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Abstract

Decentralized optimization has wide applications in machine learning, signal
processing, and control. In this paper, we study the decentralized composite opti-
mization problem with a non-smooth regularization term. Many proximal gradient
based decentralized algorithms have been proposed in the past. However, these
algorithms do not achieve near optimal computational complexity and communi-
cation complexity. In this paper, we propose a new method which establishes the
optimal computational complexity and a near optimal communication complex-
ity. Our empirical study shows that the proposed algorithm outperforms existing
state-of-the-art algorithms.

1 Introduction

In this paper, we consider the decentralized composite optimization problem where agents aim to
solve the following composite convex problem defined as

min
x∈Rd

h(x) , f(x) + r(x), f(x) ,
1

m

m∑
i=1

fi(x), (1)

where each function fi(x) is the loss function of agent i and known only to the agent; r(x) is a
non-smooth, convex function shared by all agents. The agents form a connected and undirected
network. Agents can communicate with their neighbors to cooperatively solve the Problem (1).

Many machine learning problems can be formulated as Problem (1) such as the elastic net [29], the
graphical Lasso [4], and sparse logistic regression [24]. Because centralized optimization suffers from
the communication traffic jam on the central server and robustness of the network, the decentralized
optimization has become an active research topic in machine learning. Decentralized methods for
solving Problem (1) have also been widely studied in signal processing, control, and optimization
communities.

Due to the wide applications, many different decentralized algorithms have been proposed in the
past. We review the existing methods for the smooth non-proximal case where r(x) = 0. Some
earlier primal algorithms were penalty based, and they can only reach sublinear convergence O(1/t)
even for strongly convex objective functions [12, 27, 7]. The methods in [20] established the linear
convergence for decentralized methods based on ADMM. More recently, gradient tracking based
algorithms were proposed and they all achieved linear convergence including EXTRA [18], ESOM
[11] , exact diffusion [28], NIDS [9], and many others [14, 15, 3, 17, 8]. Qu & Li [15] combined
acceleration technique with gradient tracking to obtain faster convergence rate. Some other recent
works [16, 22, 5, 5] studied the dual formulations of the problem, and proposed accelerated dual
gradient descent to reach an optimal convergence rate for smooth problems. Recently, Ye et al.
[26] proposed Mudag, which can achieve the optimal computation complexity and near optimal
communication complexity for the smooth case with r(x) = 0.
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Many gradient tracking based algorithms have been extended to decentralized composite optimization
problems with a non-smooth regularization term such as PG-EXTRA [19] and NIDS [9]. However, due
to the non-smooth term, these algorithms can only achieve sub-linear convergence rates. Recently, the
authors of [21] proposed a gradient tracking based method called SONATA, and established a linear
convergence rate with the assumption that f(x) is strongly convex. In addition, Alghunaim et al.
[2] proposed a primal-dual algorithm which can achieve linear convergence rate when each fi(x) is
convex. Recently, a unified framework to analyze a large group of algorithms, and showed that these
algorithms can also achieve linear convergence rates with nonsmooth regularization term such as
EXTRA (PG-EXTRA) [18], NIDS [9], and Harnessing [14] in the work of [1, 25]. Despite intensive
studies in the literature, the convergence rates of these previous algorithms do not match the optimal
convergence rate. Moreover, the communication complexities achieved by algorithms analyzed in the
framework of Xu et al. [25] and Alghunaim et al. [1] are sub-optimal.

In this paper, we propose a novel algorithm that can establish the optimal computation complexity
and a near optimal communication complexity. Our method is closely related to Mudag of [26], which
can only handle the non-composite case with r(x) = 0. We summarize our contributions as follows:

1. We proposed a novel decentralized primal proximal algorithm that can achieve the optimal
computational complexity O(

√
κg log( 1

ε )) and an almost optimal communication complex-

ity O
(√

κg

1−λ2(W ) log(p(M,L,µ)
q(M,L,µ) ) log 1

ε

)
, which matches the lower bound up to a log factor.

κg is the global condition number of f(x). M and L are the smoothness parameter of local
fi(x) and f(x), respectively. p and q are polynomials of M , L and µ of order no larger
than three. To the best of our knowledge, our work is the first near optimal decentralized
proximal algorithm.

