- We thank the reviewers for their constructive feedback on our paper. We will take this feedback into account when
- 2 revising the paper. Below we provide point-by-point response.

з **Rev.#1**:

- 4 Reg. useless intervals and method breakdown: When $y_{\alpha}(x, \mathbf{z}) = \max(\mathcal{Y})$, the upper limit is noninformative which
- occurs when (x, z) is 'far' from the training data. In such cases, however, the proposed policy would fall back onto
- the logging policy if $p(\mathbf{z}|x)$ is modelled accurately and used in the weights $w(x,\mathbf{z})$ in (8). The method would indeed
- 7 perform poorly if the model were highly inaccurate, which would result in weights that may alter the decisions drastically.
- 8 Fortunately, it is possible to use model validation techniques to assess the accuracy of the model, as pointed out in
- 9 Sec. 3.2. Even in the case of misspecified models, the weights can be sufficiently accurate to provide accurate intervals,
- as Figure 3d demonstrates for the synthetic example in Sec. 4.1, where the empirical estimate of $\mathbb{P}^{\pi_{\alpha}}(y \leq y_{\alpha}(\mathbf{z}))$
- matches the theoretical limit well.
- 12 Reg. motivation for locally weighted average $\mu(x, y, \mathbf{z})$: Firstly, it leads to computationally efficient conformal limits
- since $\mu(x, y, \mathbf{z})$ must be fitted for each evaluation at (x, y, \mathbf{z}) . Using the nonparametric weighted average, each fitting
- has a constant runtime $\mathcal{O}(1)$. Secondly, using parametric predictive models $\check{\mu}(x,y,\mathbf{z})$ yields conformal limits that are
- more sensitive to model misspecification. Indeed, misspecified parametric models may produce larger residuals and
- hence larger conformal limits than a nonparametric locally weighted average. These points will be highlighted in the
- 17 revised manuscript.
- 18 Reg. complexity of Algorithm 1: The main operations which depend on the number of datapoints n are lines 3, 4
- and 10. Out of these, line 10 involves a sorting operation to compute the quantile $s_{1-\alpha}(\widehat{F})$ which dominates all other
- computations and results in a total runtime $O(n \log n)$. The method thus is scalable to large n.
- 21 Reg. comparison to reasonable baselines: We have now added another baseline which explicitly learns a policy using
- 22 an consistent estimate of α -quantile of the costs y (based on the cited paper by Wang et. al.). For the synthetic case
- in Sec. 4.1, it results in a slightly lower α -quantile level, but significantly higher tail costs beyond the α -quantile as
- 24 compared to the proposed method. We will include comparisons with this additional baseline for both numerical
- examples in the revised manuscript or supplementary material.
- 26 Reg. discussion of relevant work in reinforcement learning: We will add the suggested references and additional
- 27 references on safety-critical applications.
- We will add a clarification on the notation \mathbb{P}^x .

29 **Rev.#2**:

- Reg. unconfoundedness: We agree with the reviewer and we do assume that there are no unobserved confounders. We
- will make this assumption explicit in the revised manuscript.
- Reg. overlap: Result 1 does require overlap $p(x|\mathbf{z}) > 0$ in order for the weights $w(x, \mathbf{z})$ in eq. (8) to be finite. However,
- as pointed out at the end of Sec. 3.1, as the evaluated weight $w(x, \mathbf{z}) \to \infty$, then $p_x(x, \mathbf{z}) \to 1$ and the conformal limit
- simply becomes uninformative so that the method remains operational even for infinite weight $w(x, \mathbf{z})$. We will clarify
- 35 this point in the revised paper.

36 **Rev.#3**:

- Reg. distributional shift: If the feature training distribution p(z) shifts from the test distribution, say, q(z), then the
- method can be readily extended to compensate for such distributional shifts, provided that $q(\mathbf{z})$ can be evaluated at a
- $_{39}$ given z. We will include this remark in the revised manuscript.
- 40 Reg. dimension reduction and high-dimensional data: We have not studied the effect of dimension reduction on the
- 41 performance of our method. However, it is possible to check the accuracy of the learned generative model $\widehat{p}(\mathbf{z}|x=k)$
- using the model validation methods referred to in Sec. 4.2. This provides a guideline for choosing the appropriate
- feature dimension to which data is can be reduced.
- 44 Reg. validity of results under confounding: Indeed, we do assume no unobserved confounders and will make the
- 45 assumption explicit.
- 46 Reg. fairness: We have not explored this question in this work but included a remark on it in the broader impact section.

47 Rev.#4

- Reg. comparison to other methods: We do compare our method to mean-optimal policy $\pi(\mathbf{z})$, which is a standard
- method considered in the literature. Moreover, we have also included an additional baseline as explained in the reply to
- 50 Reviewer 1.