
Appendix: Improving model calibration with accuracy versus
uncertainty optimization

A Dataset shift

We use various image corruptions and perturbations proposed by Hendrycks and Dietterich [20]
for evaluating model calibration under dataset shift, following the methodology in uncertainty
quantification (UQ) benchmark [26]. We evaluate our proposed methods with the high performing
baselines provided in the UQ benchmark. For dataset shift evaluation, 16 different types of image
corruptions at 5 different levels of intensities are utilized, resulting in 80 variants of datashift.
Figure F1 shows an example of 16 different datashift types on ImageNet used in our experiments
during test time. Figure F2 shows an example of different shift intensities (from level 1 to 5)
for Gaussian blur. The same datashifts are applied to CIFAR10 as well. These dataset shifts are
encountered during test time only, the models are trained with clean data.

Figure F1: Example of sixteen different image corruptions [20] used during test time (dataset shift)

Figure F2: Example of Gaussian blur at different levels of shift intensity (1-5)

B Experimental details and Parameters

Codebase We have made our code available open-source at https://github.com/
intelLabs/AVUC. We have implemented the code necessary for our experiments of SVI (mean-
field stochastic variational inference), SVI-AvUC (accuracy vs uncertainty calibration) and SVI-
AvUTS (accuracy vs uncertainty temperature scaling) in PyTorch [54], including AvUC loss and
variational layers support required for stochastic variational inference.

B.1 Model details

In this section we describe all hyper-parameters used for training the models and evaluation we
performed in Section 4. On CIFAR10 and ImageNet image classification tasks under distributional
shift, we use ResNet-20 and ResNet-50 [46] architectures respectively. The results for the methods:
Vanilla, Temp scaling, Ensemble, Dropout, LL Dropout and LL SVI are computed from the model
predictions provided in UQ benchmark [26].

B.1.1 CIFAR10/ResNet-20

SVI-AvUC We use the same hyper-parameters as Snoek et al. [26] used for SVI on CIFAR10 for
fair comparison. The models were trained with Adam optimizer for 200 epochs with initial learning
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rate of 1.189e−3 and batch size of 107. As part of the learning rate schedule, initial learning rate
was multiplied by 0.1, 0.01, 0.001 and 0.0005 at epochs 80, 120, 160 and 180 respectively. The
training samples were distorted with random horizontal flips and random crops with 4-pixel padding
as mentioned in [46]. We used β = 3 in Equation 5 for relative weighting of AvUC loss with respect
to ELBO loss. We used 128 Monte Carlo samples from weight posterior for evaluation.

SVI-AvUTS We find the optimal temperature for pretrained SVI model by minimizing the accuracy
versus uncertainty calibration (AvUC) loss on hold-out validation data. We adapted the code from [11]
and replaced negative log-likelihood loss with our AvUC loss implementation for optimization at
learning rate of 0.005. The CIFAR10 training data was split into 9:1 ratio (45k train set and 5k
hold-out validation set images). The SVI baseline model was trained with same hyper-parameters as
in UQ benchmark [26], described above.

Radial BNN To compare our methods SVI-AvUC and SVI-AvUTS with Radial BNN, we imple-
mented ResNet-20 for Radial BNN adapting the code from [8]. The models were trained with Adam
optimizer for 200 epochs with initial learning rate of 1e−3 and batch size of 256. As part of the
learning rate schedule, initial learning rate was multiplied by 0.1, 0.01, 0.001 and 0.0005 at epochs
80, 120, 160 and 180 respectively. The training samples were distorted with random horizontal flips
and random crops with 4-pixel padding as mentioned in [46]

We evaluate with 10k test images, along with 80 variants of dataset shift (each with 10k images) that
includes 16 different types of datashift at 5 different intensities as described in Section A.

For out-of-distribution (OOD) evaluation, we use SVHN dataset as OOD data on models trained with
CIFAR10.

B.1.2 ImageNet/ResNet-50

SVI In order to scale SVI to large-scale ImageNet dataset and ResNet-50 model, we specify the
weight priors and initialize the variational parameters using Empirical Bayes method as proposed
in [51]. The weights are modeled with fully factorized Gaussian distributions represented by µ
and σ. In order to ensure non-negative variance, σ is expressed in terms of softplus function with
unconstrained parameter ρ, i.e. σ = log(1 + exp(ρ)). The weight prior is set to N (wMLE, I) and
the variational parameters µ and ρ are initialized with wMLE and log(eδ|wMLE| − 1) repectively. The
initial maximum likelihood estimate (MLE) for weights wMLE are obtained from pretained ResNet-50
model available in the torchvision package1 and δ is set to 0.5. The model was trained for 50
epochs using SGD optimizer with initial learning rate of 0.001, momentum of 0.9, weight decay
of 1e−4 and batch size of 96. We used learning rate schedule that multiplies the learning rate by
0.1 every 30 epochs.The training samples were distorted with random horizontal flips and random
crops as mentioned in [46]. We used 128 Monte Carlo (MC) samples from weight posterior for fair
comparison with other stochastic methods in UQ benchmark [26], but we were able to get similar
results with resuced number of MC samples.

