
A Mathematical Background

Our mechanisms are built with some important mathematical tools. First, in probability theory, an
f -divergence is a function that measures the difference between two probability distributions.
Definition A.1 (f -divergence). Given a convex function f with f(1) = 0, for two distributions over
Ω, p, q ∈ ∆Ω, define the f -divergence of p and q to be

Df (p, q) =

∫
ω∈Ω

p(ω)f

(
q(ω)

p(ω)

)
.

In duality theory, the convex conjugate of a function is defined as follows.
Definition A.2 (Convex conjugate). For any function f : R → R, define the convex conjugate
function of f as

f∗(y) = sup
x
xy − f(x).

Then the following inequality ([22, 16]) holds.
Lemma A.1 (Lemma 1 in [22]). For any differentiable convex function f with f(1) = 0, any two
distributions over Ω, p, q ∈ ∆Ω, let G be the set of all functions from Ω to R, then we have

Df (p, q) ≥ sup
g∈G

∫
ω∈Ω

g(ω)q(ω)− f∗(g(ω))p(ω) dω = sup
g∈G

Eqg − Epf∗(g).

A function g achieves equality if and only if g(ω) ∈ ∂f
(
q(ω)
p(ω)

)
∀ω with p(ω) > 0, where ∂f

( q(ω)
p(ω)

)
represents the subdifferential of f at point q(ω)/p(ω).

The f -mutual information of two random variables is a measure of the mutual dependence of two
random variables, which is defined as the f -divergence between their joint distribution and the
product of their marginal distributions.
Definition A.3 (Kronecker product). Consider two matrices A ∈ Rm×n and B ∈ Rp×q. The
Kronecker product ofA and b, denoted asA⊗B, is defined as the following pm× qn matrix:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
Definition A.4 (f -mutual information and pointwise MI). Let (X,Y ) be a pair of random variables
with values over the space X × Y . If their joint distribution is pX,Y and marginal distributions are
pX and pY , then given a convex function f with f(1) = 0, the f -mutual information between X and
Y is

If (X;Y ) = Df (pX,Y , pX ⊗ pY ) =

∫
x∈X ,y∈Y

pX,Y (x, y)f

(
pX(x) · pY (y)

pX,Y (x, y)

)
.

We define function K(x, y) as the reciprocal of the ratio inside f ,

K(x, y) =
pX,Y (x, y)

pX(x) · pY (y)
.

If two random variables are independent conditioning on another random variable, we have the
following formula for the function K.
Lemma A.2. When random variables X,Y are independent conditioning on θ, for any pair of
(x, y) ∈ X × Y , we have

K(x, y) =
∑
θ∈Θ

p(θ|x)p(θ|y)

p(θ)

if |Θ| is finite, and

K(x, y) =

∫
θ∈Θ

p(θ|x)p(θ|y)

p(θ)
dθ

if Θ ⊆ Rm.
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Proof. We only prove the second equation for Θ ⊆ Rm as the proof for finite Θ is totally similar.

K(x, y) =
p(x, y)

p(x) · p(y)

=

∫
θ∈Θ

p(x|θ)p(y|θ)p(θ) dθ

p(x) · p(y)

=

∫
θ∈Θ

p(θ|x)p(θ|y)

p(θ)
dθ,

where the last equation uses Bayes’ Law.

Definition A.5 (Exponential family [21]). A probability density function or probability mass function
p(x|θ), for x = (x1, . . . , xn) ∈ Xn and θ ∈ Θ ⊆ Rm is said to be in the exponential family in
canonical form if it is of the form

p(x|θ) = h(x) exp
[
θTφ(x)−A(θ)

]
(6)

where A(θ) = log
∫
Xm h(x) exp

[
θTφ(x)

]
. The conjugate prior with parameters ν0, τ 0 for θ has

the form
p(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp

[
ν0θ

T τ 0 − ν0A(θ)
]
. (7)

Let s = 1
n

∑n
i=1 φ(xi). Then the posterior of θ is of the form

p(θ|x) ∝ exp
[
θT (ν0τ 0 + ns)− (ν0 + n)A(θ)

]
= P

(
θ|ν0 + n,

ν0τ 0 + ns

ν0 + n

)
,

where P
(
θ|ν0 + n, ν0τ0+ns

ν0+n

)
is the conjugate prior with parameters ν0 + n and ν0τ0+ns

ν0+n .

Lemma A.3. Let θ be the parameters of a pdf in the exponential family. Let P(θ|ν, τ ) =
g(ν, τ ) exp

[
νθT τ − νA(θ)

]
denote the conjugate prior for θ with parameters ν, τ . For any three

distributions of θ,

p1(θ) = P(θ|ν1, τ 1),

p2(θ) = P(θ|ν2, τ 2),

p0(θ) = P(θ|ν0, τ 0),

we have ∫
θ∈Θ

p1(θ)p2(θ)

p0(θ)
dθ =

g(ν1, τ 1)g(ν2, τ 2)

g(ν0, τ 0)g(ν1 + ν2 − ν0,
ν1τ1+ν2τ2−ν0τ0

ν1+ν2−ν0 )
.

Proof. To compute the integral, we first write p1(θ), p2(θ) and p3(θ) in full,

p1(θ) = P(θ|ν1, τ 1) = g(ν1, τ 1) exp
[
ν1θ

T τ 1 − ν1A(θ)
]
,

p2(θ) = P(θ|ν2, τ 2) = g(ν2, τ 2) exp
[
ν2θ

T τ 2 − ν2A(θ)
]
,

p0(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp
[
ν0θ

T τ 0 − ν0A(θ)
]
.

