The current
estimate of the other parameters, µ−i(t) changes over time, t, as they are optimized. As there are
correlations in the posterior, the optimal value for the ith parameter, w∗

i (t), conditioned on the current
setting of the other parameters, µ−i(t) also changes over time (Fig. 1B),

w∗
i (t) = argmax

wi

L (wi,µ−i(t)) . (5)

2



-2

0

2

-2 0 2

wj

w
i

A

-2

0

2

0 25 50 75 100

Iteration

w
i

B

-1.00

-0.75

-0.50

-0.25

0.00
Obj.

Figure 1: A schematic figure showing correlation-induced dynamics. A The objective function
(usually equivalent to a posterior over the parameters) induces correlations between the parameter of
interest, wi, and other parameters (here represented by wj). The red line displays the optimal value
for wi as a function of wj or time. B The other parameters (including wj) change over time as they
are also being optimized, implying that the optimal value for wi changes over iterations.

where L (wi,µ−i(t)) is the objective, with the ith parameter set to wi and the other parameters set to
µ−i(t). As such, to form optimal estimates, we need to reason about changes over time in the optimal
setting for that parameter, w∗

i (t). If we knew the full, correlated posterior in Fig. 1A, then we could
compute the change in the ith parameter from the change in all the other parameters. However, in our
case, the correlations are unknown, so the best we can do is to say that the new optimal value for the
ith parameter will be close to — but slightly different from — the current optimal value, and these
changes in the optimal value (Fig. 1B) constitute stochastic-dynamics that are implicitly induced by
our choice of a factorised approximate posterior.

The Bernstein von-Mises theorem (Van der Vaart, 2000) indicates that in a typical setting with a large
training set the log-posterior, which is taken to be the objective, is asymptotically quadratic,

L(w) = − 1
2w

THw + c (6)

where we take the mode to be at w = 0 without loss of generality, and we verify the approximation
empirically even for minibatches in Appendix A. The gradient is

∂

∂w
L (w) = −Hw (7)

Thus, the full batch gradient with respect to the ith weight, when all the other parameters, w−i are
set to the current estimate, µ−i(t), is

∂

∂wi

L (wi,µ−i(t)) = −Hiiwi −HT
−i,iµ−i(t) (8)

where HT
−i,i is the ith column of the Hessian, omitting the iith element. The optimal value for the

ith parameter can be found by finding the weight for which the gradient of the objective is zero,

w∗
i (t) = −

1

Hii

HT
−i,iµ−i(t). (9)

By substituting this value for w∗
i (t) into Eq. 8, we get the gradient of the objective in terms of w∗

i (t),

∂

∂wi

L (wi,µ−i(t)) = Hii (w
∗
i (t)− wi) , (10)

Critically, the data we actually measure is the gradient of the objective for a minibatch at the current
estimate of the parameter, wi = µi. The minibatch gradients are Gaussian as we verify empirically in
Appendix B, because the gradient for each datapoint is IID, and there are many (128) datapoints in
each training batch, so the CLT applies. Following the standard approach in this line of work (Khan
& Lin, 2017; Zhang et al., 2017; Khan et al., 2017, 2018), the Fisher Information (FI) can be used to
identify the variance,

P (gi(t)|w
∗
i (t)) = N (Hii (w

∗
i (t)− µi(t)) , Hii) . (11)

Improving the commonly used FI approximation is an important avenue for future work, but not our
focus here. Nonetheless, we verify its effectiveness empirically in Appendix A.

3



w∗
i (t− 1) w∗

i (t) w∗
i (t+ 1) w∗

i (t+ 2)

gi(t− 1) gi(t) gi(t+ 1) gi(t+ 2)

Figure 2: Graphical model under which we perform inference.