2. Our algorithm does not require each individual function to be (strongly) convex. Thus, our
algorithm has a wide application range since fi(x) may not be convex in many machine
learning problems. The strong convexity condition of each fi(x) is required in the algorithms
suited in the framework of [25] to achieve linear convergence rates. SONATA can also achieve
linear convergence rate without this condition [21]. However, SONATA has to construct
successive convex approximation function to deal with the non-convexity of fi(x) which
requires extra computation burden.

2 Problem Set-up

We first introduce some properties of objective functions that will be used in this paper. Then we
introduce the Gossip matrix associated with the network. Finally, we reformulate the Problem (1).

2.1 Function Properties

Global L-Smoothness We call f(x) is L-smooth, that is, for any y, x ∈ Rd, it holds that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 .

Global µ-Strong Convexity We call f(x) is µ-strongly convex, that is, for any y, x ∈ Rd, it holds
that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 .

Local M -Smoothness For each fi(x) in Eqn. (1), and any y, x ∈ Rd, it holds that

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+
M

2
‖y − x‖2 .

Local ν-Strong Convexity For each fi(x) in Eqn. (1), and any y, x ∈ Rd, it holds that

fi(y) ≥ fi(x) + 〈∇fi(x), y − x〉+
ν

2
‖y − x‖2 .
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Based on the smoothness and strong convexity, we can define global and local condition number of
the objective function respectively as follows

κg = L/µ and κ` = M/ν.

It is well known that κg ≤ κ` and L ≤M . Furthermore, if f(x) is µ-strongly convex and r is convex,
then one can easily check that h(x) = f(x) + r(x) is also µ-strongly convex.

2.2 Gossip Matrix

We use W ∈ Rm×m to denote the gossip matrix associated with the network and use λ2(W ) to
denote the second largest eigenvalue of W . The gossip matrix W has the following important
properties:

1. W is symmetric with Wi,j 6= 0 if and only if agents i and j are connected or i = j.
2. 0 �W � I , W1 = 1, null(I −W ) = span(1).

We use I to denote the m×m identity matrix and 1 = [1, . . . , 1]> ∈ Rm denotes the vector with all
ones.

By above two properties, one can achieve averaging xi’s in different agents by several steps of local
communication (by multiplying W ). Instead of directly multiplying W several times, Liu & Morse
[10] proposed a more efficient way to achieve averaging described in Algorithm 2 which has the
following important proposition.
Proposition 1. Let xK be the output of Algorithm 2 and x̄ = 1

m1>x0. Then it holds that

x̄ =
1

m
1>xK , and

∥∥xK − 1x̄
∥∥ ≤ (1−

√
1− λ2(W )

)K ∥∥x0 − 1x̄
∥∥ ,

where λ2(W ) is the second largest eigenvalue of W .

2.3 Problem Reformulation

Denote by xi ∈ Rd the local copy of the variable of x for agent i. We introduce the aggregated
variable x and the aggregated objective function H(x) as

H(x) =
1

m

m∑
i=1

fi(xi) +
1

m

m∑
i=1

r(xi) with x = [x1, · · · , xm]>. (2)

We can reformulate Problem (1) as

min
x∈Rm×d

H(x) subject to x1 = x2 = · · · = xm. (3)

We denote the aggregated smooth component, the aggregated non-smooth component, and∇F (x) as

F (x) =
1

m

m∑
i=1

fi(xi), R(x) =
1

m

m∑
i=1

r(xi), ∇F (x) =
1

m
[∇f1(x1), · · · ,∇fm(xm)]>.

Moreover, we denote the local proximal operator and aggregate proximal operator as

proxη,r(x) = argmin
z∈Rd

(
r(z) +

1

2η
‖z−x‖2

)
, proxmη,R(x) = argmin

z∈Rm×d

(
R(z) +

1

2mη
‖z−x‖2

)
.

(4)

3 Decentralized Accelerated Proximal Gradient Descent

In this section, we propose a novel decentralized proximal gradient descent algorithm achieving
the optimal computational complexity and near optimal communication complexity. We describe
our decentralized accelerated proximal gradient descent method (DAPG) in Algorithm 1. The use
of multi-consensus (FastMix) and gradient tracking (that is, each time we track the gradient by
communicating st + ∇F (yt+1) − ∇F (yt)) is motivated by Mudag of [26]. However, the actual
algorithm is quite different, due to the need to handle the proximal term.
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Algorithm 1 DPAG

1: Input: x
(i)
0 = x

(j)
0 for 1 ≤ i, j,≤ m, y0 = x0, s0 = ∇F (x0), η = 1

L
and α =

√
µ
L

, K =

O
(

1√
1−λ2(W )

log p(M,L,µ)
q(M,L,µ)

)
, where p, q are polynomials with order less than 3.