Then we have the integral equal to∫
θ∈Θ

p1(θ)p2(θ)

p0(θ)
dθ

=

∫
θ∈Θ

g(ν1, τ 1) exp
[
ν1θ

T τ 1 − ν1A(θ)
]
g(ν2, τ 2) exp

[
ν2θ

T τ 2 − ν2A(θ)
]

g(ν0, τ 0) exp [ν0θT τ 0 − ν0A(θ)]
dθ

=
g(ν1, τ 1)g(ν2, τ 2)

g(ν0, τ 0)

∫
θ∈Θ

exp
[
θT (ν1τ 1 + ν2τ 2 − ν0τ 0)−A(θ)(ν1 + ν2 − ν0)

]
dθ

=
g(ν1, τ 1)g(ν2, τ 2)

g(ν0, τ 0)
· 1

g(ν1 + ν2 − ν0,
ν1τ1+ν2τ2−ν0τ0

ν1+ν2−ν0 )
.
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The last equality is because

g

(
ν1 + ν2 − ν0,

ν1τ 1 + ν2τ 2 − ν0τ 0

ν1 + ν2 − ν0

)
exp

[
θT (ν1τ 1 + ν2τ 2 − ν0τ 0)−A(θ)(ν1 + ν2 − ν0)

]
is the pdf

p

(
θ|ν1 + ν2 − ν0,

ν1τ 1 + ν2τ 2 − ν0τ 0

ν1 + ν2 − ν0

)
and thus has the integral over θ equal to 1.

B Missing proof for Lemma 3.1

Lemma B.1 (Lemma 3.1). When D1, . . . , Dn are independent conditioned on θ, for any
(D1, . . . , Dn) and (D̃1, . . . , D̃n), if p(θ|Di) = p(θ|D̃i) ∀i, then p(θ|D1, . . . , Dn) =

p(θ|D̃1, . . . , D̃n).

Proof. Suppose ∀i, p(θ|Di) = p(θ|D′i), then we have

p(θ|D1, D2, · · · , Dn) =
p(D1, D2, · · · , Dn,θ)

p(D1, D2, · · · , Dn)

=
p(D1, D2, · · · , Dn|θ) · p(θ)

p(D1, D2, · · · , Dn)

=
p(D1|θ) · p(D2|θ) · · · p(Dn|θ) · p(θ)

p(D1, D2, · · · , Dn)

=
p(D1,θ) · p(D2,θ) · · · p(Dn,θ) · p(θ)

p(D1, D2, · · · , Dn) · pn(θ)

=
p(θ|D1) · p(θ|D2) · · · p(θ|Dn) · p(D1) · p(D2) · · · · p(Dn)

p(D1, D2, · · · , Dn) · pn−1(θ)

∝ p(θ|D1) · p(θ|D2) · · · p(θ|Dn)

pn−1(θ)
.

Similarly, we have

p(θ|D′1, D′2, · · · , D′n) ∝ p(θ|D′1) · p(θ|D′2) · · · p(θ|D′n)

pn−1(θ)
,

since the analyst calculate the posterior by normalize the terms, we have

p(θ|D1, D2, · · · , Dn) = p(θ|D′1, D′2, · · · , D′n).

C One-time data acquisition

C.1 An example of applying peer prediction

The mechanism is as follows.
Mechanism 3: One-time data collecting mechanism by using Brier Score.

(1) Ask all data providers to report their datasets D̃1, . . . , D̃n.
(2) For all D−i, calculate probability p(D−i|Di) by the reported Di and p(Di|θ).
(3) The Brier score for agent i is si = 1− 1

|D−i|
∑
D−i

(p(D−i|D̃i)− I[D−i = D̃−i])
2,

where I[D−i = D̃−i] = 1 if D−i is the same as the reported D̃−i and 0 otherwise.
(4) The final payment for agent i is ri = B·si

n .

This payment function is actually the mean square error of the reported distribution on D−i. It is
based on the Brier score which is first proposed in [3] and is a well-known bounded proper scoring
rule. The payments of the mechanism are always bounded between 0 and 1.
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Theorem C.1. Mechanism 3 is IR, truthful, budget feasible, symmetric.

Proof. The symmetric property is easy to verify. Moreover, since the payment for each agent is in the
interval [0, 1], the mechanism is then budget feasible and IR. We only need to prove the truthfulness.
Suppose that all the other agents except i reports truthfully. Agent i has true dataset Di and reports
D̃i. Since in the setting, the analyst is able to calculate p(D−i|Di), then if the agent receives si as
their payment, from agent i’s perspective, his expected revenue is then:

Rev′i =
∑
D−i

p(D−i|Di) ·

1−
∑
D′−i

(p(D′−i|D̃i)− I[D′−i = D−i])
2


= −

∑
D−i

p(D−i|Di)

∑
D′−i

(
p(D′−i|D̃i)

2
)
− 2p(D−i|D̃i)


=
∑
D−i

(
−p(D−i|D̃i)

2
+ 2p(D−i|D̃i)p(D−i|Di)

)
Since the function −x2 + 2ax is maximized when x = a, the revenue Rev′i is maximized when
∀D−i, p(D−i|D−i) = p(D−i|Di). Since the real payment ri is a linear transformation of si and the
coefficients are independent of the reported datasets, reporting the dataset with the true posterior will
still maximize the agent’s revenue and the mechanism is truthful.

C.2 Bounding log-PMI: discrete case

In this section, we give a method to compute the bounds of the log-PMI score when |Θ| is finite. First
we give the upper bound of the PMI. We have for any i,Di ∈ Di(D−i)

PMI(Di, D−i) ≤ max
i,D′−i,D

′
i∈Di(D′−i)

{PMI(D′i, D
′
−i)}

= max
i,D′−i,D

′
i∈Di(D′−i)

{∑
θ∈Θ

p(θ|D′i)p(θ|D′−i)
p(θ)

}

≤ max
i,D′i

{∑
θ∈Θ

p(θ|D′i)
minθ{p(θ)}

}

≤ 1

minθ{p(θ)}
.

