A Assumptions and Theoretical Results

A.1 Assumptions of risk functions

Definition 1. (L-Lipschitz continuous gradient). A differentiable convex function f is said to have an
L-Lipschitz continuous gradient, if there exists a constant L > 0, such that

IVf(z) = V)l < Lllx = yll, Ve, y.
If f has an L-Lipschitz continuous gradient, then it holds that
L

Definition 2. (m-strongly convex). A differentiable convex function f is said to be m-strongly convex if there
exists a constant m > 0, such that

m
F) = f@) + (Vf(2),y — o) + S lly — 2], Y, .
If f is m-strongly convex and has an L-Lipschitz continuous gradient, then it is obvious that m < L.

A.2 Optimal solution of equation (g)

Let X be the Lagrange multiplier. We define the Lagrangian of (8) given the constraints on the weights as

‘C’(alkv)‘) = Z a?krk(él,i) + A(]. - Z alk).

lEN}, leENY

Set Va“w)\ﬁ(alk,)\) = ((fifk s %) =0,i.e.,

2a17(01,5) — A = 0,V € Ny,
1-— ZZENk Al = 0.
Thus, aix, = Wi‘“),b’l € N and Zle/\fk aix = 1. We have)‘Zle./\fk m = 1 and hence \ =

5o —1
1 (01,4)

— is the optimal solution of (8).
2peny, Tk (0p,) !

1
———,and a;, =
Xien, Te(014) 1 th

A.3 Proof of Lemmal[l]

Proof. Given @), 7 (6k,:) = 7k (EleNk alk(i)él,i) . Using Jensen’s inequality, we have

7 (ki) < Z aik () (élz) . (11)

leENY,

Subtracting 7 (6};) from both sides of (TT) and taking expectations over the joint distribution &, we obtain

E[re(00) = e (00) < S Elaw@)E [ri (1) — ru(67)]

lENE
< Zle/\/k E [Tk(élﬂ')} _I]E [Tk (éz,i) — Tk(ﬁ,’;)] . (12)

S pen, B [re@.0)]

We next prove the right-hand side of (T2) is less than ‘le‘ 2en, B [rk (01.0) — (0,’;)] . For succinctness,
. -1 .

we use xy,; to denote E [Tk (Gll)} , and Ay ; to denote E [rk (Ol,i) — K (97;)] And we aim to prove

Slen, X1,iAi

St Nl 2o ien, XuiBui <3 cn Xpii 2ien;, At

2peNy Xp.i
When | V| = 1, one can easily validate that this condition holds. When [N | > 2, let I4 be the one with the

smallest risk 7 (él“ = minen;, Tk (éu) and 14 be the one with the second smallest risk 7% (ézg,i) =

< \lel ZleNk Ay ;, or equivalently,

12

minleNk\lli Tk (é“) Hence, Xii i > Xus i > x1,i» and Ali’i < Al;,z‘ < Ay forl € Np\{1%,1%}. Thus,

|./\/k\ Z Xl,iAl,i - Z Xp,i Z Al,i

leNG, PENE leNG,
= Z Xt | [NelAi — Z Api
lENy, PEN
=xi [(Nl =D A = D0 A |+ D x| WklAw = D Ay
LENE\I} LENH\LE i PEN
i (el =D A= D A | x| Do WA = (Nl = 1) D Ay
LENE\IE LENH\IE PEN}
=X | Vel =D A= > A+ | D A= (Ve =1 Ay,
LENK\1E IENK\1E
:(ng,i—Xz;,i) (VK] =D Ay, = >0 A
LENR\IE
= (=) | X (Aga—au) | <o
LEN\IE
Therefore, SLeNE X1illi > Ay,;. Put it back to (T2)), we obtain
P T peny, X wm LEN;, S
E [r(6:) — e (0D] < i 3 B [(6us) = (6]
| | leN;
k
which completes the proof. O

A.4 Proof of Theorem 1

Proof. Let E[-] denote the expected value taken with respect to the joint distribution of all random variables &
and & forl € N5, ie.