2: for t = 0, . . . , T do
3: xt+1 = FastMix(proxηm,R(yt − ηst),K)

4: yt+1 = FastMix
(
xt+1 + 1−α

1+α
(xt+1 − xt),K

)
5: st+1 = FastMix(st +∇F (yt+1)−∇F (yt), K)
6: end for
7: Output: x̄T .

Algorithm 2 FastMix

1: Input: x0 = x−1, K, W , step size ηw =
1−
√

1−λ2
2(W )

1+
√

1−λ2
2(W )

.

2: for k = 0, . . . ,K do
3: xk+1 = (1 + ηw)Wxk − ηwxk−1;
4: end for
5: Output: xK .

3.1 Sketch of the Main Proof Techniques

The main idea behind DAPG is trying to approximate the centralized accelerated proximal gradient
descent by Nesterov’s acceleration, multi-consensus, and gradient tracking. We first define the
average of the aggregated variables defined in Algorithm 1 as follows

x̄t =
1

m

m∑
i=0

x
(i)
t , ȳt =

1

m

m∑
i=0

y
(i)
t , s̄t =

1

m

m∑
i=0

s
(i)
t , ḡt =

1

m

m∑
i=0

∇fi(y(i)
t ), (5)

where x(i),y(i) indicates the i-th row of matrix x and y. We can regard these averaged variables as
the approximation of their centralized counterparts.

In our method, instead of solving Problem (1) over the network, we minimize the reformulated
function (3). Our algorithm tries to use accelerated proximal gradient descent to minimize H(x)
where the acceleration helps to achieve a fast convergence rate. To deal with the consensus constraints
xi = xj for 1 ≤ i, j ≤ m, we resort to the multi-consensus and gradient-tracking techniques. We
then show that variables such as xit, y

i
t and sit in agent i will converge to their centralized counterparts

x̄t, ȳt and s̄t as t increases.

Once local variables and gradients can approximate their centralized counterparts, we can show
that our algorithm has convergence properties similar to that of the centralized accelerated proximal
gradient descent. This implies that our algorithm can also achieve the optimal computational
complexity [13].

Previously multi-consensus was regarded as communication-unfriendly because, without gradient-
tracking, one has to increase the communication times to achieve high precision consensuses [6, 14].
However, it was shown in [26] that the combination of multi-consensus and gradient-tracking leads
to communication-efficiency. We follow this argument, and show that the proposed algorithm also
achieves near optimal communication complexity in the proximal case.

3.2 Complexity Analysis

Following earlier work, we measure the computational complexity by the number of times that the
gradient of f(x) is computed, and we measure the communication complexity by the times of local
communications, which is presented as Wx in our algorithm. Similar to the analysis of accelerated
proximal gradient descent method, we define the Lyapunov function as follows

Vt , h(x̄t)− h(x∗) +
µ

2
‖v̄t − x∗‖2 , (6)

where v̄t = x̄t−1 + 1
α (x̄t − x̄t−1), with α =

√
µ
L .
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In the following lemma, we will show how the multi-consensus (‘FastMix’ operation in Algorithm 2)
helps to achieve the consensus and bound the error between local variables and their centralized
counterparts.
Lemma 1. Suppose f(x) is L-smooth and µ-strongly convex. Assume each fi(x) is
M -smooth and r is a proper and lower-semicontinuous convex function. Let zt =
[‖xt − 1x̄t‖ , ‖yt − 1ȳt‖ , ‖st − 1s̄t‖]>, where 1 = [1, . . . , 1]> ∈ Rm. It holds that

zt+1 = Azt + 8ρM
√
m[0, 0,

√
2

µ
Vt]
>, (7)

where ρ and A are defined as

ρ =
(

1−
√

1− λ2(W )
)K

, A , ρ ·

(
0 2 2η
2 4 4η

2M M(13 + 4Mη) 1 + 6Mη

)
Furthermore, we have

zt+1 ≤ At+1z0 + 8Mρ

√
2m

µ
·

t∑
i=0

At−i[0, 0,
√
Vi]
>.