The last inequality is because we have
∑
θ p(θ|D′i) = 1.

Since we have assumed that p(θ) is positive, the term 1
minθ{p(θ)} could then be computed and is

finite. Thus we just let R be log
(

1
minθ{p(θ)}

)
. Then we need to calculate a lower bound of the score.

We have for any i,D−i and Di ∈ Di(D−i)

PMI(Di, D−i) =
∑
θ∈Θ

p(θ|Di)p(θ|D−i)
p(θ)

≥
∑
θ∈Θ

p(θ|Di)p(θ|D−i). (8)

Claim C.1. Let D = {d(1), . . . , d(N)} be a dataset with N data points that are i.i.d. conditioning
on θ. Let D be the support of the data points d. Define

T =
maxθ∈Θ p(θ)

minθ∈Θ p(θ)
, U(D) = max

θ∈Θ,d∈D
p(θ|d)

/
min

θ∈Θ,d∈D:p(θ|d)>0
p(θ|d) ,

Then we have
maxθ∈Θ p(θ|D)

minθ:p(θ|D)>0 p(θ|D)
≤ U(D)N · TN−1.
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Proof. By Lemma 3.1, we have

p(θ|D) ∝
∏
j p(θ|d(j))

p(θ)N−1
,

for a fixed D, it must hold that

maxθ∈Θ p(θ|D)

minθ:p(θ|D)>0 p(θ|D)
≤ U(D)N · TN−1.

Claim C.2. For any two datasets Di and Dj with Ni and Nj data points respectively, let Di be the
support of the data points in Di and let Dj be the support of the data points in Dj . Then

maxθ∈Θ p(θ|Di, Dj)

minθ:p(θ|Di,Dj)>0 p(θ|Di, Dj)
≤ U(Di)Ni · U(Dj)Nj · TNi+Nj−1.

Proof. Again by Lemma 3.1, we have

p(θ|Di, Dj) ∝
p(θ|Di)p(θ|Dj)

p(θ)
.

Combine it with Claim C.1, we prove the statement.

Then for any Di, since
∑
θ∈Θ p(θ|Di) = 1, by Claim C.1,

min
θ:p(θ|Di)>0

p(θ|Di) ≥
1

1 + |Θ| · U(Di)Ni · TNi−1
, η(Di, Ni).

And for any D−i, since
∑
θ∈Θ p(θ|D−i) = 1, by Claim C.2,

min
θ:p(θ|D−i)>0

p(θ|D−i) ≥
1

1 + |Θ| ·Πj 6=iU(Dj)Nj · T
∑

j 6=iNj−1
, η(D−i, N−i).

Finally, for any i,D−i,and Di ∈ Di(D−i), according to (8),

PMI(Di, D−i) ≥
∑
θ∈Θ

p(θ|Di)p(θ|D−i) ≥ η(Di, Ni) · η(D−i, N−i).

The last inequality is because Di ∈ Di(D−i) and there must exists θ ∈ Θ so that both p(θ|Di) and
p(θ|D−i) are non-zero. Both η(Di, Ni) and η(D−i, N−i) can be computed in polynomial time. Take
minimum over i, we find the lower bound for PMI.

C.3 Bounding log-PMI: continuous case

Consider estimating the mean µ of a univariate Gaussian N (x|µ, σ2) with known variance σ2. Let
D = {x1, . . . , xN} be the dataset and denote the mean by x = 1

N

∑
j xj . We use the Gaussian

conjugate prior,
µ ∼ N (µ|µ0, σ

2
0).

Then according to [20], the posterior of µ is equal to

p(µ|D) = N (µ|µN , σ2
N ),

where
1

σ2
N

=
1

σ2
0

+
N

σ2

only depends on the number of data points.

By Lemma 4.1, we know that the payment function for exponential family is in the form of

PMI(Di, D−i) =
g(νi, τ i)g(ν−i, τ−i)

g(ν0, τ 0)g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
.
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The normalization term for Gaussian is 1√
2πσ2

, so we have

PMI(Di, D−i) =

√
1
σ2
0

+ Ni

σ2

√
1
σ2
0

+ N−i

σ2√
1
σ2
0

√
1
σ2
0

+ Ni+N−i

σ2

.

When the total number of data points has an upper bound Nmax, each of the square root term should
be bounded in the interval [

1

σ0
,

√
1

σ2
0

+
Nmax
σ2

]
Therefore PMI(Di, D−i) is bounded in the interval[(

1 +Nmaxσ
2
0/σ

2
)−1/2

, 1 +Nmaxσ
2
0/σ

2
]
.

C.4 Sensitivity analysis for the exponential family

If we are estimating the mean µ of a univariate Gaussian N (x|µ, σ2) with known variance σ2. Let
D = {x1, . . . , xN} be the dataset and denote the mean by x = 1

N

∑
j xj . We use the Gaussian

conjugate prior,
µ ∼ N (µ|µ0, σ

2
0).

Then according to [20], the posterior of µ is equal to

p(µ|D) = N (µ|µN , σ2
N ),

where
1

σ2
N

=
1

σ2
0

+
N

σ2

only depends on the number of data points. Since the normalization term 1√
2πσ2

of Gaussian
distributions only depends on the variance, function h(·) defined in (12)

hD−i
(Ni, xi) =

g(νi, τ i)

g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )

=

√
1

σ2
0

+
Ni
σ2

/√
1

σ2
0

+
Ni +N−i

σ2

will only be changed if the number of data points Ni changes, which means that the mechanism will
be sensitive to replication and withholding, but not necessarily other types of manipulations.