SVI-AvUC The model is trained with the same hyper-parameters and initializations with Empirical
Bayes as described for SVI above, except that the model is trained with AvUC loss in addition to the
ELBO loss. We used β = 3 in Equation 5 for relative weighting of AvUC loss with respect to ELBO
loss.

SVI-AvUTS We find the optimal temperature for pretrained SVI model by minimizing the accuracy
versus uncertainty calibration (AvUC) loss on hold-out validation data. We adapted the code from [11]
and replaced negative log-likelihood loss with our AvUC loss implementation. We used 50k images
(randomly sampled from 1281.1k training images) for finding the optimal temperature to modify the
logits of pretrained SVI. We used 128 Monte Carlo samples from weight posterior for evaluation.

AvUTS We applied AvUTS (AvU Temperature Scaling) method on pretrained vanilla ResNet-50
model with AvUC loss in order to compare with conventional temperature scaling [11] that optimizes
negative log-likelihood loss. Results are provided in Appendix D.6. We used the pretrained model
available in the torchvision package. We used entropy of softmax as uncertainty for AvUC loss

1
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
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computation. We followed the same procedure as SVI-AvUTS described above, except that the
method is applied to deterministic model.

We evaluate with 50k test images, along with 80 variants of dataset shift (each with 50k images) that
includes 16 different types of datashift at 5 different intensities as described in Section A.

C Additional background

In this section, we follow the same notations described in Section 3.1 of the main paper.

C.1 SVI in Bayesian deep neural networks

Bayesian deep neural networks provide a probabilistic interpretation of deep learning models by
learning probability distributions over the neural network weights. In Bayesian setting, we would
like to infer a distribution over weights w. A prior distribution is assumed over the weights p(w)
that captures our prior belief as to which parameters would have likely generated the outputs before
observing any data. Given the evidence data p(y|x), prior distribution p(w) and model likelihood
p(y | x,w), the goal is to infer the posterior distribution over the weights p(w|D):

p(w|D) =
p(y | x,w) p(w)∫
p(y | x,w) p(w) dw

(6)

Computing the posterior distribution p(w|D) is analytically intractable, stochastic variational infer-
ence (SVI) [2–4] is an approximate method that has been proposed to achieve tractable inference. SVI
approximates a complex probability distribution p(w|D) with a simpler distribution qθ(w), parameter-
ized by variational parameters θ while minimizing the Kullback-Leibler (KL) divergence. Minimizing
the KL divergence is equivalent to maximizing the log evidence lower bound (ELBO) [5], as given
by Equation 7. Conventionally ELBO loss (negative ELBO) as given by Equation 8 is mizimized
while training Bayesian deep neural networks with stochastic gradient descent optimization.

L := Eqθ(w) [log p(y|x,w)]−KL[qθ(w)||p(w)] (7)

LELBO := −Eqθ(w) [log p(y|x,w)] +KL[qθ(w)||p(w)] (8)

In mean-field stochastic variation inference, weights are modeled with fully factorized Gaussian
distribution parameterized by variational parameters µ and σ.

qθ(w) = N (w |µ, σ) (9)

The variational distribution qθ(w) and its parameters µ and σ are learned while optimizing the cost
function ELBO with the stochastic gradient steps.

C.2 Uncertainty metrics

Predictive distribution is obtained through multiple stochastic forward passes on the network while
sampling from the weight posteriors using Monte Carlo estimators. Equation 10 shows the predictive
distribution of the output y given input x:

p(y|x,D) ≈ 1

T

T∑
t=1

p(y|x,wt) , wt ∼ p(w |D) (10)

Predictive entropy The entropy [36] of the predictive distribution captures a combination of
aleatoric and epistemic uncertainties [39] given by Equation 11 [35].

H(y|x,D) := −
∑
k

(
1

T

T∑
t=1

p (y = k|x,wt)

)
log

(
1

T

T∑
t=1

p (y = k|x,wt)

)
(11)

15



For deterministic models (Vanilla, Temp scaling), predictive entropy is computed with Equation 12.