If the spectral norm of A is less than 1 then Vt will converge to zero. It follows that ‖zt‖, which can
be regarded as a measure of total decentralized error compared to its centralized counterpart, will
converge to zero. That is, the proposed method can well approximate accelerated proximal gradient
descent. The following Lemmas show how the Lyapunov function Vt decreases at the disturbance
caused by the decentralized setting.
Lemma 2. The Lyapunov function Vt of Algorithm 1 defined in Eqn. (6) has the following property

Vt+1 ≤ (1− α)Vt +D1

√
Vt · ‖zt‖+D2 ‖zt‖2 , (8)

where zt is defined in Lemma 1 and the constants D1, D2 are defined as follows

D1 =
4√
m

(
21L+ 2

√
Lµ(2 + 2Mη) + 3µ(2 + 2Mη) + 8 +

µ

L
+ 3

√
µ

L

)
D2 =

8

m
(1 + µ) ·

(
9 · (12 + 8L+ 4M)

2
+ 16L(L+ 1) +

133 + 79L

L

)
.

By Lemma 1, we can obtain that the convergence properties of ‖zt‖ is determined by the value
of ρ and Vt. At the same time, Lemma 2 shows that the value of ‖zt‖ will affect the convergence
properties of Vt in turn. In the following lemma, we give the condition to achieve ‖A‖2 ≤

1
2 .

Lemma 3. Let ‖A‖2 be the spectral norm of matrix A defined in Lemma 1. With the constant D3

defined as
D3 = 9 + 6η + 15M + 4M2η + 6Mη,

if ρ < 1
2D3

, we will have ‖A‖2 <
1
2 .

In the following lemma, we will show that once α ≤ 1
2 , the Lyapunov function Vt will converge

with the rate 1 − α
2 once we choose a proper ρ. We can observe that we can get a slightly slower

convergence rate than vanilla accelerated proximal gradient descent and this is caused by the error
brought by the decentralized setting.
Lemma 4. Assuming that α ≤ 1

2 , f(x) is L-smooth and µ-strongly convex, each fi(x) is M -smooth,
r(x) is a proper and lower-semicontinuous convex function, then Algorithm 1 has the following
convergence rate

Vt+1 ≤
(

1− α

2

)t+1

(V0 + C ‖z0‖2), with C =
D2

1

α
+ 2D2, (9)

if ρ satisfies the conditions in Lemma 3 and

ρ <
α

2 (D1D4 +D2D2
4)
, with D4 = 24M

√
2m

µ
+ 2

D3√
C
.

Moreover, we can bound ‖zt‖ as

‖zt‖2 ≤2ρ ·D2
4

(
1− α

2

)t (
V0 + C ‖z0‖2

)
. (10)
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With the above core lemmas, we give the detailed computation complexity and communication
complexity of our algorithm in the following theorem.
Theorem 1 (Main Theorem). Assume that f(x) is L-smooth and µ-strongly convex, each fi(x) is
M -smooth, α ≤ 1

2 , r is a proper and lower-semicontinuous convex function. Letting K satisfy that

K =

√
κg

1− λ2(W )
log(ρ−1), with ρ < min

{
α

2(D1D4 +D2D2
4)
,

1

2D3

}
,

then, it holds that for the output x̄T of Algorithm 1,

h(x̄T )−h(x∗) ≤
(

1− α

2

)T (
h(x̄0)− h(x∗) +

µ ‖x̄0 − x∗‖2

2
+ C

m∑
i=1

‖∇fi(x̄0)−∇f(x̄0)‖2
)
.

To achieve h(x̄T )− h(x∗) < ε and ‖xT − 1x∗‖2 = O(ε/µ), the computational and communication
complexities of Algorithm 1 are

T = O
(√

κg log
1

ε

)
, and Q = O

(√
κg

1− λ2(W )
log

p(M,L, µ)

q(M,L, µ)
log(

1

ε
)

)
,

where each O(·) contains a universal constant and p(M,L, µ), q(M,L, µ) are polynomials with
order less than 3.