If we are estimating the mean µ of a Bernoulli distribution Ber(x|µ). Let D = {x1, . . . , xN} be the
data points. Denote by α =

∑
i xi the number of ones and denote by β =

∑
i 1− xi the number of

zeros. The conjugate prior is the Beta distribution,

p(µ) = Beta(µ|α0, β0) =
1

B(α0, β0)
µα0−1(1− µ)β0−1.

where B(α0, β0) is the Beta function

B(α0, β0) =
(α0 + β0 − 1)!

(α0 − 1)!(β0 − 1)!
.

The posterior of µ is equal to

p(µ|D) = Beta(µ|α0 + α, β0 + β).

Then we have

hD−i
(α, β) =

B(α0 + αi + α−i, β0 + βi + β−i)

B(α0 + αi, β0 + βi)

=
(α0 + β0 +Ni +N−i − 1)!(α0 + αi − 1)!(β0 + βi − 1)!

(α0 + αi + α−i − 1)!(β0 + βi + β−i − 1)!(α0 + β0 +Ni − 1)!
.
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Define Ai = α0 +αi−1 and Bi = β0 +βi−1, since Ni = αi+βi and N−i = α−i+β−i, we have

hD−i(α, β) = hα−i,β−i(Ai, Bi) =
Ai!Bi!(Ai +Bi + α−i + β−i + 1)!

(Ai + α−i)!(Bi + β−i)!(Ai +Bi + 1)!

Now we are going to prove that for any two different pairs (Ai, Bi) and (A′i, B
′
i), there should always

exists a pair (α′−i, β
′
−i) selected from the four pairs: (α−i, βi), (α−i + 1, βi), (α−i, βi + 1), (α−i +

1, βi + 1), such that hα′−i,β
′
−i

(Ai, Bi) 6= hα′−i,β
′
−i

(A′i, B
′
i).

Suppose that this does not hold, then there should exist two pairs (Ai, Bi) and (A′i, B
′
i) such that for

each (α′−i, β
′
−i) in the four pairs, hα′−i,β

′
−i

(Ai, Bi) = hα′−i,β
′
−i

(A′i, B
′
i).

Then by the two cases when (α′−i, β
′
−i) = (α−i, β−i) and (α−i + 1, β−i) we can derive that

hα−i+1,β−i
(Ai, Bi)

hα−i,β−i
(Ai, Bi)

=
hα−i+1,β−i

(A′i, B
′
i)

hα−i,β−i
(A′i, B

′
i)

Ai +Bi + α−i + 1 + β−i + 1

Ai + α−i + 1
=
A′i +B′i + α−i + 1 + β−i + 1

A′i + α−i + 1

(Ai +Bi −A′i −B′i)(α−i + 1) + (A′i −Ai)(α−i + β−i + 2) +A′iBi −AiB′i = 0

Replacing β−i with β−i + 1, we could get
(Ai +Bi −A′i −B′i)(α−i + 1) + (A′i −Ai)(α−i + β−i + 3) +A′iBi −AiB′i = 0

Subtracting the last equation from this, we get A′i − Ai = 0. Symmetrically, when (α′−i, β
′
−i) =

(α−i, β−i) and (α−i, β−i + 1) and replacing α−i with α−i + 1, we have B′i − Bi = 0 and thus
(Ai, Bi) = (A′i, B

′
i). This contradicts to the assumption that (Ai, Bi) 6= (A′i, B

′
i). Therefore for any

two different pairs of reported data in the Bernoulli setting, at least one in the four others’ reported
data (α−i, βi), (α−i+1, βi), (α−i, βi+1), (α−i+1, βi+1) would make the agent strictly truthfully
report his posterior.

C.5 Missing proofs

C.5.1 Proof for Theorem 5.1 and Theorem 5.2

Theorem C.2 (Theorem 5.1). Mechanism 1 is IR, truthful, budget feasible, symmetric.

We suppose that the dataset space of agent i is Di. We first give the definitions of several matrices.
These matrices are essential for our proofs, but they are unknown to the data analyst. Since the
dataset Di consists of Ni i.i.d data points drawn from the data generating matrix Gi, we define
prediction matrix Pi of agent i to be a matrix with |Di| = |D|Ni rows and |Θ| columns. Each column
corresponds to a θ ∈ Θ and each row corresponds to a possible dataset Di ∈ Di. The matrix element
on the column corresponding to θ and the row corresponding toDi is p(Di|θ). Intuitively, this matrix
is the posterior of agent i’s dataset conditioned on the parameter θ.

Similarly, we define the out-prediction matrix P−i of agent i to be a matrix with
∏
j 6=i |Dj | rows and

|Y | columns. Each column corresponds to a θ ∈ Θ and each row corresponds to a possible dataset
D−i ∈ D−i. The element corresponding to D−i and θ is p(D−i|θ). In the proof, we also give a
lower bound on the sensitiveness coefficient α related to these out-prediction matrices.
Theorem C.3 (Theorem 5.2). Mechanism 1 is sensitive if either condition holds:

1. ∀i, Q−i has rank |Θ|.

2. ∀i,
∑
i′ 6=i (rankk(Gi′)− 1) ·Ni′ + 1 ≥ |Θ|.

Moreover, it is ei · B
n(R−L) -sensitive for agent i, where ei is the smallest singular value of matrix P−i.