Now that Eq. (11) gives us a likelihood, we need a prior over w∗
i (t). Eq. (9) shows us that the

dynamics of w∗
i (t) are governed by the dynamics of our estimates, µ−i(t), as they are optimized, and

this optimization is a complex stochastic process. Nonetheless, we know that the parameter updates
are governed by gradients, and that gradients are Gaussian (Eq. 11). Thus, it seems reasonable to take
the dynamics of µ−i(t) to be Gaussian,

P (µ−i(t+ 1)|µ−i(t)) = N
((

1− η2

2σ2

)

µ−i(t),Q−i

)

. (12)

Thus, the dynamics for the ith optimal weight become,

P (w∗
i (t+ 1)|w∗

i (t)) = N
((

1− η2

2σ2

)

w∗
i (t), η

2
)

(13)

where,

η2 = HT
−i,iQ−iH−i,i. (14)

and where σ2 will become the prior variance of the parameters. Combined, Eq. (11) and Eq. (13)
define a stochastic linear dynamical system for each parameter separately, where the optimal weight,
w∗

i (t), is the latent variable, and the gradients, gi(t) are the observations (Fig. 2). As such, in the
remainder of this section, we will drop parameter indices, so w∗(t) = w∗

i (t) and g(t) = gi(t), to
simplify notation.

As the dynamics and likelihood are Gaussian, the Kalman filter priors and posteriors are,

P (w∗(t)|g(t− 1), . . . , g(1)) = N
(

µprior(t), σ
2
prior(t)

)

, (15a)

P (w∗(t)|g(t), . . . , g(1)) = N
(

µpost(t), σ
2
post(t)

)

, (15b)

where we evaluate the gradient, g(t) = gi(t) at µi(t) = µprior(t), and where the updates for µprior(t)
and σ2

prior(t) can be computed from Eq. (13),

µprior(t) =
(

1− η2

2σ2

)

µpost(t− 1), (16a)

σ2
prior(t) =

(

1− η2

2σ2

)2

σ2
post(t− 1) + η2. (16b)

And the updates for µpost(t) and σ2
post(t) come from applying Bayes theorem (Appendix D), with

the likelihood given by Eq. (11). Again, following the standard approach in this line of work (Khan
& Lin, 2017; Zhang et al., 2017; Khan et al., 2017, 2018), we approximate Hii using the squared
gradient (again, while improving this approximation is an important avenue for future work, we
empirically verify its effectiveness in Appendix A)

σ2
post(t) =

1
1

σ2

prior
(t)

+Hii

≈
1

1
σ2

prior
(t)

+ g2(t)
, (17a)

µpost(t) = µprior(t) + σ2
post(t)g(t). (17b)

The full updates are now specified by iteratively applying Eq. (16) and Eq. (17).

Next, we make two minor modifications to the updates for the mean, to match current best practice
for optimizing neural networks. First, we allow more flexibility in weight decay, by replacing the
η2/(2σ2) term in Eq. (16a) with a new parameter, λ. Second, we incorporate momentum, by using
an exponential moving average gradient, 〈g(t)〉, instead of the raw minibatch gradient in Eq. (17b).
In combination, the updates for the mean become,

µprior(t) = (1− λ) µpost(t− 1), (18a)

µpost(t) = µprior(t) + σ2
post(t)〈g(t)〉. (18b)

Our complete Bayesian updates are now given by using Eq. (18) to update µprior and µpost, and using

Eq. (16b) and Eq. (17a) to update σ2
prior and σ2

post (see Algo. 1).

4



Figure 3: The learning rate for AdaBayes (points) compared against the predicted fixed-point value
(green line), σ2

post. The plot displays the low-data limit (orange line), which is valid when the value on

the x-axis, η/
√

〈g2〉, is much greater than σ2 (purple line), and the high-data limit (blue line), which

is valid when the value on the x-axis is much smaller than σ2 (purple line).

3.1 Philosophical note

One might worry that inferring a distribution over the optimal weight, w∗
i (t), does not make sense,

because we could in principle find it directly by fixing all the other parameters and computing the full
loss for all values of wi. However, in practice this is too expensive, especially if it must be repeated
for all parameters. Instead, it is necessary to summarise our tractably-computable beliefs about w∗

i (t)
as a probability distribution. This approach mirrors “a sermon on reality vs. models” in Jaynes (2003).
He considers specifying the exact physical state of an urn of balls, shaking it, and drawing a ball from
the urn. In principle, we can simulate the deterministic shaking process and thus compute the ball
that would be drawn out of the urn. In practice, this computation is far beyond the capabilities of our
current computers. But all is not lost, as we can still use arguments based on randomisation to make
standard probabilistic judgements concerning the probability of drawing a ball of a given color.