Proof. Because ρ satisfies the conditions in Lemma 4, combining with the definition of Vt in Eqn. (6),
we obtain that

h(x̄T )− h(x∗) ≤ VT ≤
(

1− 1

2

√
µ

L

)T (
h(x̄0)− h(x∗) +

µ

2
‖x̄0 − x∗‖2 + C ‖z0‖2

)
≤ exp

(
−T

2

√
µ

L

)(
h(x̄0)− h(x∗) +

µ

2
‖x̄0 − x∗‖2 + C ‖z0‖2

)
,

where C is defined in Lemma 4. Because when t = 0 we set all nodes as the same status , i.e.,
x0 = 1x̄0 and y0 = 1ȳ0, we have ‖z0‖2 =

∑m
i=1 ‖∇fi(x̄0)−∇fi(x∗)‖2. Thus, to achieve

h(x̄T )− h(x∗) < ε, T requires to be

T = 2
√
κg log

h(x̄0)− h(x∗) + µ
2 ‖x̄0 − x

∗‖2 + C
∑m
i=1 ‖∇fi(x̄0)−∇fi(x∗)‖2

ε
= O(

√
κg log

1

ε
).

By Eqn. (10) of Lemma 4, we have

‖zT ‖2 ≤ 2ρ2D2
4

(
1− α

2

)T
(V0 + C ‖z0‖)2 = O(ε/µ).

Therefore, we can obtain

‖xT − 1x∗‖2 ≤ 2(‖xT − 1x̄T ‖2 + ‖1x̄T − 1x∗‖2) ≤ ‖zT ‖2 +
4

µ
VT = O(ε/µ).

The bound of K can be obtained by Proposition 1. By the properties of D1, D2, D3, C,D4, it is
easy to check that D3 and α

2(D1D4+D2D2
4)

are independent of m. Thus, to achieve the conditions
of ρ in Lemma 2, 3, and 4, ρ only needs to be less than p

q , where p(M,L, µ) and q(M,L, µ) are
polynomials of M , L and µ with orders less than 3. Thus, by Proposition 1, we only require
that K ≤ 1√

1−λ2(W )
log p

q . Combining with the computation complexity, we can obtain the total

communication complexity as

Q = O
(√

κg
1− λ2(W )

log
p(M,L, µ)

q(M,L, µ)
log

1

ε

)
.

Remark 1. We can observe that DAPG establishes the optimal computational complexity [13] and a
near optimal communication complexity which matches the lower bound up to a log term independent
of ε [16]. This is the best computation and communication complexity of decentralized proximal
algorithms can achieve. Before our work, the fastest decentralized proximal algorithm is NIDS which
establishes computation and communication complexities both of O

(
max

{
κ`,

1
1−λ2(W )

})
[9, 25].

We can observe that the complexities of DAPG are much less than that of NIDS.
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Figure 1: Experiment on ‘a9a’. We compare the computation cost of algorithms in the top row and
compare the communication cost of algorithms in the bottom row.

Remark 2. The complexities of DAPG are linear to√κg instead of κ`. In contrast, the complexities of
algorithms fitting into the framework of [25] are linear to κ`. Note that κ` can be infinitely larger than
κg . For example, for f(x) = 1

2 (f1(x)+f2(x)), x ∈ R2, with f1(x) = x21 and f2(x) = x21 +x22, then
it holds that κg = 2 and κ` =∞. Thus, the complexities of DAPG are better than those depending on
the local condition number.

Remark 3. DAPG does not require each fi(x) be convex to achieve fast convergence rate. Thus, DAPG
has a wide application range since fi(x) may be non-convex in some machine learning applications.
SONATA can also be applied in these applications [21]. However, SONATA has to construct an SCA
surrogate function of the non-convex function fi(x) to deal with the local non-convexity. Furthermore,
DAPG only takes a cheap proximal mapping each iteration while SONATA has to minimize a sub-
problem. Hence, DAPG is a simpler and easier to implement algorithm.

4 Experiments

In the previous sections, we have given the theoretical analysis of our algorithm. In this section, we
will validate the effectiveness and computational efficiency of our algorithm empirically. We will
conduct experiments on the sparse logistic regression problem where f(x) is general strongly convex.
The sparse logistic regression is defined as

F (x) =
1

m

m∑
i=1

fi(x) + σ1‖x‖1 +
σ2
2
‖x‖2, with fi(x) =

1

n

n∑
j=1

log[1 + exp(−bj〈aj , x〉)] (11)

where aj ∈ Rd is the j-th input vector, and bj ∈ {−1, 1} is the corresponding label.

Experiments Setting In our experiments, we consider random networks where each pair of agents
have a connection with a probability of p = 0.1. We set W = I − L

λ1(L)
where L is the Laplacian

matrix associated with a weighted graph, and λ1(L) is the largest eigenvalue of L. We set m = 100,
that is, there exists 100 agents in this network. In our experiments, the gossip matrix W satisfies
1− λ2(W ) = 0.05.