H(y|x,D) := −
∑
k

(p (y = k|x,w)) log (p (y = k|x,w)) (12)

Mutual information The mutual information [36] between weight posterior and predictive distri-
bution captures the epistemic uncertainty [35, 38] given by Equation 13.

MI(y,w|x, D) := H(y|x,D)− Ep(w|D) [H(y|x,w)] (13)

C.3 Evaluation metrics

C.3.1 Model calibration evaluation metrics

Expected calibration error (ECE) [40] measures the difference in expectation between model accuracy
and its confidence as defined in Equation 14. ECE quantifies the model miscalibration with respect to
confidence (probability of predicted class). The predictions of the neural network is partitioned into
L bins of equal width, where lth bin is the interval

(
l−1
L , lL

]
. ECE is computed using the equation

below, where N is the total number of samples andBl is the set of indices of samples whose prediction
confidence falls into the lth bin.

ECE =

L∑
l=1

|Bl|
N
|acc (Bl)− conf (Bl)| (14)

where the model accuracy and confidence per bin are defined as below.

acc (Bl) =
1

|Bl|
∑
i∈Bl

1 (ŷi = yi) ; conf (Bl) =
1

|Bl|
∑
i∈Bl

pi (15)

Expected uncertainty calibration error (UCE) [41] measures the difference in expectation between
model error and its uncertainty as defined in Equation 16. UCE quantifies the model miscalibration
with respect to predictive uncertainty representing entire predictive distribution of probabilities across
the classes.

UCE =

L∑
l=1

|Bl|
N
|err (Bl)− uncert (Bl)| (16)

where the model error and uncertainty per bin are defined as below. ũi ∈ [0, 1] represents normalized
uncertainty.

err (Bl) =
1

|Bl|
∑
i∈Bl

1 (ŷi 6= yi) ; uncert (Bl) =
1

|Bl|
∑
i∈Bl

ũi (17)

C.3.2 Uncertainty evaluation metrics

Conditional probabilities p(accurate | certain) and p(uncertain | inaccurate) have been proposed
in [39] as model performance evaluation metrics for comparing the quality of uncertainty estimates
obtained from different probabilistic methods. p(accurate | certain) is given by Equation 18, measures
the probability that the model is accurate on its output given that it is confident on the same.
p(uncertain | inaccurate) is given by Equation 19, measures the probability that the model is uncertain
about its output given that it has made inaccurate prediction.

p(accurate|certain) = nAC
nAC + nIC

(18)

p(uncertain|inaccurate) = nIU
nIC + nIU

(19)
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D Additional Results

D.1 Monitoring metrics and loss functions while training with SVI-AvUC

Figure F3: SVI-AvUC ResNet-20/CIFAR: Training. Monitoring accuracy, AvU metric, ELBO loss,
AvUC loss and total loss at each training epoch.

Figure F4: SVI-AvUC ResNet-20/CIFAR: Validation accuracy and AvU score. Monitoring accuracy
and AvU metric on test data at after each training epoch.

Figure F3 shows ELBO loss, AvUC (acuuracy vs uncertainty calibration) loss and total loss (com-
bination of ELBO and AvUC losses) along with accuracy and AvU metrics at each training epoch.
ELBO loss consist of two components including negative expected log-likelihood and Kullback-
Leibler divergence as given by Equation 8. We can observe that the ELBO loss decreases as accuracy
is increasing indicating the inverse correlation between them. We can also see that ELBO loss is
decreasing even if the AvU score is not increasing. AvU provides relationship between accuracy and
uncertainty that hints model calibration as described in Section 3. Figure F3(b) and (d) show that
the proposed differentiable AvUC loss and actual AvU metric is inversely correlated, guiding the
gradient optimization of total loss with respect to improving both accuracy and uncertainty calibration.
Figure F4 shows accuracy and AvU score on test data obtained from 1 Monte Carlo sample at the
end of each training epoch (for monitoring). The model accuracy and AvU score during evaluation
phase will be higher as we use larger number of Monte Carlo samples to marginalize over the weight
posterior.