Proof. First, it is easy to verify that the mechanism is budget feasible because si is bounded between
L and R. Let agent i’s expected revenue of Mechanism 1 be Revi. Then we have

Revi =
B

n
·

(∑
D−i∈Di(D−i)

p(D−i|Di) · logPMI(D̃i, D−i)− L
R− L

)
.
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We consider another revenue Rev′i ,
∑
D−i

p(D−i|Di) · log
(∑

θ
p(θ|D̃i)·p(θ|D−i)

p(θ)

)
assuming that

0 · log 0 = 0. Then we have

Rev′i =
∑
D−i

p(D−i|Di) · log

(∑
θ

p(θ|D̃i) · p(θ|D−i)
p(θ)

)
=

∑
D−i,Di∈Di(D−i)

p(D−i|Di) · logPMI(D̃i, D−i)

+
∑

D−i,Di /∈Di(D−i)

p(D−i|Di) · logPMI(D̃i, D−i)

=
∑

D−i,Di∈Di(D−i)

p(D−i|Di) · logPMI(D̃i, D−i) +
∑

D−i,Di /∈Di(D−i)

0 · log 0

=
∑

D−i,Di∈Di(D−i)

p(D−i|Di) · logPMI(D̃i, D−i)

= Revi ·
n

B
· (R− L) + L.

Rev′i is a linear transformation of Revi. The coefficients L, R, nB do not depend on D̃i. The ratio
n
B · (R− L) is larger than 0. Therefore, the optimal reported D̃i for Revi should be the same as that
for Rev′i. If the a payment rule with revenue Rev′i is ei - sensitive for agent i, then the Mechanism 1
would then be ei · B

n·(R−L) - sensitive. In the following part, we prove that real dataset Di would
maximize the revenue Rev′i and the Rev′i is ei · B

|N |·(R−L) - sensitive for all the agents. Thus in the
following parts we prove the revenue Rev′i is ei - sensitive for agent i.

Rev′i =
∑
D−i

p(D−i|Di) · log

(∑
θ

p(θ|D̃i) · p(θ|D−i)
p(θ)

)

=
∑
D−i

p(D−i|Di) · log

(∑
θ

p(θ|D̃i) · p(θ, D−i)
p(θ)

)
−
∑
D−i

p(D−i|Di) · log (p(D−i))

=
∑
D−i

p(D−i|Di) · log

(∑
θ

p(θ|D̃i) · p(θ, D−i)
p(θ)

)
− C.

Since the term
∑
D−i

p(D−i|Di)·log (p(D−i)) does not depend on D̃i, agent i could only manipulate

to modify the term
∑
D−i

p(D−i|Di) · log
(∑

θ
p(θ|D̃i)·p(θ,D−i)

p(θ)

)
. Since we have

∑
D−i,θ

p(θ|D̃i) · p(θ, D−i)
p(θ)

=
∑
θ

1

p(θ)

∑
D−i

p(θ|D̃i) · p(θ, D−i)


=
∑
θ

1

p(θ)

(
p(θ|D̃i) · p(θ)

)
=
∑
θ

p(θ|D̃i)

= 1,

Since we have
∑
D−i

(∑
θ
p(θ|D̃i)·p(θ,D−i)

p(θ)

)
= 1, we could view the term

∑
θ
p(θ|D̃i)·p(θ,D−i)

p(θ) as

a probability distribution on the variable D−i. Since it depends on D̃i, we denote it as p̃(D−i|D̃i).
Since if we fix a distributions p(σ), then the distribution q(σ) that maximizes

∑
σ p(σ) log q(σ)

should be the same as p. (If we assume that 0 · log 0 = 0, this still holds.) When agent i report
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truthfully, ∑
θ

p(θ|Di) · p(θ, D−i)
p(θ)

=
∑
θ

p(Di,θ) · p(D−i,θ)

p(Di) · p(θ)

=
∑
θ

p(Di|θ) · p(D−i,θ)

p(Di)

=
∑
θ

p(Di|θ) · p(D−i|θ) · p(θ)

p(Di)

=
∑
θ

p(Di, D−i,θ)

p(Di)

= p(D−i|Di).

The data provider can always maximize Rev′i by truthfully reporting Di. And we have proven the
truthfulness of the mechanism.

Then we need to prove the relation between the sensitiveness of the mechanism and the out-prediction
matrices. When Alice reports D̃i the revenue difference from truthfully report is then

∆Rev′i
=
∑
D−i

p(D−i|Di) log p(D−i|Di)−
∑
D−i

p(D−i|Di) log p̃(D−i|Di)

=
∑
D−i

p(D−i|Di) log
p(D−i|Di)

p̃(D−i|Di)

= DKL(p‖p̃)

≥
∑
D−i

‖p(D−i|Di)− p̃(D−i|Di)‖2.

We let the distribution difference vector be ∆i (Note that here ∆i is a |Θ|-dimension vector), then we
have

∆Rev′i
≥
∑
D−i

|p(D−i|Di)− p̃(D−i|Di)|2 ≥
∑
D−i

∥∥∥∥∥∑
θ

(p(θ|Di)− p̃(θ|Di)) · p(D−i|θ)

∥∥∥∥∥
2

= ‖P−i∆i‖2.

Since ei is the minimum singular value of P−i and thus PT−iP−i − eiI is semi-positive, we have

‖P−i∆i‖2 = ∆T
i P

T
−iP−i∆i

= ∆T
i (PT−iP−i − eiI)∆i + ∆T

i eiI∆i

≥ ∆T
i eiI∆i

≥ ei∆T
i ∆i

= ‖∆i‖ · ei.
Finally get the payment rule with revenue Rev′i is ei-sensitive for agent i. If all P−i has rank |Θ|,
then all the singular values of the matrix P−i should have positive singular values and for all i, ei > 0.
By now we have proven that if all the P−i has rank |Θ|, then the mechanism is sensitive. Since
p(θ|Di) = p(Di|θ) · p(θ)

p(Di)
, we have the matrix equation:

Q−i = ΛD
−1
i · P−i · Λθ,

where ΛD
−1
i =


1

p(D1
i )

1
p(D2

i )

. . .
1

p(D
|Di|
i )

 and Λθ =


p(θ1)

p(θ2)
. . .

p(θ|Θ|)

 .
p(Dj

i ) is the probability that agent i gets the dataset Dj
i . p(θk) is the probability of the prior of the
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parameter θ with index k. Both are all diagnal matrices. Both of the diagnal matrices well-defined
and full-rank. Thus the rank of P−i should be the same as Q−i and we have proved the first condition.

