
A Proof of Theorem 1 and 2

A standard regret analysis consists of proving the optimism, bounding the deviations and bounding
the probability of failing the confidence set. Our analysis follows the standard procedure while
adapting them to a FMDP setting.

Some notations. For simplicity, we let π∗ denote the optimal policy of the true MDP, π(M). Let
tk be the starting time of episode k and K be the total number of episodes. Since R̃k(x, s) for any
(x, s) ∈ X̃ does not depend on s, we also let R̃k(x) denote R̃k(x, s) for any s. Let λ∗ and λk denote
the optimal average reward for M and Mk.

Confidence set. Before proving the theorems, we first introduce the confidence set for both transi-
tion probability and reward functions. LetMk be the confidence set of FMDPs at the start of episode
k with the same factorization, such that for and each i ∈ [l],

|Ri(x)− R̂ki (x)| ≤ EkRi
(x),∀x ∈ X [ZRi ],

where EkRi
(x) :=

√
12 log(6l|X [ZR

i ]|tk/ρ)
max{Nk

Ri
(x),1} as defined in (3);

and for each j ∈ [m]

|Pj(s|x)− P̂ kj (s|x)| ≤ EkPj
(s|x),∀x ∈ X [ZPj ], s ∈ Sj ,

where W k
Pj

(s|x) is defined in (2). It can be shown that

|Pj(x)− P̂ kj (x)|1 ≤ 2

√
18|Si| log(6Sim|X [ZPi ]|tk/ρ)

max{Nk
Pi

(x), 1}
,

where ĒkPi
(x) := 2

√
18|Si| log(6Sim|X [ZP

i ]|tk/ρ)
max{Nk

Pi
(x),1} .

In the following analysis, we all assume that the true MDP M for both PSRL and DORL are inMk

and Mk by PSRL are inMk for all k ∈ [K]. In the end, we will bound the regret caused by the
failure of confidence set.

Regret decomposition. We follow the standard regret analysis framework by Jaksch et al. (2010).
We first decompose the total regret into three parts in each episode:

RT =

T∑
t=1

(λ∗ − rt)

=

K∑
k=1

tk+1−1∑
t=tk

(λ∗ − λk) (4)

+

K∑
k=1

tk+1−1∑
t=tk

(λk −R(st, at)) (5)

+

K∑
k=1

tk+1−1∑
t=tk

(R(st, at)− rt). (6)

Using Hoeffding’s inequality, the regret caused by (6) can be upper bounded by
√

5
2T log

(
8
ρ

)
, with

probability at least ρ
12 .

A.1 Bounding term (4)

We bound the regret caused by (4).

12



PSRL. For PSRL, since we use fixed episodes, we follow the techniques from Osband et al. (2013)
and show that the expectation of (4) equals to zero.

Lemma 1 (Lemma 1 in Osband et al. (2013)). If φ is the distribution of M , then, for any σ(Htk)−
measurable function g,

E [g (M) |Htk ] = E [g (Mk) |Htk ] .

We let g = λ(M,π(M)). As g is a σ(Htk)−measurable function. Since tk, K are fixed value for
each k, we have (4) = E[

∑K
k=1

∑tk+1−1
t=tk

(λ∗ − λk)] = 0.

DORL. For DORL, we need to prove optimism, i.e, λ(Mk, π̃k) ≥ λ∗ with high probability. We
follow the proof in Agrawal and Jia (2017). In the case of FMDP, we show that for any policy π
for the true FMDP, there exists a policy π̃ for Mk such that (P (Mk, π̃)− P (M,π))h ≥ 0 for any
h ∈ RS . This is proved in Lemma 2.

Lemma 2. For any policy π for M and any vector h ∈ RS , let π̃ be the policy for Mk satisfying
π̃(s) = (π(s), s∗), where s∗ = arg maxs h(s). Then, given M ∈Mk, (P (Mk, π̃)− P (M,π))h ≥
0.