D.2 Additional results for model calibration evaluation

In addition to model calibration evaluation with expected calibration error (ECE) ↓ and expected
uncertainty calibration error (UCE) ↓ metrics in Figure 1 of Section 4, we also compare negative log-
likelood (NLL) ↓ and Brier score metrics ↓ obtained from different methods on ImageNet (ResNet-50)
and CIFAR10 (ResNet-20) across 80 combinations of datashift including 16 different types of shift
at 5 different levels of shift intensities. The results are shown in Figure F5 for ImageNet and in
Figure F6 for CIFAR10.
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Figure F5: ResNet-50/ImageNet: Model calibration comparison using ECE↓, UCE↓, NLL↓ and Brier score↓
on ImageNet under in-distribution (test) and dataset shift at different levels of shift intensities (1-5). A well-
calibrated model should consistently provide lower ECE, UCE, NLL and Brier score even at increased levels of
datashift, as accuracy may degrade with increased datashift. At each shift intensity level, the boxplot summarizes
the results across 16 different datashift types showing the min, max, mean and quartiles.
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Figure F6: ResNet-20/CIFAR10: Model calibration comparison using ECE↓, UCE↓, NLL↓ and Brier score↓
on CIFAR10 under in-distribution (test) and dataset shift at different levels of shift intensities (1-5). A well-
calibrated model should consistently provide lower ECE, UCE, NLL and Brier score even at increased levels of
datashift, as accuracy may degrade with increased datashift. At each shift intensity level, the boxplot summarizes
the results across 16 different datashift types showing the min, max, mean and quartiles.
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The Spearman rank-order correlation coefficient (ρ) [55] is a nonparametric measure of rank corre-
lation, which asseses the monotonic relationships between two variables. Spearman’s ρ ∈ [−1, 1],
with -1 or +1 implies exact monotonic relationship (negative and positive correlations respectively)
and 0 implies no correlation between two variables. We assess the effect of increasing data shift
intensities on the model calibration errors with Spearman rank-order correlation coefficient as shown
in Table T1. A perfectly calibrated and robust model will have Spearman’s ρ equal to 0 indicating the
model calibration errors are not correlated to data shift. The results in Table T1 shows that ECE and
UCE increases with data shift for all the methods, with comparatively lower ρ values for SVI-AvUC
indicating the proposed method is robust to data shift.

Table T1: Spearman rank-order correlation coefficient assessing the monotonic relationship between model
calibration errors (ECE and UCE) and the data shift intensity for the results in the Figures F5 and F6. Spearman’s
ρ indicates SVI-AvUC is robust as model calibration errors are less correlated to data shift compared to other
methods. ρ value near to 0 is better.
Dataset/Model Spearman’s ρ

rank-order correlation co-eff
wrt dataset shift intensity

Method

Vanilla Temp
scaling Ensemble Dropout LL Dropout SVI LL-SVI SVI-TS SVI-AvUTS SVI-AvUC

ImageNet/
ResNet-50

ρECE 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 0.94 0.31
ρUCE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.94

CIFAR10/
ResNet-20

ρECE 1.0 1.0 1.0 0.94 1.0 1.0 1.0 0.94 0.82 0.71
ρUCE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.77 0.82 0.71

Table T2: ImageNet: calibration under distributional shift. The lower quartile(25th percentile),
median (50th percentile), mean and upper quartile (75th percentile) of ECE ↓, UCE ↓, NLL ↓ and
Brier score ↓ computed across 16 different types of datashift at intensity 5 are presented below.

Metric Methods

Vanilla Temp scaling Ensemble Dropout LL Dropout SVI LL SVI SVI-AvUTS SVI-AvUC

ECE ↓
lower quartile 0.1244 0.0959 0.0503 0.0783 0.0925 0.0722 0.1212 0.0420 0.0319
median 0.1737 0.1392 0.0900 0.1339 0.1450 0.1144 0.1684 0.0807 0.0447
mean 0.1942 0.1600 0.0880 0.1530 0.1612 0.1188 0.1868 0.0800 0.0542
upper quartile 0.2744 0.2364 0.1264 0.2186 0.2364 0.1723 0.2676 0.1275 0.0696

UCE ↓
lower quartile 0.3068 0.2701 0.2179 0.2552 0.2727 0.2125 0.3356 0.1725 0.1310
median 0.3664 0.3251 0.2848 0.3506 0.3427 0.2872 0.3817 0.2323 0.1853
mean 0.3826 0.3428 0.2813 0.3651 0.3593 0.2865 0.4007 0.2263 0.1774
upper quartile 0.4752 0.4335 0.3506 0.4511 0.4572 0.3587 0.4917 0.2901 0.2113

NLL ↓
lower quartile 4.635 4.530 4.035 4.699 4.563 4.322 5.417 4.278 4.164
median 5.115 4.993 4.624 5.093 5.034 4.853 6.076 4.912 4.823
mean 5.234 5.091 4.604 5.553 5.201 4.865 6.422 4.860 4.707
upper quartile 6.292 6.165 5.893 6.522 6.342 6.034 7.755 5.941 5.778

