
A Assumptions and Theoretical Results

A.1 Assumptions of risk functions

Definition 1. (L-Lipschitz continuous gradient). A differentiable convex function f is said to have an
L-Lipschitz continuous gradient, if there exists a constant L > 0, such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y.

If f has an L-Lipschitz continuous gradient, then it holds that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, ∀x, y.

Definition 2. (m-strongly convex). A differentiable convex function f is said to be m-strongly convex if there
exists a constant m > 0, such that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖y − x‖2, ∀x, y.

If f is m-strongly convex and has an L-Lipschitz continuous gradient, then it is obvious that m ≤ L.

A.2 Optimal solution of equation (8)

Let λ be the Lagrange multiplier. We define the Lagrangian of (8) given the constraints on the weights as

L(alk, λ) =
∑
l∈Nk

a2
lkrk(θ̂l,i) + λ(1−

∑
l∈Nk

alk).

Set∇alk,λL(alk, λ) =
(
∂L
∂alk

, ∂L
∂λ

)
= 0, i.e.,{

2alkrk(θ̂l,i)− λ = 0, ∀l ∈ Nk,
1−

∑
l∈Nk

alk = 0.

Thus, alk = λ

rk(θ̂l,i)
, ∀l ∈ Nk and

∑
l∈Nk

alk = 1. We have λ
∑
l∈Nk

1

rk(θ̂l,i)
= 1 and hence λ =

1∑
l∈Nk

rk(θ̂l,i)
−1 , and alk =

rk(θ̂l,i)
−1∑

p∈Nk
rk(θ̂p,i)

−1 is the optimal solution of (8).

A.3 Proof of Lemma 1

Proof. Given (3), rk(θk,i) = rk
(∑

l∈Nk
alk(i)θ̂l,i

)
. Using Jensen’s inequality, we have

rk(θk,i) ≤
∑
l∈Nk

alk(i)rk
(
θ̂l,i
)
. (11)

Subtracting rk(θ∗k) from both sides of (11) and taking expectations over the joint distribution ξk, we obtain

E [rk(θk,i)− rk(θ∗k)] ≤
∑
l∈Nk

E[alk(i)]E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]

≤

∑
l∈Nk

E
[
rk(θ̂l,i)

]−1

E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]
∑
p∈Nk

E
[
rk(θ̂p,i)

]−1 .

(12)

We next prove the right-hand side of (12) is less than 1
|Nk|

∑
l∈Nk

E
[
rk(θ̂l,i)− rk(θ∗k)

]
. For succinctness,

we use χl,i to denote E
[
rk
(
θ̂l,i
)]−1

, and ∆l,i to denote E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]
. And we aim to prove∑

l∈Nk
χl,i∆l,i∑

p∈Nk
χp,i

≤ 1
|Nk|

∑
l∈Nk

∆l,i, or equivalently, |Nk|
∑
l∈Nk

χl,i∆l,i ≤
∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i.

When |Nk| = 1, one can easily validate that this condition holds. When |Nk| ≥ 2, let li1 be the one with the

smallest risk rk
(
θ̂li1,i

)
= minl∈Nk rk

(
θ̂l,i
)

and li2 be the one with the second smallest risk rk
(
θ̂li2,i

)
=

12

minl∈Nk\li1
rk
(
θ̂l,i
)

. Hence, χli1,i ≥ χli2,i ≥ χl,i, and ∆li1,i
≤ ∆li2,i

≤ ∆l,i for l ∈ Nk\{li1, li2}. Thus,

|Nk|
∑
l∈Nk

χl,i∆l,i −
∑
p∈Nk

χp,i
∑
l∈Nk

∆l,i

=
∑
l∈Nk

χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i


=χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+
∑

l∈Nk\li1,i

χl,i

|Nk|∆l,i −
∑
p∈Nk

∆p,i


≤χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+ χli2,i

 ∑
l∈Nk\li1

|Nk|∆l,i − (|Nk| − 1)
∑
p∈Nk

∆p,i


=χli1,i

(|Nk| − 1) ∆li1,i
−

∑
l∈Nk\li1

∆l,i

+ χli2,i

 ∑
l∈Nk\li1

∆l,i − (|Nk| − 1) ∆li1,i


=
(
χli1,i

− χli2,i
)(|Nk| − 1) ∆li1,i

−
∑

l∈Nk\li1

∆l,i


=
(
χli1,i

− χli2,i
) ∑

l∈Nk\li1

(
∆li1,i

−∆l,i

) ≤ 0.

Therefore,
∑

l∈Nk
χl,i∆l,i∑

p∈Nk
χp,i

≤ 1
|Nk|

∑
l∈Nk

∆l,i. Put it back to (12), we obtain

E [rk(θk,i)− rk(θ∗k)] ≤ 1

|Nk|
∑
l∈Nk

E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]
,

which completes the proof.

A.4 Proof of Theorem 1

Proof. Let E[·] denote the expected value taken with respect to the joint distribution of all random variables ξk
and ξl for l ∈ N≤k , i.e.