Proof. We fix some s ∈ S and let x = (s, π(s)) ∈ X . Recall that for any si ∈ Si, ∆k
i (si|x) =

min{

√
18P̂ ki (si|x) log (ci,k)

max
{
Nk
Pi

(x), 1
} +

18 log (ci,k)

max
{
Nk
Pi

(x), 1
} , P̂ ki (si|x)

}
.

and define P−i (·|x) = P̂ ki (·|x) − ∆k
i (·|x). Slightly abusing the notations, let P̃ = P (Mk, π̃)s,·,

P = P (M,π)s,·. Define two S-dimensional vectors P̂ and P− with P̂ (s̄) =
∏
i P̂i(s̄[Z

P
i ]|x) and

P−(s̄) = ΠiP
−
i (s̄[ZPi ]|x) for s̄ ∈ S.

As M ∈Mk, P− ≤ P . Define α := P̂ − P ≤ P̂ − P− =: ∆. Without loss of generality, we let
maxs h(s) = D.

∑
i

P̃ (i)h(i) =
∑
i

P (i)−h(i) +D

1−
∑
j

P (j)−


=
∑
i

P (i)−h(i) +D
∑
j

∆(j)

=
∑
i

(
P̂ (i)−∆(i)

)
h(i) +D∆(i)

=
∑
i

P̂ (i)h(i) + (D − h(i)) ∆(i)

≥
∑
i

P̂ (i)h(i) + (D − h(i))α(i)

=
∑
i

(
P̂ (i)−α(i)

)
h(i) +Dα(i)

=
∑
i

P (i)h(i) +D
∑
i

α(i) =
∑
i

P (i)h(i)

Corollary 1. Let π̃∗ be the policy that satisfies π̃∗(s) = (π∗(s), s∗), where s∗ = arg maxs h(M)s
and π∗ is the true optimal policy for M . Then λ(Mk, π̃

∗, s1) ≥ λ∗ for any starting state s1.
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Proof. Let d(s1) := d(Mk, π̃
∗, s1) ∈ R1×S be the row vector of stationary distribution starting from

some s1 ∈ S. By optimal equation,

λ(Mk, π̃
∗, s1)− λ∗

= d(s1)R(Mk, π̃
∗)− λ∗(d(s1)1)

= d(s1)(R(Mk, π̃
∗)− λ∗1)

= d(s1)(R(Mk, π̃
∗)−R(M,π∗))

+ d(s1)(I − P (M,π∗))h(M)

≥ d(s1)(R(Mk, π̃
∗)−R(M,π∗))

+ d(s1)(P (Mk, π̃
∗)− P (M,π∗))h(M)

≥ 0,

where the last inequality is by Lemma 2 and Corollary 1 follows.

Thereon, λ(Mk, π̃k) ≥ λ(Mk, π̃
∗, s1) ≥ λ∗. The total regret of (4) ≤ 0.

A.2 Regret caused by deviation (5)

We further bound regret caused by (5), which can be decomposed into the deviation between our
brief Mk and the true MDP. We first show that the diameter of Mk can be upper bounded by D.

Bounded diameter. We need diameter of extended MDP to be upper bounded to give a sublinear
regret. For PSRL, since prior distribution has no mass on MDP with diameter greater than D, the
diameter of MDP from posterior is upper bounded by D almost surely. For DORL, we have the
following Lemma 3.

Lemma 3. When M is in the confidence setMk, the diameter of the extended MDP D(Mk) ≤ D.

Proof. Fix a s1 6= s2, there exist a policy π for M such that the expected time to reach s2 from s1

is at most D, without loss of generality we assume s2 is the last state. Let E be the (S − 1) × 1
vector with each element to be the expected time to reach s2 except for itself. We find π̃ for Mk

such that the expected time to reach s2 from s1 can be bounded by D. We choose the π̃ that satisfies
π̃(s) = (π(s), s2).

Let Q be the transition matrix under π̃ for Mk. Let Q− be the matrix removing s2-th row and column
and P− defined in the same way for M . We immediately have P−1E ≥ Q−1E, given M ∈ Mk.
Let Ẽ be the expected time to reach s2 from every other states except for itself under π̃ for Mk.