E[]= EE’CE{&HENE} (]

Similar to the proof for Lemmam using V= in the place of Ay, with rule (T0), we obtain

E [re(0k,:) — re(0r)] < |-/\;<| & [rk (éu) - rk(OZ)] . (13)
le

For every | € NS, we have 7y éli < 7 é;“ and hence —— E|(rs(6is) — i 05 <
» ’ ‘Nk_‘ lEN, g

E [(rk(é;“) — T (0:))] . Put it back to (T3), we obtain

E [rk (Ok.:) — mi(0F)] < If\;,f\ z.}N:; E [rk (éz,i) - m(e;;)] <E [rk (ék,i) - rk(e;;)} VkeNT,ieN,

(14)
which yields (3).
We next prove the convergence of the algorithm with the proposed weight assignment rule. Given Assumptions

1-3, we obtain from [43] that using constant step size jux € (0, + Tern], it holds that

& [re (0r.) = mucod)] - WTI;?% < (1= pxm) (E [k (Orim1) — 7 (67)] — “’;’;LUE) ,

Combined with (T4), we obtain

2 2
E [re (k1) — ri(0])] — % < (1 - pemn) (E [Pk (Orim1) — i (0)] — “’;ﬁi’k) L))

13

Given g, € (0, zo-], with cp > 1,m < L, it holds that (1 — pxm) € [0, 1). Applying (T5) repeatedly through
iteration ¢ € N, we obtain

* L ? 7 * L 2
Bl (0u) re60)] < P52 4 (1)’ (1 (0) = ru(63) — P50)

2m
o i Loi
2m
2
This means 0y, ; converges towards 6, with the expected regret bounded by % O

B Simulation Details and Supplementary Results

B.1 Simulation details of Target Localization

The four target locations in R? are: (10.84,10.76), (20.42,20.26), (20.51,10.40), (10.78, 20.30). Agents’
locations are indicated in Figure[Ta] An edge between two agents means they are neighbors. At each iteration,
every agent k has a noisy observation (streaming data) of the distance dx (¢) and the unit direction vector wy ;
pointing from z, to its target based on built-in sensors. Let 6;, € R? denote the estimation of the target location
for agent k, then the loss is computed as £x (65,.; €5) = ||dr (i) — (Bk — =) " w,i||%, and the agent estimates
0}, using the SGD algorithm as well as the ATC diffusion algorithm with different weight assignment rules. The
distance measurement data has noise variance 03, & € [0.1,0.2], and the unit direction vector has additive white
Guassian noise with diagnonal covariance matrices R, = Oi’klz, with ai, & € [0.01,0.1] for different k. We
tune the step-sizes and forgetting factors from the interval (0, 1) and find the best empirical performance by
setting them to be pux = 0.1 and v, = 0.1 for every normal agent k. <pl_kl and q&l_kl are initialized to be zero for
all [€ Nj. Byzantine agents are designed to continuously send random values for each dimension from the
interval [15, 16] at each iteration.

B.2 Simulation details and supplementary results of Human Action Recognition

We randomly split the data into 75% training and 25% testing for each agent. During training, ten of the thirty
agents are randomly selected to have access to much less data (about 1—10th) than the other agents at each epoch.
This is to model the realistic scenario in which some of the agents may have less data samples and they may
learn slowly than others. We use mini-batch gradient descent with batch size of 10. We tune the step-sizes
and forgetting factors from the interval (0, 1) and find the best empirical performance by setting them to be
pr = 0.01 and v, = 0.05 for every normal agent k. cpl_k,l and qbl_kl are initialized to be zero for all | € N.
Byzantine agents are designed to send a model with very small noisy elements for each dimension from the
interval [0, 0.1] at each iteration.