3.2 AdaBayes recovers SGD and Adam

To understand how AdaBayes relates to previous algorithms (SGD and Adam), we plotted the

AdaBayes learning rate, σ2
post against the Adam learning rate, η/

√

〈g2〉 (Fig. 3, points) for the

ResNet-34 considered later. We found that for high values of 〈g2〉, corresponding to large values of
the Fisher Information, the AdaBayes learning rate closely matched the Adam learning rate (Fig. 3,
blue line). In contrast, as the value of 〈g2〉 decreased, corresponding to smaller values of the Fisher
Information, we found that the AdaBayes learning rate became constant, mirroring standard SGD
(Fig. 3, orange line). Thus, Fig. 3 empirically establishes that AdaBayes converges to SGD in the low
data (Fisher-Information) limit, and Adam in the high data limit. Furthermore, the tight vertical spread
of points in Fig. 3 indicates that, in practice, the AdaBayes value of σ2

post is largely determined by the

Fisher-Information, 〈g2〉, thus raising the question of whether we can obtain better understanding of
the relationship between 〈g2〉 and σ2

post. Indeed, such an understanding is possible, if we consider the

fixed point of the σ2
post updates (Eq. 16b and 17a). To obtain the fixed-point, we substitute the update

for σ2
post (Eq. 17a) into the update for σ2

prior (Eq. 16b), and neglect small terms (see Appendix E),

which tells us that the fixed-point σ2
post is given by the solution of a quadratic equation,

0 ≈ σ2

(

1

σ2
post

)2

−
1

σ2
post

−
〈g2〉σ2

η2
. (19)

Solving for 1/σ2
post, we obtain,

1

σ2
post

≈
1

2σ2






1 +

√

√

√

√1 + 4

(

σ2

η/√
〈g2〉

)2





. (20)

We confirmed the fixed-point indeed matches the empirically measured AdaBayes learning rates by
plotting the fixed-point predictions in Fig. 3 (green line). Importantly, the fixed-point expression

5



Algorithm 1 AdaBayes

η ← ηAdam

σ2 ← ηSGD/minibatch size

σ2
prior ← σ2

while not converged do
g ← ∇Lt(µ)
m ← β1m+ (1− β1) g
v ← β2v + (1− β2) g

2

〈g〉 ← m/ (1− βt
1)

〈g2〉 ← v / (1− βt
2)

σ2
post←

1
σ
−2

prior
+g2

σ2
prior←

(

1− η2

2σ2

)2

σ2
post + η2

µ ← (1− λ)µ+ σ2
post〈g〉

end while

Algorithm 2 AdaBayes-FP

1: η ← ηAdam

2: σ2 ← ηSGD/minibatch size

3: σ2
prior ← σ2

4: while not converged do
5: g ← ∇Lt(µ)
6: m ← β1m+ (1− β1) g
7: v ← β2v + (1− β2) g

2

8: 〈g〉 ← m/ (1− βt
1)

9: 〈g2〉 ← v / (1− βt
2)

10: σ2 ← 1
σ−2+g2

11: σ2
post←

(

1
2σ2 +

√

1
4σ4 + 〈g2〉

η2

)−1

12: µ ← (1− λ)µ+ σ2
post〈g〉

13: end while

merely helps understand a result that we established empirically. Finally, this close match means that
we can define another set of updates, AdaBayes-FP, where we set σ2

post directly to the fixed-point
value, using Eq. (20), rather than using the full AdaBayes updates given by Eq. (16b) and Eq. (17a).