Brier
score ↓

lower quartile 0.941 0.926 0.877 0.933 0.923 0.906 0.963 0.893 0.883
median 0.987 0.970 0.922 0.967 0.969 0.943 0.998 0.948 0.935
mean 0.964 0.945 0.888 0.961 0.947 0.922 0.979 0.914 0.900
upper quartile 1.052 1.027 0.989 1.025 1.025 1.013 1.072 0.996 0.985

Table T3: CIFAR10: calibration under distributional shift. The lower quartile(25th percentile),
median (50th percentile), mean and upper quartile (75th percentile) of ECE ↓, UCE ↓, NLL ↓ and
Brier score ↓ computed across 16 different types of datashift at intensity 5 are presented below.

Metric Methods

Vanilla Temp
scaling Ensemble Dropout LL Dropout SVI LL SVI Radial

BNN SVI-AvUTS SVI-AvUC

ECE ↓
lower quartile 0.2121 0.0997 0.0549 0.0794 0.2022 0.0925 0.2027 0.0797 0.0466 0.0398
median 0.3022 0.1834 0.1045 0.1889 0.3643 0.2146 0.3077 0.1950 0.1516 0.1107
mean 0.3151 0.1993 0.1611 0.2405 0.3518 0.2389 0.3267 0.2150 0.1585 0.1374
upper quartile 0.4148 0.2915 0.2551 0.3518 0.4854 0.3636 0.4246 0.3410 0.2345 0.2303

UCE ↓
lower quartile 0.1813 0.0419 0.0417 0.0328 0.1728 0.0594 0.1875 0.0473 0.0575 0.0495
median 0.2773 0.1147 0.0653 0.1382 0.3336 0.1723 0.2747 0.1449 0.11486 0.0740
mean 0.2853 0.1429 0.1333 0.1974 0.3204 0.2008 0.2983 0.1741 0.1272 0.1038
upper quartile 0.3871 0.2232 0.2103 0.2903 0.4486 0.3034 0.3902 0.2941 0.1827 0.1512

NLL ↓
lower quartile 1.634 1.166 0.955 0.971 1.419 1.052 1.629 1.179 0.984 1.035
median 2.666 1.957 1.753 1.952 2.767 2.001 2.752 2.038 1.747 1.742
mean 2.653 1.846 1.779 2.036 2.682 2.017 2.764 1.995 1.728 1.633
upper quartile 3.617 2.467 2.587 2.652 3.780 2.952 3.762 2.706 2.507 2.158

Brier
score ↓

lower quartile 0.546 0.496 0.407 0.421 0.526 0.449 0.529 0.488 0.434 0.454
median 0.871 0.765 0.651 0.727 0.848 0.702 0.850 0.738 0.675 0.692
mean 0.785 0.697 0.639 0.728 0.820 0.702 0.803 0.719 0.657 0.646
upper quartile 0.995 0.876 0.844 0.943 1.111 0.957 1.017 0.960 0.876 0.837
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D.3 Additional results for confidence and uncertainty evaluation under distributional shift

(a) Defocus blur

(b) Glass blur

Figure F7: ImageNet: Model confidence and uncertainty evaluation under distributional shift (defocus blur and
glass blur of intensity 3). Column 1: accuracy as a function of confidence. We expect a reliable model to be
more accurate at higher confidence values; Column 2: number of examples above given confidence value. We
expect a reliable model to have lesser number of examples with higher confidence as accuracy is significantly
degraded under distributional shift; Column 3: probability of model being uncertain when making inaccurate
predictions. We expect a reliable model to be more uncertain when it is inaccurate. Normalized uncertainty
thresholds t ∈ [0, 1] are shown in plots as the uncertainty range varies for different methods. All the plots show
SVI-AvUC outperforms other methods.

(a) Speckle noise

(b) Shot noise

Figure F8: CIFAR: Model confidence and uncertainty evaluation under distributional shift (speckle noise and
shot noise of intensity 3). Column 1: accuracy as a function of confidence; Column 2: probability of model being
accurate on its predictions when it is certain; Column 3: probability of model being uncertain when making
inaccurate predictions. Normalized uncertainty thresholds t ∈ [0, 1] are shown in plots as the uncertainty range
varies for different methods. All the plots show SVI-AvUC outperforms other methods.
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D.4 Comparing AUC of accuracy vs uncertainty (AvU) measures

Figure F9: ImageNet: AvU AUC↑ on in-distribution (test) and under dataset shift at different levels of shift
intensities (1-5). We expect a well-calibrated model to consistently provide higher AvU AUC score even at
increased levels of datashift. At each shift intensity level, the boxplot summarizes the results across 16 different
datashift types showing the min, max and quartiles. SVI-AvUC and SVI-AvUTS yields higher area under the
curve of AvU (AvU AUC) computed across various uncertainty thresholds at increased data shift intensity.