The proof for the second sufficient condition is directly derived from the paper [27] and the condition
1. We first define a matrix G′i with the same size as Gi while its elements are p(di|θ) rather than
p(θ|di). Since for all i′ ∈ [n] the prediction matrix Pi′ is the columnwise Kronecker product (defined
in Lemma 1 in [27] which is shown below) of Ni′ data generating matrices. By using the following
Lemma in [27], if the k-rank of G′i′ is r, then each time we multiply(columnwise Kronecker product)
a matrix by G′i′ , the k-rank would increase by at least rankk(G′i′)− 1, or reach the cap of |Θ|.

Lemma C.1. Consider two matrices A = [a1,a2, · · · ,aF ] ∈ RI×F ,B = [b1, b2, · · · , bF ] ∈
RJ×F andA�c B is the columnwise Krocnecker product ofA andB defined as:

A�c B , [a1 ⊗ b1,a2 ⊗ b2, · · · ,aF ⊗ bF ] ,

where ⊗ stands for the Kronecker product. It holds that

rankk(A�c B) ≥ min{rankk(A) + rankk(B)− 1, F}.

Therefore the final k-rank of the Ni′ would be no less than min{Ni · (r − 1) + 1, |Θ|}. We then
need to calculate the k-rank of the out-prediction matrix of each agent i and verify whether it is
|Θ|. Similarly, the out-prediction matrix of agent i is the columnwise Kronecker product of all the
other agent’s prediction matrices. By the same lower bound tool in [27], the k-rank of P−i should
be at least min{

∑
i′ 6=i (rankk(G′i′)− 1) ·Ni′ + 1, |Θ|} and by Theorem 5.2, if the k-rank of all

prediction matrices are all |Θ|, Mechanism 1 should be sensitive.

C.5.2 Missing Proof for Theorem 5.3

When Θ ⊆ Rm and a model in the exponential family is used, we prove that the mechanism will be
sensitive if and only if for any (ν′i, τ

′
i) 6= (νi, τ i),

Pr
D−i

[hD−i(ν
′
i, τ
′
i) 6= hD−i(νi, τ i)] > 0. (9)

We first show that the above condition is equivalent to that for any (ν′i, τ
′
i) 6= (νi, τ i),

Pr
D−i|Di

[hD−i(ν
′
i, τ
′
i) 6= hD−i(νi, τ i)] > 0, (10)

where D−i is drawn from p(D−i|Di) but not p(D−i). This is because, by conditional independence
of the datasets, for any event E , we have

Pr
D−i|Di

[E ] =

∫
θ∈Θ

p(θ|Di) Pr
D−i|θ

[E ] dθ

and

Pr
D−i

[E ] =

∫
θ∈Θ

p(θ) Pr
D−i|θ

[E ] dθ.

Since both p(θ) and p(θ|Di) are always positive because they are in exponential family, it should
hold that

Pr
D−i|Di

[E ] > 0 ⇐⇒ Pr
D−i

[E ] > 0.

Therefore (9) is equivalent to (10), and we only need to show that the mechanism is sensitive if and
only if (10) holds.

When we’re using a (canonical) model in exponential family, the prior p(θ) and the posteriors
p(θ|Di), p(θ|D−i) can be represented in the standard form (7),

p(θ) = P(θ|ν0, τ 0),

p(θ|Di) = P
(
θ|νi, τ i

)
,

p(θ|D−i) = P
(
θ|ν−i, τ−i

)
,

p(θ|D̃i) = P
(
θ|ν′i, τ ′i

)
,
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where ν0, τ 0 are the parameters for the prior p(θ), νi, τ i are the parameters for the posterior p(θ|Di),
ν−i, τ−i are the parameters for the posterior p(θ|D−i), and ν′i, τ

′
i are the parameters for p(θ|D̃i).

From the proof for Theorem 5.1, we know that the difference between the expected score of reporting
Di and the expected score of reporting D̃i 6= Di is equal to

∆Rev = DKL(p(D−i|Di)‖p(D−i|D̃i)).

Therefore if p(D−i|D̃i) differs from p(D−i|Di) with non-zero probability, that is,

Pr
D−i|Di

[p(D−i|Di) 6= p(D−i|D̃i)] > 0, (11)

then ∆Rev > 0. By Lemma A.2 and Lemma A.3,

p(D−i|Di) =

∫
θ∈Θ

p(θ|Di)p(θ|D−i)
p(θ)

dθ =
g(νi, τ i)g(ν−i, τ−i)

g(ν0, τ 0)g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
.

p(D−i|D̃i) =

∫
θ∈Θ

p(θ|D̃i)p(θ|D−i)
p(θ)

dθ =
g(ν′i, τ

′
i)g(ν−i, τ−i)

g(ν0, τ 0)g(ν′i + ν−i − ν0,
ν′iτ
′
i+ν−iτ−i−ν0τ0

ν′i+ν−i−ν0 )
.

Therefore (11) is equivalent to
Pr

D−i|Di

[hD−i
(νi, τ i) 6= hD−i

(ν′i, τ
′
i)] > 0.

Therefore if for all (ν′i, τ
′
i) 6= (νi, τ i), we have

Pr
D−i|Di

[hD−i(νi, τ i) 6= hD−i(ν
′
i, τ
′
i)] > 0,

then reporting any (ν′i, τ
′
i) 6= (νi, τ i) will lead to a strictly lower expected score, which means the

mechanism is sensitive. To prove the other direction, if the above condition does not hold, i.e., there
exists (ν′i, τ

′
i) 6= (νi, τ i) with

Pr
D−i|Di

[hD−i(ν
′
i, τ
′
i) 6= hD−i(νi, τ i)] = 0,

then reporting (ν′i, τ
′
i) 6= (νi, τ i) will give the same expected score as truthfully reporting (νi, τ i),

which means that the mechanism is not sensitive.