We have Ẽ = 1 +Q−Ẽ. The equation for E gives us E = 1 + P−E ≥ 1 +Q−E. Therefore,

Ẽ = (1−Q−)−11 ≤ E,

and Ẽs1 ≤ Es1 ≤ D. Thus, D(Mk) ≤ D.

Deviation bound. Now we formally bound (5). In this section, the regrets for PSRL and DORL
can be bounded in the same way. Let νk(s, a) be the number of visits on s, a in episode k and νk
be the row vector of νk(·, πk(·)). Let ∆k =

∑
s,a νk(s, a)(λ(Mk, π̃k) − R(s, a)). Using optimal

equation,

∆k =
∑
s,a

νk(s, a)
[
λ(Mk, π̃k)− R̃k(s, a)

]
+
∑
s,a

νk(s, a)
[
R̃k(s, a)−R(s, a)

]
= νk(P̃ k − I)hk + νk(R̃

k −Rk)

= νk(P k − I)hk︸ ︷︷ ︸
1©

+νk(P̃ k − P k)hk︸ ︷︷ ︸
2©

+νk(R̃
k −Rk)︸ ︷︷ ︸
3©

,
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where P̃ k := P (Mk, π̃k), P k := P (M,πk),hk := h∗(Mk), and R̃
k

:= R(Mk, π̃k),Rk :=
R(M,πk).

Using Azuma-Hoeffding inequality and the same analysis in Jaksch et al. (2010), we bound 1© with
probability at least 1− ρ

12 ,

∑
k

1© =
∑
k

νk
(
P k − I

)
hk ≤ D

√
5

2
T log

(
8

ρ

)
+KD. (7)

To bound 2© and 3©, we analyze the deviation in transition and reward function between M and Mk.
For DORL, the deviation in transition probability is upper bounded by

max
s′
|P̃ ki (x, s′)− P̂ ki (x)|1

≤ min{2
∑
s∈Si

EkPi
(s | x), 1}

≤ min{2ĒkPi
(x), 1} ≤ 2ĒkPi

(x),

The deviation in reward function |R̃ki − R̂ki |(x) ≤ EkRi
(x).

For PSRL, since Mk ∈Mk, |P̃ ki − P̂ ki |(x) ≤ ĒkPi
(x) and |R̃ki − R̂ki |(x) ≤ EkRi

(x).

Decomposing the bound for each scope provided by M ∈Mk and Mk for PSRL ∈Mk, it holds for
both PSRL and DORL that:∑

k

2© ≤ 3
∑
k

D

m∑
i=1

∑
x∈X [ZP

i ]

νk(x)ĒkPi
(x), (8)

∑
k

3© ≤ 2
∑
k

l∑
i=1

∑
x∈X [ZR

i ]

νk(x)EkRi
(x); (9)

where with some abuse of notations, define νk(x) =
∑
x′∈X :x′[Zi]=x

νk(x′) for x ∈ X [Zi]. The
second inequality is from the fact that |P̃ k(·|x)− P k(·|x)|1 ≤

∑m
1 |P̃ ki (·|x[ZRi ])− P ki (·|x[ZRi ])|1

(Osband and Van Roy, 2014).

A.3 Bound (7), (8) and (9) by balancing episode length and episode number

We give a general criterion for bounding (7), (8) and (9), which we believe, is a new technique. We
first introduce Lemma 4 which implies that bounding (7), (8) and (9) is to balance total number of
episodes and the length of the longest episode. The proof, relies on defining the last episode k0, such
that Nk0(x) ≤ νk0(x).

Lemma 4. For any fixed episodes {Tk}Kk=1, if there exists an upper bound T̄ , such that Tk ≤ T̄ for
all k ∈ [K], we have the bound∑

x∈X [Z]

∑
k

νk(x)/
√

max{1, Nk(x)} ≤ LT̄ +
√
LT ,

where Z is any scope with |X [Z]| ≤ L, and νk(x) and Nk(x) are the number of visits to x in and
before episode k. Furthermore, total regret of (7), (8) and (9) can be bounded by Õ

(
(
√
WDm +

l)(LT̄ +
√
LT ) +KD

)
Proof. We bound the random variable

∑K
k=1

νk(x)√
max{Nk(x),1}

for every x ∈ X [Z], where νk(x) =∑tk+1−1
t=tk

1(xt = x) and Nk(x) =
∑k−1
i=1 νk(x).