Table T4: Spearman rank-order correlation coefficient assessing the relationship between AvU-AUC and data
shift intensity. Spearman’s ρ indicates that AUC of AvU degrades with increased data shift for all the methods
with comparatively SVI-AvUC being robust (ρ value near to 0 is better).

Spearman’s ρ
rank-order correlation coeff

wrt data shift intensity

Method

Vanilla Temp
scaling Ensemble Dropout LL Droput SVI LL SVI SVI-TS SVI-AvUTS SVI-AvUC

ρAvUAUC -1.0 -0.94 -0.82 -0.94 -1.0 -0.82 -1.0 -0.82 -0.6 -0.25

D.5 Addition results for distributional shift detection

Figure F10 shows the density histogram plots of predictive uncertainty estimates obtained from
different methods on SVHN dataset (out-distribution) and CIFAR10 test set (in-distribution) with
ResNet-20 model that trained with CIFAR-10. These plots correspond to the out-of-distribution
detection results presented in Table 2 of Section 4.

Figure F10: Out-of-distribution SVHN: Density histograms of predictive entropy on SVHN as OOD and
CIFAR10 as in-distribution (ResNet-20 trained with CIFAR10). SVI-AvUC shows best separation of entropy
densities between in-distribution and OOD as quantified by Wasserstein distance in Table T5.
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Table T5: Wasserstein distance between the dis-
tribution of predictive uncertainties on CIFAR10
test data (in-distribution) and SVHN data (out-of-
distribution).

Method Wasserstein
distance

Vanilla 0.6703
Temp scaling 0.9350
Ensemble 0.9043
Dropout 0.6767
LL Dropout 0.4905
Radial BNN 0.3933
SVI 0.7480
LL SVI 0.6367
SVI-TS 0.7874
SVI-AvUTS 0.8469
SVI-AvUC 1.2021

Table T6: Wasserstein distance between the distri-
bution of predictive uncertainties on ImageNet test
data(in-distribution) and data shifted with defocus
blur at intensity 5.

Method Wasserstein
distance

Vanilla 3.0173
Temp scaling 3.1866
Ensemble 3.2473
Dropout 3.2605
LL Dropout 3.3676
SVI 3.6339
LL SVI 2.9897
SVI-TS 3.6851
SVI-AvUTS 3.9466
SVI-AvUC 4.2043

Figure F11 shows the density histogram plots of predictive uncertainty estimates obtained from
different methods on ImageNet test set (in-dist) and defocus blur of intensity 5 (data shift) with
ResNet-50 model that was trained with clean ImageNet.

Figure F11: Data shift on ImageNet (defocus blur): Density histograms of predictive entropy on ImageNet
in-distribution test set and data shifted with defocus blur (ResNet-50 trained with clean ImageNet). SVI-
AvUC shows best separation of entropy densities between in-distribution and data-shift. SVI-AvUC shows
best separation of predictive uncertainty densities between in-distribution and shifted data as quantified by
Wasserstein distance in Table T6.

Table T7 provides comprehensive distributional shift detection performance evaluation of different
methods across 16 different types of datashift at intensity 5 on ImageNet as described in Section A.
We observe SVI-AvUC performing best in detecting most of the shift types, and Ensemble perform
best on few of the shift types.
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Table T7: ImageNet: Distributional shift detection using predictive entropy. We compare distribu-
tional shift detection performance on 16 different types of dataset shift(each type contains 50k shifted
test images). All values are in percentages and best results are indicated in bold.

Dataset
shift type

Detection
evaluation
metric ↑↑

Methods

Vanilla Temp
scaling Ensemble Dropout LL Dropout SVI LL SVI SVI-AvUTS SVI-AvUC

Gaussian
blur

AUROC 93.36 93.71 95.49 96.38 96.04 96.40 93.58 96.89 97.60
Det. accuracy 86.08 86.47 88.82 89.98 89.68 90.03 86.93 90.93 92.07
AUPR-in 92.82 93.21 95.31 96.16 95.63 95.97 92.06 96.58 97.39
AUPR-out 93.71 94.01 95.64 96.67 96.40 96.83 94.02 97.19 97.85