E [·] = EξkE{ξl|l∈N≤k }
[·] .

Similar to the proof for Lemma 1, usingN≤k in the place ofNk, with rule (10), we obtain

E [rk(θk,i)− rk(θ∗k)] ≤ 1

|N≤k |

∑
l∈Nk

E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]
. (13)

For every l ∈ N≤k , we have rk(θ̂l,i) ≤ rk(θ̂k,i) and hence 1

|N≤
k
|

∑
l∈Nk

E
[(
rk(θ̂l,i)− rk(θ∗k)

)]
≤

E
[(
rk(θ̂k,i)− rk(θ∗k)

)]
. Put it back to (13), we obtain

E [rk (θk,i)− rk(θ∗k)] ≤ 1

|N≤k |

∑
l∈N≤

k

E
[
rk
(
θ̂l,i
)
− rk(θ∗k)

]
≤ E

[
rk
(
θ̂k,i
)
− rk(θ∗k)

]
, ∀k ∈ N+, i ∈ N,

(14)
which yields (5).

We next prove the convergence of the algorithm with the proposed weight assignment rule. Given Assumptions
1-3, we obtain from [43] that using constant step size µk ∈ (0, 1

Lck
], it holds that

E
[
rk
(
θ̂k,i
)
− rk(θ∗k)

]
− µkLσ

2
k

2m
≤ (1− µkm)

(
E [rk (θk,i−1)− rk(θ∗k)]− µkLσ

2
k

2m

)
.

Combined with (14), we obtain

E [rk (θk,i)− rk(θ∗k)]− µkLσ
2
k

2m
≤ (1− µkm)

(
E [rk (θk,i−1)− rk(θ∗k)]− µkLσ

2
k

2m

)
. (15)

13

Given µk ∈ (0, 1
Lck

], with ck ≥ 1, m ≤ L, it holds that (1− µkm) ∈ [0, 1). Applying (15) repeatedly through
iteration i ∈ N, we obtain

E [rk (θk,i)− rk(θ∗k)] ≤ µkLσ
2
k

2m
+ (1− µkm)i

(
rk (θk,0)− rk(θ∗k)− µkLσ

2
k

2m

)
i→∞−→ µkLσ

2
k

2m
.

This means θk,i converges towards θ∗k with the expected regret bounded by µkLσ
2
k

2m
.

B Simulation Details and Supplementary Results

B.1 Simulation details of Target Localization

The four target locations in R2 are: (10.84, 10.76), (20.42, 20.26), (20.51, 10.40), (10.78, 20.30). Agents’
locations are indicated in Figure 1a. An edge between two agents means they are neighbors. At each iteration,
every agent k has a noisy observation (streaming data) of the distance dk(i) and the unit direction vector uk,i
pointing from xk to its target based on built-in sensors. Let θk ∈ R2 denote the estimation of the target location
for agent k, then the loss is computed as `k(θk,i; ξ

i
k) = ‖dk(i)− (θk − xk)>uk,i‖2, and the agent estimates

θk using the SGD algorithm as well as the ATC diffusion algorithm with different weight assignment rules. The
distance measurement data has noise variance σ2

d,k ∈ [0.1, 0.2], and the unit direction vector has additive white
Guassian noise with diagnonal covariance matrices Ru,k = σ2

u,kI2, with σ2
u,k ∈ [0.01, 0.1] for different k. We

tune the step-sizes and forgetting factors from the interval (0, 1) and find the best empirical performance by
setting them to be µk = 0.1 and νk = 0.1 for every normal agent k. ϕ−1

lk and φ−1
lk are initialized to be zero for

all l ∈ Nk. Byzantine agents are designed to continuously send random values for each dimension from the
interval [15, 16] at each iteration.

B.2 Simulation details and supplementary results of Human Action Recognition

We randomly split the data into 75% training and 25% testing for each agent. During training, ten of the thirty
agents are randomly selected to have access to much less data (about 1

10
th) than the other agents at each epoch.

This is to model the realistic scenario in which some of the agents may have less data samples and they may
learn slowly than others. We use mini-batch gradient descent with batch size of 10. We tune the step-sizes
and forgetting factors from the interval (0, 1) and find the best empirical performance by setting them to be
µk = 0.01 and νk = 0.05 for every normal agent k. ϕ−1

lk and φ−1
lk are initialized to be zero for all l ∈ Nk.

Byzantine agents are designed to send a model with very small noisy elements for each dimension from the
interval [0, 0.1] at each iteration.

Figure 6b shows the average testing loss and classification accuracy of the normal agent when 29 out of 30
agents are Byzantine (the only normal agent has access to the entire training data). Figure 5 and Figure 6a show
the mean and range of the average training loss and classification accuracy of the normal agents in the case
of no attack, with 10 random selected Byzantine agents, and with 29 Byzantine agents. In all the examples,
for both training and testing, we observe that the loss-based weight assignment rule (10) outperforms the other
rules as well as the non-cooperative case, with respect to the mean and range of the average loss and accuracy,
which validates the result indicated by (5). Even in the extreme case in which there is only one normal agent
in the network and all of its neighbors are Byzantine, the loss-based weight assignment rule (10) has the same
performance as the non-cooperative case, showing its resilience to an arbitrary number of Byzantine agents.