Let k0(x) be the largest k such that Nk(x) ≤ νk(x). Thus ∀k ≥ k0(x), Nk(x) > νk(x), which gives
Nt(x) := Nk(x) +

∑t
τ=tk

1(xτ = x) < 2Nk(x) for tk ≤ t < tk+1.
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Conditioning on k0(x), we have
K∑
k=1

νk(x)√
max{Nk(x), 1}

≤ Nk0(x)(x) + νk0(x)(x) +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

≤ 2νk0(x)(x) +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

≤ 2T̄ +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

,

where the first inequality uses max{Nk(x), 1} ≥ 1 for k = 1, . . . k0(x), the second inequality is by
the fact that Nk0(x)(x) ≤ νk0(x)(x) and the third one is by νk0(x) ≤ Tk0(x) ≤ TK .

And letting k1(x) = k0(x) + 1 and N(x) := NK(x) + νK(x), we have∑
k>k0(x)

νk(x)√
max{Nk(x), 1}

≤
T∑

t=tk1(x)

2
1(xt = x)√

max{Nt(x), 1}

≤
T∑

t=tk1(x)

2
1(xt = x)√

max{Nt(x)−Nk1(x), 1}

≤ 2

∫ N(x)−Nk1(x)

1

1√
x
dx

≤ (2 +
√

2)
√
N(x).

Given any k0(x), we can bound the term with a fixed value 2T̄ +(2+
√

2)
√
N(x). Thus, the random

variable
∑K
k=1

νk(x)√
max{Nk(x),1}

is upper bounded by 2T̄ + (2 +
√

2)
√
N(x) almost surely. Finally,∑

x

∑K
k=1

νk(x)√
max{Nk(x),1}

≤ LT̄ + (2 +
√

2)
√
LT . The regret by (8) is∑

k

3D
∑
i∈[m]

∑
x∈X [ZP

i ]

νk(x)W̄ k
Pi

(x)

= Õ(
√
WDm(LT̄ +

√
LT ) +KD).

The regret by (9) is∑
k

2
∑
i∈[l]

∑
x∈X [ZR

i ]

νk(x)W̄ k
Ri

(x) = Õ(l(LT̄ +
√
LT ) +KD).

The last statement is completed by directly summing (7), (8) and (9).

Instead of using the doubling trick that was used in Jaksch et al. (2010). We use an arithmetic
progression: Tk = dk/Le for k ≥ 1. As in our algorithm, T ≥

∑K−1
k=1 Tk ≥

∑K−1
k=1 k/L = (K−1)K

2L ,
we have K ≤

√
3LT and Tk ≤ TK ≤ K/L ≤

√
3T/L for all k ∈ [K]. Thus, by Lemma 4, putting

(6), (7), (9), (8) together, the total regret for M ∈Mk is upper bounded by

Õ
(
(
√
WDm+ l)

√
LT
)
, (10)

with a probability at least 1− ρ
6 .
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A.4 Failure of the confidence set

For the failure of confidence set, we prove the following Lemma.

Lemma 5. For all k ∈ [K], with probability greater than 1− 3ρ
8 , M ∈Mk holds.

Proof. We first deal with the probabilities, with which in each round a reward function of the
true MDP M is not in the confidence set. Using Hoeffding’s inequality, we have for any t, i and
x ∈ X [ZRi ],

P

{
|R̂ti(x)−Ri(x)| ≥

√
12 log(6l|X [ZRi ]|t/ρ)

max{1, N t
Ri

(x)}

}

≤ ρ

3l|X [ZRi ]|t6
, with a summation ≤ 3

12
ρ.

Thus, with probability at least 1 − 3ρ
12 , the true reward function is in the confidence set for every

t ≤ T .