Brightness

AUROC 70.58 71.02 71.97 73.73 71.17 72.77 69.24 75.08 74.61
Det. accuracy 65.03 65.45 66.15 67.44 65.36 66.61 64.16 68.44 67.58
AUPR-in 68.28 68.62 70.57 72.42 68.96 70.93 65.41 73.12 73.54
AUPR-out 70.80 71.26 71.62 73.75 71.48 73.34 69.60 75.93 75.56

Contrast

AUROC 98.82 98.96 99.40 99.41 99.32 98.92 98.73 99.45 99.48
Det. accuracy 94.70 95.06 96.27 96.22 96.06 94.87 94.59 96.52 96.69
AUPR-in 98.75 98.91 99.39 99.41 99.28 98.85 98.64 99.44 99.46
AUPR-out 98.91 99.04 99.42 99.43 99.37 99.02 98.85 99.48 99.52

Defocus
blur

AUROC 94.04 94.37 95.74 96.26 95.97 95.88 93.69 96.68 97.18
Det. accuracy 86.79 87.13 89.06 89.79 89.52 89.35 86.98 90.51 91.40
AUPR-in 93.34 93.70 95.40 96.03 95.44 95.37 92.01 96.29 96.91
AUPR-out 94.66 94.94 96.11 96.58 96.43 96.39 94.28 97.05 97.50

Elastic
transform

AUROC 88.15 88.81 91.03 87.73 89.20 89.63 86.73 90.84 90.82
Det. accuracy 80.43 81.16 83.59 80.19 81.69 82.12 79.44 83.28 83.06
AUPR-in 88.45 89.10 91.43 88.57 89.56 89.99 86.08 91.08 91.29
AUPR-out 87.18 87.84 90.06 85.97 88.01 88.58 86.19 90.07 90.08

Fog

AUROC 89.15 89.74 91.45 91.83 90.03 90.20 87.40 93.01 91.46
Det. accuracy 81.12 81.79 83.78 84.00 82.03 82.48 79.75 85.47 83.44
AUPR-in 88.75 89.30 91.39 92.04 89.85 89.90 85.78 92.84 91.13
AUPR-out 89.22 89.83 91.34 91.61 89.99 90.26 87.67 93.14 91.90

Frost

AUROC 88.67 89.19 90.90 90.53 88.56 90.60 87.69 91.74 92.19
Det. accuracy 80.87 81.40 83.23 82.64 80.65 82.84 80.07 83.99 84.31
AUPR-in 87.95 88.46 90.56 90.44 87.80 89.91 86.09 91.03 91.63
AUPR-out 89.03 89.55 91.06 90.56 88.98 91.20 88.10 92.41 92.88

Glass
blur

AUROC 94.96 95.29 96.48 96.06 96.02 96.90 95.14 97.37 97.85
Det. accuracy 87.86 88.31 90.15 89.41 89.40 90.71 88.68 91.58 92.51
AUPR-in 94.71 95.06 96.32 95.94 95.76 96.68 94.28 97.20 97.70
AUPR-out 95.24 95.54 96.66 96.24 96.26 97.17 95.52 97.57 98.05

Gaussian
noise

AUROC 92.36 92.84 97.78 91.27 93.87 95.83 91.00 96.37 97.46
Det. accuracy 85.25 85.92 92.92 85.84 87.31 89.29 84.60 90.10 91.73
AUPR-in 92.66 93.16 97.97 93.39 94.60 95.91 91.75 96.44 97.46
AUPR-out 91.20 91.62 97.42 86.10 92.70 95.76 89.03 96.28 97.52

Impulse
noise

AUROC 92.15 92.63 97.64 92.10 93.77 95.39 91.68 96.01 97.14
Det. accuracy 85.03 85.69 92.76 86.81 87.10 88.73 85.04 89.56 91.17
AUPR-in 92.59 93.09 97.91 94.01 94.44 95.51 92.27 96.10 97.20
AUPR-out 90.75 91.17 97.15 86.95 92.67 95.25 90.05 95.87 97.17

Pixelate

AUROC 81.52 81.88 87.80 88.03 87.01 87.98 79.85 87.19 90.04
Det. accuracy 74.37 74.71 80.23 80.64 79.50 80.24 73.17 79.27 81.98
AUPR-in 80.02 80.39 87.16 87.94 86.03 87.07 76.98 86.10 89.48
AUPR-out 81.34 81.66 87.56 86.91 86.93 88.27 79.56 87.52 90.48

Saturate

AUROC 74.37 74.83 76.70 75.70 74.19 77.21 73.26 78.05 78.71
Det. accuracy 68.32 68.79 70.37 69.60 68.22 70.65 67.52 71.41 71.57