Figure [6b] shows the average festing loss and classification accuracy of the normal agent when 29 out of 30
agents are Byzantine (the only normal agent has access to the entire training data). Figure[5and Figure [6a]show
the mean and range of the average training loss and classification accuracy of the normal agents in the case
of no attack, with 10 random selected Byzantine agents, and with 29 Byzantine agents. In all the examples,
for both training and testing, we observe that the loss-based weight assignment rule (I0) outperforms the other
rules as well as the non-cooperative case, with respect to the mean and range of the average loss and accuracy,
which validates the result indicated by (B). Even in the extreme case in which there is only one normal agent
in the network and all of its neighbors are Byzantine, the loss-based weight assignment rule (T0) has the same
performance as the non-cooperative case, showing its resilience to an arbitrary number of Byzantine agents.

o
o

, 02 . . . 100 —_

= oD S o
X P T ————————— ZZ
w015 | S w 015 Sy
175} \ 5} 175} o 70
Q @ Q <
=N g = g
= od A o = 01f o 50
.= LW, b} = [+
5 A < & S
H 0.05 =] H 0.05 =] 20
§ 10 é 10
0 . : E . . . 0 . : . E : :
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch Epoch
(a) No attack (b) 10 Byzantine agents

Figure 5: Human Action Recognition: average training loss and accuracy for normal agents.

14

o
o

100 . e |

80 -
015
70 [
60
04
3 -
005-
20 MMWAM \\4__ .
-~
0 10 20 30 40 50] 10 20 30 40 50 0 10 20 30] 10 20 30 40 50

Epoch Epoch Epoch Epoch
(a) Training (b) Testing

o NI
/

Test Loss

Test Accuracy (%)

o
=
]

.
=

4
f
)
>

Train Loss
o
Train Accuracy (%
o
3

o
o
o

»
8
@
8

Figure 6: Human Action Recognition: average training/testing loss and accuracy for normal agents
with 29 Byzantine agents.

B.3 Simulation details and supplementary results of Digit Classification

The preprocessed examples of the two datasets are given in Figure[7] The details of the CNN architecture is given
in Table[T] For each group, we consider that agents have access to uneven sizes of training data. Specifically, for
each agent, we randomly feed 200 — 2000 training data and 400 testing data from the corresponding dataset for
each epoch. We use mini-batch gradient descent with batch size of 64. We tune the step-sizes and forgetting
factors from the interval (0, 1) and find the best empirical performance by setting them to be ux = 0.001 and
v, = 0.05 for every normal agent. gofkl and gzﬁfkl are initialized to be zero for all | € N}. Byzantine agents are
designed to send a model with very small noisy elements for each dimension from the interval [0, 0.1] at each
iteration.

Since the performance of agents in the two groups diverges, we plot the results separately for the two groups.
Figure [8a]and Figure[8b]show the average festing loss and classification accuracy of the normal agents in group 1
and group 2, when 8 out of 10 agents (four for each group) are Byzantine (the only normal agent in each group
has access to 2000 training data).

Figure|§| and Figure@ show the mean and range of the average training loss and classification accuracy of the
normal agents in group 1, in the case of no attack, with 2 Byzantine agents, and with 8 Byzantine agents, which
are selected randomly. Figure @ and Figure m show the mean and range of the average training loss and
classification accuracy of the normal agents in group 2, in the case of no attack, with 2 Byzantine agents, and
with 8 Byzantine agents (again selected randomly). In all the examples, for both training and testing, we observe
that the loss-based weight assignment rule (T0) outperforms the other rules as well as the non-cooperative case,
with respect to the mean and range of the average loss and accuracy, thereby validating the result indicated by
(). Even in the extreme case in which there is only one normal agent in each group and all of the other agents
are Byzantine, the loss-based weight assignment rule (T0) has the same performance as the non-cooperative case,
showing its resilience to an arbitrary number of Byzantine agents.