We conduct experiments on the datasets ‘w8a’ and ‘w9a’ which can be downloaded in libsvm datasets.
For ‘w8a’, we set n = 497 and d = 300. For ‘a9a’, we set n = 325 and d = 123. We set σ1 = 10−4
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Figure 2: Experiment on ‘w8a’. We compare the computation cost of algorithms in the top row and
compare the communication cost of algorithms in the bottom row.

for all datasets and set σ2 as 10−3, 10−4 and 10−5 to control the condition number of the objective
function.

Comparison with Existing Works We compare our work with state-of-the-art algorithms
PG-EXTRA [19], NIDS [9] and Decentralized Proximal Algorithm (DPA) [2]. In the experiments,
we set K = 1, 2, 3 respectively. The parameters of all algorithms are well-tuned. We report experi-
ment results in Figure 1 and 2. We can observe that DAPG takes much less computational cost than
other algorithms because DAPG uses Nesterov’s acceleration to achieve a faster convergence rate.
This matches our theoretical analysis of the computation complexity. We can further observe that
the advantage of DAPG is more clear when σ2 is small. This is because a small σ2 commonly leads
to a large condition number and the computation complexity of DAPG is linear to √κg instead of
κ`. DAPG also shows great advantages over other state-of-the-art decentralized proximal algorithms
on the communication cost. Though DAPG takes three times of local communication while other
algorithms communicate only once for each iteration, DAPG still requires much less communication
costs because of its fast convergence rate when σ2 is small.

5 Conclusion

In this paper, we studied the decentralized composite optimization problem with a non-smooth regu-
larization term. We proposed a novel algorithm that achieves the optimal computation complexity and
a near optimal communication complexity matching the lower bound up to a log term independent of
ε. This is the best known communication complexity that decentralized proximal gradient algorithms
can achieve. Furthermore, DAPG does not require each individual function fi(x) to be convex to
achieve a fast convergence rate. Hence, our algorithm has a wider range of applications in machine
learning than other decentralized proximal gradient descent algorithms which require fi(x) to be
convex. Finally, the complexities of our algorithms depend on the global condition number κg instead
of the local one. Since κg ≤ κ` and κ` can be infinitely larger than κg, our algorithm can achieve
much better performance than the algorithms whose complexities depend on κ`. The experiments
also validate the advantages of our algorithm.

8



6 Broader Impact

Our work focuses on the theory of decentralized optimization and proposes a novel decentralized
proximal algorithm. This will help us to design new decentralized proximal algorithms. Because
decentralized optimization has wide applications in machine learning, sensor networks, and multi-
robot system, our work may be used in these areas.
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A Proof of Proposition 1

Proof of Proposition 1. By the update rule of Algorithm 2 and the fact that W∞ = 1
m11> [23], we

have

W∞xK = W∞xK−1 + ηw
(
W∞xK−1 −W∞xK−2

)
.

We can obtain that

W∞
(
xK − xK−1

)
= ηw

(
W∞xK−1 −W∞xK−2

)
.

Note that x0 = x−1 in Algorithm 2, we can obtain that for any k = 0, . . . ,K, we have

W∞
(
xk − xk−1

)
= 0.

Therefore, we can obtain the identity W∞xK = W∞x0, which implies the result. The convergence
rate of Algorithm 2 can be found in [10].

B Collection of Lemmas

We list several important lemmas that will be used in our proofs.

Lemma 5 ([13]). Letting ∇̃h(x) the generalized gradient of h(x) defined as

∇̃h(x) ,
x− proxη,r(x− η∇f(x))

η
, with η =

1

L
being the step size, (12)

then it holds that ∇̃h(x∗) = 0 if x∗ minimizes h(x).

Lemma 6. Letting prox(i)
ηm,R(x) denote the i-th row of the matrix proxηm,R(x) (defined in Eqn. (4)),

we have the following equation

prox(i)
ηm,R(x) = proxη,r(x

(i)).

Proof. By the definition of the proximal operators, we have

proxηm,R(x) = argmin
z

(
R(z) +

1

2ηm
‖z− x‖2F

)
= argmin

z

(
1

m

m∑
i=1

r(z(i)) +

m∑
i=1

1

2ηm

∥∥∥z(i) − x(i)
∥∥∥2)

= argmin
z

(
m∑
i=1

r(z(i)) +

m∑
i=1

1

2η

∥∥∥z(i) − x(i)
∥∥∥2)

=


argminz

(
r(z) + 1

2η

∥∥z − x(1)
∥∥)>

...

argminz

(
r(z) + 1

2η

∥∥z − x(m)
∥∥)>

 .