3.2.1 Recovering SGD in the low-data limit

In the low-data regime where η/
√

〈g2〉 ≫ σ2, the empirically measured AdaBayes learning rate, σ2
post,

becomes constant (Fig. 3; orange line), so the AdaBayes updates (Eq. 18b) become approximately
equivalent to vanilla SGD (Eq. 1). To understand this convergence, we can leverage the fixed-point
expression in Eq. (20) which accurately models empirically measured learning rates,

lim
〈g2〉→0

σ2
post ≈ σ2, (21)

We can leverage this equivalence to set σ2 using standard values of the SGD learning rate,

σ2 =
ηSGD

minibatch size
. (22)

Setting σ2 in this way would suggest σ2 ∼ 0.0011, as ηSGD ∼ 0.1, and the minibatch size ∼ 100.
It is important to sanity check that this value of σ2 corresponds to Bayesian filtering in a sensible
generative model. In particular, note that σ2 is the variance of the prior over wi, and as such σ2

should correspond to typical initialization schemes (e.g. He et al., 2015) which ensure that input
and output activations have roughly the same scale. These schemes use σ2 ∼ 1/(number of inputs),
and if we consider that there are typically ∼100 input channels, and we typically convolve over a
3× 3 = 9 pixel patch, we obtain σ2 ∼ 0.001, matching the value we use.

3.2.2 Recovering Adam(W) in the high-data limit

In the high-data regime where η/
√

〈g2〉 ≪ σ2, the empirically measured AdaBayes learning rate,

σ2
post, approaches the Adam learning rate (Fig. 3; blue line), so AdaBayes becomes approximately

equivalent to Adam(W). To understand this convergence, we can leverage the fixed-point expression
in Eq. (20) which accurately models empirically measured learning rates,

lim
〈g2〉→∞

σ2
post ≈

η
√

〈g2〉
(23)

so the updates (Eq.18b) become equivalent to Adam updates if we take,

η = ηAdam. (24)

1here we use x ∼ y as in Physics to denote “x has the same order of magnitude as y”, see Acklam and
Weisstein “Tilde” MathWorld. http://mathworld.wolfram.com/Tilde.html

6



Table 1: A table displaying the minimal test error and test loss for a ResNet and DenseNet applied to
CIFAR-10 and CIFAR-100 for different optimizers. The table displays the best adaptive algorithm
(bold), which is always one of our methods: either AdaBayes or AdaBayes-FP. We also display the
instances where SGD (gray) beats all adaptive methods (in which case we also embolden the SGD
value).

CIFAR-10 CIFAR-100

ResNet DenseNet ResNet DenseNet

optimizer err. (%) loss err. (%) loss err. (%) loss err. (%) loss

SGD 5.170 0.174 5.580 0.177 22.710 0.833 21.290 0.774
Adam 7.110 0.239 6.690 0.230 27.590 1.049 26.640 1.074
AdaGrad 6.840 0.307 7.490 0.338 30.350 1.347 30.110 1.319
AMSGrad 6.720 0.239 6.170 0.234 27.430 1.033 25.850 1.103
AdaBound 5.140 0.220 4.850 0.210 23.060 1.004 22.210 1.050
AMSBound 4.940 0.210 4.960 0.219 23.000 1.003 22.360 1.017
AdamW 5.080 0.239 5.190 0.214 24.850 1.142 23.480 1.043
AdaBayes-FP 5.230 0.187 4.910 0.176 23.120 0.935 22.600 0.934
AdaBayes 4.840 0.229 4.560 0.222 22.920 0.969 22.090 1.079

As such, we are able to use past experience with good values for the Adam learning rate ηAdam, to set
η: in our case we use η = 0.001.

Furthermore, when we consider the form of regularisation implied by our updates, we recover a
state-of-the-art variant of Adam, known as AdamW (Loshchilov & Hutter, 2017). In standard Adam,
weight-decay regularization is implemented by incorporating an L2 penalty on the weights in the
loss function, so the gradient of the loss and regularizer are both normalized by the root-mean-square
gradient. In contrast, AdamW “decouples” weight decay from the loss, such that the gradient of the
loss is normalized by the root-mean-square gradients, but the weight decay is not. To see that our
updates correspond to AdamW, we combine Eq. (18a) and Eq. (18b), and substitute for σ2

post (Eq. 23),

µpost(t) ≈ (λ− 1)µpost(t− 1) +
η

√

〈g2(t)〉
〈g(t)〉. (25)

Indeed, the root-mean-square normalization applies only to the gradient of the loss, as in AdamW,
and not to the weight decay term, as in standard Adam.