Comparing the results between groups 1 and 2 reveals that cooperation is most beneficial when there is a
substantial divergence in agents’ learning performances. Given limited training data, agents in group 1 are able
to build refined models. It is harder for agents receiving less training data in group 2 to achieve a high learning
performance as the synthetic digit classification is a more challenging task than the MNIST digit classification.
Using the weight assignment rule (I0), those agents receiving less data (and therefore, struggling to learn a good
model), are able to benefit from the cooperation with the neighbors having learned a refined model. At the same
time, agents exhibiting high learning performance will not be negatively affected by such cooperation.

Table 1: CNN architecture of Digit Classification

Layer (type) Output Shape Param #
Conv2d-1 [-1, 32,28, 28] 320
ReLU-2 [-1, 32, 28, 28] 0
MaxPool2d-3 [-1, 32, 14, 14] 0
Conv2d-4 [-1, 64, 14, 14] 18,496
ReLU-5 [-1, 64, 14, 14] 0
MaxPool2d-6 [-1,64,7,7] 0
Conv2d-7 [-1,64,7,7] 36,928
ReLU-8 [-1,64,7,7] 0
MaxPool2d-9 [-1, 64, 3, 3] 0
Linear-10 [-1, 128] 73,856
ReLU-11 [-1, 128] 0
Linear-12 [-1, 10] 1,290

15

<
e
~+T
o

Sé6é328 1/
| ©o4497 8 |
k272516

v
S
(4

(a) MNIST (b) Synthetic digits

Figure 7: Examples of the digit classification dataset

100 v . - 0025 ——————————————— 100

— A —
© o //\f“’ ' o Y
= sl 002/ | é 80 r /-\,‘\.,“N"‘A .
5 Wi
2 :L}f 0 z g} 70 ; o
S £ 60 S 0.015 £ 60 v
= 50 \ A = 50 4
+ o + \ o i
3 S 40 2 o0 W < 4o0f |
= < & = \'"\’.‘ < a0
- VN =
o2 0.005 S M, B 2
é_} 10 L) é,) 10 |[4Ag A..v:’.‘lx TV SICPTer WY Py
0 20 4 6 8 100 % 20 40 60 8 100 % 2 4 e @ 10 % 20 40 60 8 100
Epoch Epoch Epoch Epoch
(a) Group 1 (b) Group 2

Figure 8: Digit Classification: average testing loss and accuracy for normal agents, with 8 Byzantine
agents (four for each group).

— 004 . : 100 S
1 § X o
2 B g o B
»S '] g S 0.025 g 60
= -0 = 002 -5 80
o (] o <
& o R < 0015 P 40
et ot
= o oo =} zz
< 0.005 < 4.
S . ~ 10
& ol bbii | H
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch
(a) No attack (b) 2 Byzantine agents

Figure 9: Digit Classification: average training loss and accuracy for normal agents in group 1.

0.025

°
g9
8
&
5]
8

90
80
70
60
50
40
30
20
10

Train Loss
Train Loss

Train Accuracy (%)
Train Accuracy (%)

o

0 20 40 60 80 100 [20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100

Epoch Epoch Epoch Epoch

)

(a) No attack (b) 2 Byzantine agents

Figure 10: Digit Classification: average training loss and accuracy for normal agents in group 2.

0/
80
S 70

— 0.02 . . — 100

o
2
o

"

20 o

10 “w- Baag SVPVE

0 0
[20 40 60 80 100 0 20 40 60 80 100 [20 40 60 80 100 0 20 40 60 80 100

Epoch Epoch Epoch Epoch
(a) Group 1 (b) Group 2

o
I
8
@

Train Loss
o
8
Train Accuracy (%)
o
3
Train Loss
o
g
Train Accuracy (%
2
-

Figure 11: Digit Classification: average training loss and accuracy for normal agents, with 8 Byzantine
agents (four for each group).

16

	Assumptions and Theoretical Results
	Assumptions of risk functions
	Optimal solution of equation (8)
	Proof of Lemma 1
	Proof of Theorem 1

	Simulation Details and Supplementary Results
	Simulation details of Target Localization
	Simulation details and supplementary results of Human Action Recognition
	Simulation details and supplementary results of Digit Classification