AUPR-in 71.66 72.04 74.53 74.21 71.54 74.95 69.38 75.84 77.31
AUPR-out 73.84 74.29 75.90 73.75 73.24 77.07 72.94 77.76 78.82

Shot
noise

AUROC 90.38 90.92 97.15 90.31 93.25 95.17 90.29 95.57 96.72
Det. accuracy 83.11 83.79 91.98 84.88 86.74 88.49 84.02 89.02 90.47
AUPR-in 90.72 91.29 97.41 92.55 94.07 95.27 91.03 95.68 96.77
AUPR-out 88.86 89.32 96.53 84.79 91.68 95.00 87.45 95.38 96.75

Spatter

AUROC 84.23 84.92 88.01 84.87 84.60 86.01 83.41 87.00 86.34
Det. accuracy 76.74 77.49 80.78 77.95 77.66 78.75 76.15 79.53 78.73
AUPR-in 84.06 84.69 88.05 85.73 84.66 85.81 81.38 86.59 86.61
AUPR-out 82.90 83.62 86.66 81.50 82.38 84.90 83.21 86.36 85.12

Speckle
noise

AUROC 87.32 87.83 93.17 88.54 88.54 90.28 87.13 90.58 91.84
Det. accuracy 80.05 80.64 86.40 82.00 82.00 82.87 80.39 83.10 84.02
AUPR-in 87.57 88.09 93.32 89.88 89.88 90.17 86.89 90.41 91.88
AUPR-out 85.38 85.84 92.25 84.48 84.48 89.78 84.78 90.12 91.70

Zoom
blur

AUROC 89.92 90.48 92.12 90.47 90.77 90.65 88.65 91.56 93.87
Det. accuracy 82.29 82.92 84.79 82.85 83.32 83.11 81.36 84.14 86.62
AUPR-in 88.84 89.40 91.49 90.18 89.86 89.82 86.31 91.01 93.41
AUPR-out 90.39 90.93 92.36 90.27 91.07 91.04 89.01 91.68 94.40
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D.6 AvUTS applied to Vanilla DNN (Comparison with Temp scaling using NLL)

We evaluate AvUTS (AvU Temperature Scaling) by performing post-hoc calibration on vanilla DNN
with accuracy versus uncertainty calibration (AvUC) loss and compare with conventional temperature
scaling [11] that optimizes negative log-likelihood loss. We use entropy of softmax as uncertainty for
AvUC loss computation.

Figure F12: AvUTS on Vanilla ResNet-50: Model calibration comparison of AvUTS with conven-
tional Temp Scaling and Vanilla baselines using ECE↓ and UCE↓ on ImageNet under in-distribution
(test) and dataset shift at different levels of shift intensities (1-5). A well-calibrated model should
provide lower calibration errors even at increased levels of datashift, though accuracy may degrade
with data shift. At each shift intensity level, the boxplot summarizes the results across 16 different
datashift types showing the min, max and quartiles. We can see that AvUTS provides significantly
lower model calibration errors (ECE and UCE) than Vanilla and Temp scaling methods at increased
distributional shift intensity, while providing comparable accuracy.

E Ablation study for β weight factor in SVI-AvUC

Figure F13: Model calibration errors (ECE, UCE) and accuracy at different values of β in Equation 5
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We evaluate SVI-AvUC method on ResNet-20 model with different values of β in Equation 5.
Figure F13 shows the effect of different values of β on the model calibration errors (ECE and UCE)
and model test accuracy on test data shifted with Gaussian blur at intensity 3. We observe that the
accuracy curve remains almost flat with different β values, ECE decreases initially and increases
above β=3, UCE decreases initially with β and then remains almost flat.

F Optimizing Area under the curve of AvU

We optimized area under the curve of AvU across various uncertainty thresholds towards a threshold
free mechanism. This method is compute intensive during training as we need to compute AvU at
different thresholds uth = umin + (t (umax − umin)) with t ∈ [0, 1]. We applied this method to both
training the model and post-hoc calibration on SVI (SVI-AUAvUC and SVI-AUAvUTS), results
are shown in Figure F14. The results are similar to SVI-AvUC and SVI-AvUTS as presented in
Figure F6.

Figure F14: AUC of AvU optimized ResNet-20/CIFAR10: Model calibration comparison using
ECE↓ on CIFAR10 under in-distribution (test) and dataset shift at different levels of shift intensities
(1-5). A well-calibrated model should consistently provide lower calibration error even at increased
levels of datashift, though accuracy may degrade with increased datashift. At each shift intensity
level, the boxplot summarizes the results across 16 different datashift types showing the min, max
and quartiles.
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