Finally, note that AdaBayes-FP becomes exactly AdamW when we set σ2 →∞,

lim
σ2→∞

1

σ2
post

= lim
σ2→∞

(

1

2σ2
+

√

1

4σ4
+
〈g2〉

η2

)

=

√

〈g2〉η

,
(26)

because we use the standard Adam(W) approach to computing unbiased estimates of 〈g〉 and 〈g2〉
(see Algo. 2).

4 Experiments

For our experiments, we have adapted the code and protocols from a recent paper (Luo et al.,
2019) on alternative methods for combining non-adaptive and adaptive behaviour (AdaBound and
AMSBound). They considered a 34-layer ResNet (He et al., 2016) and a 121-layer DenseNet on
CIFAR-10 (Huang et al., 2017), trained for 200 epochs with learning rates that decreased by a factor
of 10 at epoch 150. We used a batch size of 128. We used the exact same networks and protocol,
except that we run for more epochs, we plot both classification error and the loss, and we use both
CIFAR-10 and CIFAR-100. We used their optimized hyperparameter settings for standard baselines
(including SGD and Adam), and their choice of hyperparameters for their methods (AdaBound
and AMSBound). For AdamW and AdaBayes, we used ηSGD = 0.1 and set σ2 using Eq. (22),
and we used ηAdam = η = 0.001 (matched to the optimal learning rate for standard Adam). We
used decoupled weight decay of 5× 10−4 (from Luo et al., 2019), and we used the equivalence of
SGD with weight decay and SGD with decoupled weight decay to set the decoupled weight decay
coefficient to λ = 5× 10−5 for AdamW, AdaBayes and AdaBayes-FP.

7



5.0

7.5

10.0

12.5

15.0

17.5

CI
FA

R-
10

 te
st

 e
rro

r (
%

)

ResNet
SGD
Adam
AMSBound
AdaBound
AdamW
AdaBayes-FP
AdaBayes

DenseNet

0 100 200 300
epoch

0.2

0.3

0.4

0.5

CI
FA

R-
10

 te
st

 lo
ss

0 100 200 300
epoch

Figure 4: Test loss and classification error for CIFAR-10 for a Resnet-34 and a DenseNet-121, for
multiple update algorithms.

The results are given in Table 1 and Fig. 4. The best adaptive method is always one of our methods
(AdaBayes or AdaBayes-FP), though SGD is frequently superior to all adaptive methods tested. To
begin, we compare our methods (AdaBayes and AdaBayes-FP) to the canonical non-adaptive (SGD)
and adaptive (Adam) method (see Fig. A8 for a cleaner figure, including other baselines). Note that
AdaBayes and AdaBayes-FP improve their accuracy and loss more rapidly than baseline methods
(i.e. SGD and Adam) during the initial part of learning. Our algorithms give better test error and loss
than Adam, for all networks and datasets, they give better test error than SGD for CIFAR-10, and
perform similarly to SGD in the other cases, with AdaBayes-FP often giving better performance than
AdaBayes. Next, we see that AdaBayes-FP improves considerably over AdaBayes (see Fig. A9 for a
cleaner figure), except in the case of CIFAR-10 classification error, where the difference is minimal.

Given the difficulties inherent in these types of comparison, we feel that only two conclusions can
reasonably be drawn from these experiments. First, AdaBayes and AdaBayes-FP have comparable
performance to other state-of-the-art adaptive methods, including AdamW, AdaBound and AMS-
Bound. Second, and as expected, SGD frequently performs better than all adaptive methods, and the
difference is especially dramatic if we focus on the test-loss for CIFAR-100.