(a) No attack (b) 10 Byzantine agents

Figure 5: Human Action Recognition: average training loss and accuracy for normal agents.

14

(a) Training (b) Testing

Figure 6: Human Action Recognition: average training/testing loss and accuracy for normal agents
with 29 Byzantine agents.

B.3 Simulation details and supplementary results of Digit Classification

The preprocessed examples of the two datasets are given in Figure 7. The details of the CNN architecture is given
in Table 1. For each group, we consider that agents have access to uneven sizes of training data. Specifically, for
each agent, we randomly feed 200− 2000 training data and 400 testing data from the corresponding dataset for
each epoch. We use mini-batch gradient descent with batch size of 64. We tune the step-sizes and forgetting
factors from the interval (0, 1) and find the best empirical performance by setting them to be µk = 0.001 and
νk = 0.05 for every normal agent. ϕ−1

lk and φ−1
lk are initialized to be zero for all l ∈ Nk. Byzantine agents are

designed to send a model with very small noisy elements for each dimension from the interval [0, 0.1] at each
iteration.

Since the performance of agents in the two groups diverges, we plot the results separately for the two groups.
Figure 8a and Figure 8b show the average testing loss and classification accuracy of the normal agents in group 1
and group 2, when 8 out of 10 agents (four for each group) are Byzantine (the only normal agent in each group
has access to 2000 training data).

Figure 9 and Figure 11a show the mean and range of the average training loss and classification accuracy of the
normal agents in group 1, in the case of no attack, with 2 Byzantine agents, and with 8 Byzantine agents, which
are selected randomly. Figure 10 and Figure 11b show the mean and range of the average training loss and
classification accuracy of the normal agents in group 2, in the case of no attack, with 2 Byzantine agents, and
with 8 Byzantine agents (again selected randomly). In all the examples, for both training and testing, we observe
that the loss-based weight assignment rule (10) outperforms the other rules as well as the non-cooperative case,
with respect to the mean and range of the average loss and accuracy, thereby validating the result indicated by
(5). Even in the extreme case in which there is only one normal agent in each group and all of the other agents
are Byzantine, the loss-based weight assignment rule (10) has the same performance as the non-cooperative case,
showing its resilience to an arbitrary number of Byzantine agents.

Comparing the results between groups 1 and 2 reveals that cooperation is most beneficial when there is a
substantial divergence in agents’ learning performances. Given limited training data, agents in group 1 are able
to build refined models. It is harder for agents receiving less training data in group 2 to achieve a high learning
performance as the synthetic digit classification is a more challenging task than the MNIST digit classification.
Using the weight assignment rule (10), those agents receiving less data (and therefore, struggling to learn a good
model), are able to benefit from the cooperation with the neighbors having learned a refined model. At the same
time, agents exhibiting high learning performance will not be negatively affected by such cooperation.

Table 1: CNN architecture of Digit Classification

Layer (type) Output Shape Param #

Conv2d-1 [-1, 32, 28, 28] 320
ReLU-2 [-1, 32, 28, 28] 0

MaxPool2d-3 [-1, 32, 14, 14] 0
Conv2d-4 [-1, 64, 14, 14] 18,496

ReLU-5 [-1, 64, 14, 14] 0
MaxPool2d-6 [-1, 64, 7, 7] 0

Conv2d-7 [-1, 64, 7, 7] 36,928
ReLU-8 [-1, 64, 7, 7] 0

MaxPool2d-9 [-1, 64, 3, 3] 0
Linear-10 [-1, 128] 73,856
ReLU-11 [-1, 128] 0
Linear-12 [-1, 10] 1,290

15

(a) MNIST (b) Synthetic digits

Figure 7: Examples of the digit classification dataset

(a) Group 1 (b) Group 2

Figure 8: Digit Classification: average testing loss and accuracy for normal agents, with 8 Byzantine
agents (four for each group).

(a) No attack (b) 2 Byzantine agents

Figure 9: Digit Classification: average training loss and accuracy for normal agents in group 1.

(a) No attack (b) 2 Byzantine agents

Figure 10: Digit Classification: average training loss and accuracy for normal agents in group 2.

(a) Group 1 (b) Group 2

Figure 11: Digit Classification: average training loss and accuracy for normal agents, with 8 Byzantine
agents (four for each group).

16

	Assumptions and Theoretical Results
	Assumptions of risk functions
	Optimal solution of equation (8)
	Proof of Lemma 1
	Proof of Theorem 1

	Simulation Details and Supplementary Results
	Simulation details of Target Localization
	Simulation details and supplementary results of Human Action Recognition
	Simulation details and supplementary results of Digit Classification

