
Two reviewers rated this paper very highly. The other reviewer was anomalously low and provided a review that lacked1

substance and was completely inappropriate. We thus ask the senior PC member to discount this review and make a2

decision based on the other two thoughtful reviews, or to find another reviewer to provide a more appropriate review.3

(We will, however, address to the extent possible the comments of this reviewer below.)4

To Reviewer #2 Thanks for the clear accept and the helpful suggestions. In the final version, we will clarify the5

discussion of γ as a function of k in Section 1.2, and we will also expand Section 1.3 (note that a detailed discussion of6

randomized iterative optimization is provided in Appendix B).7

To Reviewer #3 Thanks for the clear accept and the helpful suggestions. It is true that our proofs define a high8

probability event, however this is merely for the analysis. The final statements of Theorems 1 and 2 hold absolutely,9

rather than with high probability. In the final version, we will expand our discussion of low-rank approximation metrics.10

Addressing Reviewer #4 Below, we demonstrate that the review is inappropriate and should be discounted, because:11

1. The reviewer completely misrepresents and fails to understand the stated aims of the paper.12

2. The reviewer makes sweeping claims which are technically wrong and unsupported.13

First of all, while we agree that the criticisms voiced by the reviewer apply to many NeurIPS papers, this paper is not14

one of them. We are well aware of the TCS work on low-rank approximation and sketching. If we were to cite all of15

those TCS papers, it would include hundreds of references (we choose to cite a few reviews, as is common when an area16

gets to a certain level of maturity). However, more importantly, unlike the TCS papers, in this work we are not interested17

in obtaining worst-case approximation or concentration bounds (see, e.g., lines 4 and 27). Yet, the reviewer appears to18

be confused about this and states that “the authors show that, given a matrix A and a sketch S, the difference of the19

singular values of ATA and ATSTSA is concentrated around the expectation.” This is not at all accurate in describing20

our results. Instead, our goal is to provide a precise characterization, which goes beyond worst-case bounds, for the21

expected residual projection matrix, E[I − (SA)†SA] (i.e., approximating an analytically intractable deterministic22

quantity with a simpler analytically tractable expression). Thus, in the context of low-rank approximation, our goal is23

not to improve on a TCS-style approximation objective (e.g., by showing a 1 + ε error bound relative to the best rank k24

subspace), but rather to express the error in a simple form as a function of the spectrum of the data matrix. Also, unlike25

standard worst-case analysis, our analysis does not rely on satisfying some notion of the subspace embedding property,26

which significantly differentiates our work from that cited by the reviewer. Note that a subspace embedding is neither27

sufficient nor necessary for many numerical implementations of sketching [Avron et al., 2010, Meng et al., 2014], or28

statistical results [Raskutti and Mahoney, 2016, Dobriban and Liu, 2019, Yang et al., 2020], as well as in the context of29

iterative optimization and implicit regularization (see Section 1.3), which are discussed in detail in the paper.30

Finally, we point out the false and unsupported claims made by the reviewer when comparing our paper to prior work.31

This likely arises from the reviewer’s confusion regarding the nature of our results. (Meanwhile, the other two reviewers32

describe the paper as “very well-written” and “clearly written”.) Regarding Cohen et al. [2016], Reviewer #4 states that33

“Main result here is a generalization of theorem 1”, and then later, regarding the submission, the reviewer claims that34

“the results presented here are, in one form or another, either known results from TCS literature, or easy corollaries”.35

The latter statement is incredibly broad, completely unsupported and simply false, so we focus on the former. Regarding36

the former claim, Cohen et al. do provide a low-rank approximation guarantee for sub-Gaussian sketches. However,37

this result differs from ours in several respects. First of all, instead of analyzing Ã = A(SA)†SA directly as a low-rank38

approximation with a sketch of size k (as we do), they use a larger sketch (e.g., of size Ck/ε2, where C > 1 and ε < 1)39

and consider the matrix Ãk, defined as the best rank k approximation of Ã. This distinction is crucial for their analysis,40

which relies on showing that a sketch of size sufficiently larger than k ensures a rank k subspace embedding condition.41

This condition is not known to hold (at least in the worst case) if the sketch is of size k. Our novel analysis completely42

avoids subspace embeddings (which, as the reviewer points out, are central to TCS-style analysis). This is why we can43

still provide upper/lower bounds for the low-rank approximation error in this important case. Also, the form of our44

bounds is completely different than that of Cohen et al., in that we compare the error with a certain implicit function of45

the singular values of A, which is different from the error of the best rank k approximation (used by Cohen et al.), and46

so the role of ε in our paper is different than in theirs. All in all, different methods are being analyzed, different types of47

bounds are obtained, and completely different analysis is used. Thus, by all indications, the reviewer is wrong, and our48

result is not a corollary or a special case of the results of Cohen et al.49
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