5 Conclusions

Our fundamental contribution is to show that, if we seek to use Bayesian inference to perform stochas-
tic optimization, we need a model describing the dynamics of all the other parameters as they are
optimized. We found that even by assuming that the other parameters obey oversimplified autoregres-
sive dynamics, we recovered state-of-the-art adaptive optimizers (AdamW). In our experiments, either
AdaBayes or AdaBayes-FP outperformed other adaptive methods, including AdamW (Loshchilov
& Hutter, 2017), and Ada/AMSBound (Luo et al., 2019), though SGD frequently outperformed all
adaptive methods. We hope that understanding optimization as inference, taking into account the
dynamics in the other weights as they are optimized, will allow for the development of improved
optimizers, for instance by exploiting Kronecker factorisation (Martens & Grosse, 2015; Grosse &
Martens, 2016; Zhang et al., 2017).

8



6 Broader Impact

As neural networks are increasingly being used in safety-critical settings such as medical imaging,
it is important to ensure that practical neural network optimizers are capable of achieving effective
performance in limited training time. We provide a neural network optimization algorithm inspired by
Bayesian filtering that is indeed capable of learning rapidly and generalising well. More importantly,
by highlighting the connections between Bayesian inference and optimization, we hope to provide a
general approach to building new optimization algorithms that will be exploited by future research.

References

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Feldkamp, L. A., Prokhorov, D. V., and Feldkamp, T. M. Simple and conditioned adaptive behavior
from kalman filter trained recurrent networks. Neural Networks, 16(5-6):683–689, 2003.

Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Grosse, R. and Martens, J. A kronecker-factored approximate fisher matrix for convolution layers. In
International Conference on Machine Learning, pp. 573–582, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Hinton, G., Srivastava, N., and Swersky, K. Overview of mini-batch gradient descent. COURSERA:
Neural Networks for Machine Learning: Lecture 6a, 2012.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017.

Jaynes, E. T. Probability theory: The logic of science. Cambridge university press, 2003.

Keskar, N. S. and Socher, R. Improving generalization performance by switching from adam to sgd.
arXiv preprint arXiv:1712.07628, 2017.

Khan, M. E. and Lin, W. Conjugate-computation variational inference: Converting variational infer-
ence in non-conjugate models to inferences in conjugate models. arXiv preprint arXiv:1703.04265,
2017.

Khan, M. E., Liu, Z., Tangkaratt, V., and Gal, Y. Vprop: Variational inference using rmsprop. arXiv
preprint arXiv:1712.01038, 2017.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. Fast and scalable
bayesian deep learning by weight-perturbation in adam. arXiv preprint arXiv:1806.04854, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

Loshchilov, I. and Hutter, F. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 2017.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradient methods with dynamic bound of learning
rate. arXiv preprint arXiv:1902.09843, 2019.

Martens, J. and Grosse, R. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

9



Neuneier, R. and Zimmermann, H. G. How to train neural networks. In Neural networks: tricks of
the trade, pp. 373–423. Springer, 1998.

Ollivier, Y. Online natural gradient as a kalman filter. arXiv preprint arXiv:1703.00209, 2017.

Puskorius, G. V. and Feldkamp, L. A. Decoupled extended kalman filter training of feedforward
layered networks. In Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference
on, volume 1, pp. 771–777. IEEE, 1991.

Puskorius, G. V. and Feldkamp, L. A. Neurocontrol of nonlinear dynamical systems with kalman
filter trained recurrent networks. IEEE Transactions on neural networks, 5(2):279–297, 1994.

Puskorius, G. V. and Feldkamp, L. A. Parameter-based kalman filter training: theory and implemen-
tation. In Kalman filtering and neural networks. Wiley, 2001.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence of adam and beyond. ICLR, 2018.

Sha, S., Palmieri, F., and Datum, M. Optimal filtering algorithms for fast learning in feedforward
neual networks. Neural Networks, 1992.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. The marginal value of adaptive
gradient methods in machine learning. In Advances in Neural Information Processing Systems, pp.
4148–4158, 2017.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1492–1500, 2017.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational inference.
arXiv preprint arXiv:1712.02390, 2017.

10


	Introduction and Background
	Related work
	Methods
	Philosophical note
	AdaBayes recovers SGD and Adam
	Recovering SGD in the low-data limit
	Recovering Adam(W) in the high-data limit


	Experiments
	Conclusions
	Broader Impact