D Multiple-time data acquisition

D.1 Sensitivity analysis

We first give the sensitivity analysis for finite-size |Θ|. The results are basically the same as the ones
for the one-time data acquisition mechanism except that we do not give a lower bound for α.
Theorem D.1. When |Θ| is finite, if f is strictly convex, then Mechanism 2 is sensitive in the first
T − 1 rounds if either of the following two conditions holds,

(1) ∀i, Q−i has rank |Θ|.

(2) ∀i,
∑
i′ 6=i(rankk(Gi′)− 1) ·Ni′ + 1 ≥ |Θ|.

When Θ ⊆ Rm is a continuous space, the results are entirely similar to the ones for Mechanism 1 but
with slightly different proofs.

Suppose the data analyst uses a model from the exponential family so that the prior and all the
posterior of θ can be written in the form in Lemma 4.1. The sensitivity of the mechanism will depend
on the normalization term g(ν, τ ) (or equivalently, the partition function) of the pdf. Define

hD−i(νi, τ i) =
g(νi, τ i)

g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
, (12)

then we have the following sufficient and necessary conditions for the sensitivity of the mechanism.
Theorem D.2. When Θ ⊆ Rm, if the data analyst uses a model in the exponential family and a
strictly convex f , then Mechanism 2 is sensitive in the first T − 1 rounds if and only if for any
(ν′i, τ

′
i) 6= (νi, τ i), we have PrD−i

[hD−i
(ν′i, τ

′
i) 6= hD−i

(νi, τ i)] > 0.

See Section 5 for interpretations of this theorem.
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D.2 Missing proofs

The following part are the proofs for our results.

Proof of Theorem 6.1. It is easy to verify that the mechanism is IR, budget feasible and symmetric.
We prove the truthfulness as follows.

Let’s look at the payment for day t. At day t, data provider i reports a dataset D̃(t)
i . Assuming that

all other data providers truthfully report D(t)
−i , data provider i’s expected payment is decided by his

expected score

E
(D

(t)
−i ,D

(t+1)
−i )|D(t)

i
[si]

=E
D

(t+1)
−i

f ′

(
1

PMI(D̃
(t)
i , D

(t+1)
−i )

)
− E

D
(t)
−i |D

(t)
i
f∗

(
f ′

(
1

PMI(D̃
(t)
i , D

(t)
−i)

))
. (13)

The first expectation is taken over the marginal distribution p(D(t+1)
−i ) without conditioning on D(t)

i

because D(t+1) is independent from D(t), so we have p(D(t+1)
−i |D(t)

i ) = p(D
(t+1)
−i ). Since the

underlying distributions for different days are the same, we drop the superscripts for simplicity in the
rest of the proof, so the expected score is written as

ED−i f
′

(
1

PMI(D̃i, D−i)

)
− ED−i|Di

f∗

(
f ′

(
1

PMI(D̃i, D−i)

))
. (14)

We then use Lemma 4.2 to get an upper bound of the expected score (14) and show that truthfully
reporting Di achieves the upper bound. We apply Lemma 4.2 on two distributions of D−i, the
distribution of D−i conditioning on the observed Di, p(D−i|Di), and the marginal distribution
p(D−i). Then we get

Df (p(D−i|Di), p(D−i)) ≥ sup
g∈G

ED−i
[g(D−i)]− ED−i|Di

[f∗(g(D−i))], (15)

where f is the given convex function, G is the set of all real-valued functions of D−i. The supremum
is achieved and only achieved at function g with

g(D−i) = f ′
(

p(D−i)

p(D−i|Di)

)
for all D−i with p(D−i|Di) > 0. (16)

For a dataset D̃i, define function

gD̃i
(D−i) = f ′

(
1

PMI(D̃i, D−i)

)
.

Then (15) gives an upper bound of the expected score (14) as

Df (p(D−i|Di), p(D−i))

≥ ED−i

[
gD̃i

(D−i)
]
− ED−i|Di

[
f∗
(
gD̃i

(D−i)
)]

= ED−i

[
f ′

(
1

PMI(D̃i, D−i)

)]
− ED−i|Di

[
f∗

(
f ′

(
1

PMI(D̃i, D−i)

))]
= (14).

By (16), the upper bound is achieved only when

gD̃i
(D−i) = f ′

(
p(D−i)

p(D−i|Di)

)
for all D−i with p(D−i|Di) > 0,

that is

f ′

(
1

PMI(D̃i, D−i)

)
= f ′

(
p(D−i)

p(D−i|Di)

)
for all D−i with p(D−i|Di) > 0. (17)
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Then it is easy to prove the truthfulness. Truthfully reportingDi achieves (17) because by Lemma A.2,
for all Di and D−i,

PMI(Di, D−i) =
p(Di, D−i)

p(Di)p(D−i)
=
p(D−i|Di)

p(D−i)
.

Again, let Q−i be a (Πj∈[n],j 6=i|Dj |Nj )× |Θ| matrix with elements equal to p(θ|D−i) and let Gi
be the |Di| × |Θ| data generating matrix with elements equal to p(θ|di). Then we have the following
sufficient conditions for the mechanism’s sensitivity.