For the transition probability, we use a different concentration inequality.

Lemma 6 (Multiplicative Chernoff Bound (Kleinberg et al., 2008) Lemma 4.9). Consider n, i.i.d
random variables X1, . . . , Xn on [0, 1]. Let µ be their mean and let X be their average. Then with
probability 1− ρ,

|X − µ| ≤
√

3 log(2/ρ)X

n
+

3 log(2/ρ)

n
.

Using Lemma 6, for each x, i, k, it holds that with probability 1− ρ/(6m
∣∣X [ZPi ]∣∣ t6k),

|P̂i(·|x)− Pi(·|x)|1 ≤

√
18Si log(ci,k)

max{Nk
Pi

(x), 1}
+

18 log(ci,k)

max{Nk
Pi

(x), 1}
.

Then with a probability 1− 3ρ
24 , it holds for all x, i, k. Therefore, with a probability 1− 3ρ

8 , the true
MDP is in the confidence set for each k.

Combined with (10), with probability at least 1− 2ρ
3 the regret bound in Theorem 2 holds.

For PSRL, Mk and M has the same posterior distribution. The expectation of the regret caused by
M /∈Mk and Mk /∈Mk are the same. Choosing sufficiently small ρ ≤

√
1/T , Theorem 1 follows.

B Proof of the lower bound

Our lower bound construction is a Cartesian product of n independent MDPs. We start by discussing
the bias vector of such FMDP in Lemma 7.

Lemma 7. Let M+ be the Cartesian product of n independent MDPs {Mi}ni=1, each with a span of
bias vector sp(hi). The optimal policy for M+ has a span sp(h+) =

∑
i sp(hi).

Proof. Let λ∗i for i ∈ [n] be the optimal gain of each MDP. Optimal gain of M+ is direct λ∗ =∑
i∈[n] λ

∗
i . As noted in Puterman (2014) (8.2.3), by the definition of bias vector we have

hi(s) = E[

∞∑
t=1

(rit − λ∗i ) | si1 = s], ∀s ∈ Si,

where rit is the reward of the i-th MDP at time t and sit := st[i].
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The lemma is directly by

h+(s) = E[

∞∑
t=1

(rt − λ∗) | s1 = s]

= E[

∞∑
t=1

(
∑
i∈[n]

(rit − λ∗i )) | s1 = s]

=
∑
i∈[n]

E[

∞∑
t=1

(rit − λ∗i ) | si1 = s[i]]

=
∑
i∈[n]

hi(s[i]).

We immediately have sp(h+) =
∑
i sp(hi).

Recall Theorem 3 states for any algorithm, any graph structure satisfying G =(
{Si}ni=1 ; {Si ×Ai}ni=1 ;

{
ZRi
}n
i=1

;
{
ZPi
}n
i=1

)
with |Si| ≤ W , |X [ZRi ]| ≤ L, |X [ZPi ]| ≤ L

and i ∈ ZPi for i ∈ [n], there exists an FMDP with an optimal bias vector h+, such that for any
initial state s ∈ S, the expected regret of the algorithm after T step is

Ω(

√
sp(h+)LT ). (11)

Proof. Let l = | ∪ni ZRi |. As i ∈ ZPi , a special case is the FMDP with graph structure

G =
(
{Si}ni=1 ; {Si ×Ai}ni=1 ; {{i}}li=1 and {∅}ni=l+1 ; {{i}}ni=1

)
, which can be decomposed into

n independent MDPs as in the previous example. Among the n MDPs, the last n− l MDPs are trivial.
By simply setting the rest l MDPs to be the construction used by Jaksch et al. (2010), which we refer
to as "JAO MDP", the regret for each MDP with the span sp(h), is Ω(

√
sp(h)WT ) for i ∈ [l]. The

total regret is Ω(l
√
sp(h)WT ).

Using Lemma 7, sp(h+) = l sp(h) and the total expected regret is Ω(
√
l sp(h+)WT ). Normalizing

the reward function to be in [0, 1], the expected regret of the FMDP is Ω(
√
sp(h+)WT ), which

completes the proof.