Proof of Theorem D.1. We then prove the sensitivity. For discrete and finite-size Θ, we prove
that when f is strictly convex andQ−i has rank |Θ|, the mechanism is sensitive. When f is strictly
convex, f ′ is a strictly increasing function. Let q̃i = p(θ|D̃i). Then accordint to the definition of
PMI(·), condition (17) is equivalent to

PMI(D̃i, D−i) =
∑
θ∈Θ

q̃i · p(θ|D−i)
p(θ)

=
p(D−i|Di)

p(D−i)
for all D−i with p(D−i|Di) > 0. (18)

We show that when matrixQ−i has rank |Θ|, q̃i = p(θ|Di) is the only solution of (18), which means
that the payment rule is sensitive. Then suppose q̃i = p(θ|Di) and q̃i = p(θ|D̃i) are both solutions
of (18), then we should have

p(D−i|D̃i) = p(D−i|Di) for all D−i with p(D−i|Di) > 0.

In addition, because ∑
D−i

p(D−i|D̃i) = 1 =
∑
D−i

p(D−i|Di)

and p(D−i|D̃i) ≥ 0, we must also have p(D−i|D̃i) = 0 for all D−i with p(D−i|Di) = 0. Therefore
we have

PMI(D̃i, D−i) = PMI(Di, D−i) for all D−i.
Since PMI(·) can be written as,

PMI(D̃i, D−i) =
∑
θ∈Θ

p(θ|D̃i)p(θ|D−i)
p(θ)

= (Q−iΛq̃i)D−i

where Λ is the |Θ| × |Θ| diagonal matrix with 1/p(θ) on the diagonal. So we have

Q−iΛp(θ|Di) = Q−iΛq =⇒ Q−iΛ(p(θ|Di)− q) = 0.

SinceQ−iΛ must have rank |Θ|, which means that the columns ofQ−iΛ are linearly independent,
we must have

p(θ|Di)− q = 0,

which completes our proof of sensitivity for finite-size Θ. The proof of condition (2) is the same as
the proof of Theorem C.3 condition (2).

Proof of Theorem D.2. When Θ ⊆ Rm and a model in the exponential family is used, we prove that
when f is strictly convex, the mechanism will be sensitive if and only if for any (ν′i, τ

′
i) 6= (νi, τ i),

Pr
D−i

[hD−i(ν
′
i, τ
′
i) 6= hD−i(νi, τ i)] > 0. (19)

We first show that the above condition is equivalent to that for any (ν′i, τ
′
i) 6= (νi, τ i),

Pr
D−i|Di

[hD−i
(ν′i, τ

′
i) 6= hD−i

(νi, τ i)] > 0, (20)

where D−i is drawn from p(D−i|Di) but not p(D−i). This is because, by conditional independence
of the datasets, for any event E , we have

Pr
D−i|Di

[E ] =

∫
θ∈Θ

p(θ|Di) Pr
D−i|θ

[E ] dθ
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and
Pr
D−i

[E ] =

∫
θ∈Θ

p(θ) Pr
D−i|θ

[E ] dθ.

Since both p(θ) and p(θ|Di) are always positive because they are in exponential family, it should
hold that

Pr
D−i|Di

[E ] > 0 ⇐⇒ Pr
D−i

[E ] > 0.

Therefore (19) is equivalent to (20), and we only need to show that the mechanism is sensitive if and
only if (20) holds.

Let q̃i = p(θ|D̃i). We then again apply Lemma 4.2. By Lemma 4.2 and the strict convexity of f , q̃i
achieves the supremum if and only if

PMI(D̃i, D−i) =
p(D−i|Di)

p(D−i)
for all D−i with p(D−i|Di) > 0.

By the definition of PMI and Lemma A.2, the above condition is equivalent to∫
θ∈Θ

q̃i(θ)p(θ|D−i)
p(θ)

dθ =

∫
θ∈Θ

p(θ|Di)p(θ|D−i)
p(θ)

dθ for all D−i with p(D−i|Di) > 0. (21)

When we’re using a (canonical) model in exponential family, the prior p(θ) and the posteriors
p(θ|Di), p(θ|D−i) can be represented in the standard form (7),

p(θ) = P(θ|ν0, τ 0),

p(θ|Di) = P
(
θ|νi, τ i

)
,

p(θ|D−i) = P
(
θ|ν−i, τ−i

)
,

q̃i = P
(
θ|ν′i, τ ′i

)
,

where ν0, τ 0 are the parameters for the prior p(θ), νi, τ i are the parameters for the posterior p(θ|Di),
ν−i, τ−i are the parameters for the posterior p(θ|D−i), and ν′i, τ

′
i are the parameters for q̃i. Then

by Lemma A.3, the condition that q̃i achieves the supremum (21) is equivalent to

g(ν′i, τ
′
i)

g(ν′i + ν−i − ν0,
ν′iτ
′
i+ν−iτ−i−ν0τ0

ν′i+ν−i−ν0 )
=

g(νi, τ i)

g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
. (22)

which, by our definition of h(·), is just

hD−i(ν
′
i, τ
′
i) = hD−i(νi, τ i), for all D−i with p(D−i|Di) > 0.

Now we are ready to prove Theorem D.2. Since (19) is equivalent to (20), we only need to show that
the mechanism is sensitive if and only if for all (ν′i, τ

′
i) 6= (νi, τ i),

Pr
D−i|Di

[hD−i
(ν′i, τ

′
i) 6= hD−i

(νi, τ i)] > 0.

If the above condition holds, then q̃i with parameters (ν′i, τ
′
i) 6= (νi, τ i) should have a non-zero loss

in the expected score (14) compared to the optimal solution p(θ|Di) with parameters (νi, τ i), which
means that the mechanism is sensitive. For the other direction, if the condition does not hold, i.e.,
there exists (ν′i, τ

′
i) 6= (νi, τ i) with

Pr
D−i|Di

[hD−i(ν
′
i, τ
′
i) 6= hD−i(νi, τ i)] = 0,

then reporting (ν′i, τ
′
i) 6= (νi, τ i) will give the same expected score as truthfully reporting (νi, τ i),

which means that the mechanism is not sensitive.
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