C Proof of Theorem 4

The only difference between the proof of Theorem 4 and 2 lies in the bound of term 2©.

18



Proof. Starting from 2©, for each s ∈ S, we bound (P̃ k(· | s) − P k(· | s))hk. For simplicity, we
remove the subscriptions of s and use P̃ k and P k to denote the vector for s-th row of the two matrix.∑

s∈S
(P̃ k(s)− P k(s))hk(s)

=
∑
s1∈S1

∑
s−1∈S−1

(P1(s1)P−1(s−1)− P̃1(s1)P̃−1(s−1))hk(s1, s−1)

=
∑
s1

(P1(s1)− P̃1(s1))
∑
s−1

P̃−1(s−1)hk(s1, s−1)

+

∑
s−1

[
(P−1(s−1)− P̃−1(s−1))

∑
s

P1(s1)hk(s1, s−1)

]
=
∑
s1

(P1(s1)− P̃1(s1))h1k(s1) +
∑
s−1

(P−1(s−1)− P̃−1(s−1))h−1k(s−1),

where h1k(s1) :=
∑
s−1

P̃−1(s−1)hk(s1, s−1) and h−1k(s−1) :=
∑
s1
P1(s1)hk(s1, s−1). As

span(h1k) ≤ sp1(Mk),∑
s∈S

(P̃ k(s)−P k(s))hk(s) ≤ |P1− P̃1|1sp1(Mk) +
∑
s−1

(P−1(s−1)− P̃−1(s−1))h−1k(s−1). (12)

By applying (12) recurrently, we have∑
s∈S

(P̃ k(s)− P k(s))hk(s) ≤
m∑
i=1

|Pi − P̃i|1spi(Mk).

Note that spi(Mk) is generally smaller than span(hk). In our lower bound case each spi =
1
mspan(hk), which improves our upper bound by a scale of 1/m.

The reduction of l can be achieved by bounding each factored reward to be in [1, 1/l]. The following
proof remains the same.

D FSRL algorithm

Here we provide a complete description of the FSRL algorithm that was omitted in the main paper
due to space considerations.

Algorithm 2 FSRL
Input: S,A, T , encoding G and upper bound on sum of factored span Q.
k ← 1; t← 1; tk ← 1;Tk = 1;H ← {}
repeat

Choose Mk ∈Mk by solving the following optimization over M ∈Mk,

maxλ∗(M) subject to Q(h) ≤ Q for h being the bias vector of M.

Compute π̃k = π(Mk).
for t = tk to tk + Tk − 1 do

Apply action at = πk(st)
Observe new state st+1

Observe new rewards rt+1 = (rt+1,1, . . . rt+1,l)
H = H ∪ {(st, at, rt+1, st+1)}
t← t+ 1

end for
k ← k + 1.
Tk ← dk/Le; tk ← t+ 1.

until tk > T
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Figure 4: Circle and three-leg structure with a size 4. State space is a 4-dimensional vector with
each dimension as {0, 1} representing whether the computer is working or not. Arrows represent the
scopes of dimension. Each node has an arrow to itself, which we ignored in the figure.

E Experiment Setups

Circle and Three-leg structures. Our computer network administrator domain with a circle and a
three-leg structure Guestrin et al. (2001); Schuurmans and Patrascu (2002) are shown in Figure 4.
Each computer gives a 1 reward when it is work and a 0 reward otherwise. The factored transition
matrix for network with size m is

P (s[i] = 0 | s[i] = 1, s) = min{1, α1|ε1i |+
∑
j∈ZP

i

α2|η1
ij |1(s[j] = 0)}, ∀i ∈ [m],

P (s[i] = 0 | s[i] = 0, s) = min{max{|ε0i |, 0.5}+
∑
j∈ZP

i

α2|η0
ij |1(s[j] = 0)}, ∀i ∈ [m],

where α1, α2 = 0.1 are constant and ε1i , ε
0
i , η

1
ij , η

0
ij are all white noise. To avoid the extreme cases in

our lower bound, both the MDPs are set to have limited diameters.
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