Therefore, we have the following equation

prox(i)
ηm,R(x) = proxη,r(x

(i)).

Lemma 7. For x̄t, ȳt and v̄t defined in Eqn. (5) and (6), then we can obtain that

ȳt − x̄t = α(v̄t − ȳt)

ȳt+1 =
x̄t+1 + αv̄t+1

1 + α
.
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Proof. First using the definition of v̄t we have

x̄t+1 + αv̄t+1

1 + α
=
x̄t+1 + α[x̄t + 1

α (x̄t+1 − x̄t)]
1 + α

=x̄t+1 +
1− α
1 + α

(x̄t+1 − x̄t)

=ȳt+1

Then we can have
ȳt − x̄t = α(v̄t − ȳt).

Lemma 8. Let h(x) be µ-strongly convex. For ȳt, x∗ and Vt defined in Eqn. (6) and (5), we have
the following inequality,

‖ȳt − x∗‖ ≤
√

2

µ
Vt.

Proof. Combined Lemma 7, the optimality of x∗, and the µ-strongly convexity of h(x), we obtain
that

‖ȳt − x∗‖ =

∥∥∥∥ x̄t + αv̄t
1 + α

− x∗
∥∥∥∥ ≤ 1

1 + α
‖x̄t − x∗‖+

α

1 + α
‖v̄t − x∗‖ ≤

√
2

µ
Vt.

Lemma 9. If r is a proper and semi-continuous function, for any z, w and v = proxη,r(w), it holds
that

r(v) ≤ r(z) +
1

η
(v − w)>(z − v).

Proof. For any given w, we have

v = proxη,r(w) = argmin
v

1

2η
‖v − w‖2 + r(v).

Thus, we can obtain that

0 ∈ ∂
(

1

2η
‖v − w‖2 + r(v)

)
= −1

η
(w − v) + ∂r(v),

where ∂ here denotes the subgradient. Then we can get that
1

η
(w − v) ∈ ∂r(v).

According to the definition of subgradient, we have for all z,

r(z) ≥ r(v)− 1

η
(v − w)>(z − v).

Thus we obtain
r(v) ≤ r(z) +

1

η
(v − w)>(z − v),

for all z, w and v = proxη,r(w).

Lemma 10 (Properties of gradients). Letting f(x) be L-smooth and each fi(x) to be M -smooth, we
have following properties on the aggregate gradients and generalized gradients.

‖∇F (y)−∇F (x)‖ ≤M ‖y − x‖ , (13)

‖ḡt −∇f(ȳt)‖ ≤
M√
m
‖yt − 1ȳt‖ . (14)

Furthermore, if we set η = 1
L , we have the (3L)-smooth property for the generalized gradient (defined

in Eqn. (12)) ∥∥∥∇̃h(x)− ∇̃h(y)
∥∥∥ ≤ (2

η
+ L

)
‖x− y‖ = 3L ‖x− y‖ . (15)
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Proof. Eqn. (13) can be obtained from the M -smoothness of the local functions fi(x) as follows

‖∇F (y)−∇F (x)‖ =

√√√√ m∑
i

∥∥∇fi(y(i))−∇fi(x(i))
∥∥2

≤

√√√√M2

m∑
i

∥∥y(i) − x(i)
∥∥2

=M ‖y − x‖ .

To prove the Eqn. (14), we have

‖ḡt −∇f(ȳt)‖ =

∥∥∥∥∥ 1

m

m∑
i=0

[
∇fi(y(i)

t )−∇fi(ȳt)
]∥∥∥∥∥

=

∥∥∥∥∥
m∑
i=1

∇fi(y(i)
t )−∇fi(ȳt)
m

∥∥∥∥∥
≤M

m∑
i=0

∥∥∥y(i)
t − ȳt

∥∥∥
m

≤M

√√√√√ m∑
i=0

∥∥∥y(i)
t − ȳt

∥∥∥2
m

=M
1√
m
‖yt − 1ȳt‖ ,

where the first inequality is due to M -smoothness of fi, and the second inequality is because
of Jensen’s inequality. Then we can prove Eqn. (15) using L-smoothness of f(x) and the non-
expansiveness of proximal operator

∥∥∥∇̃h(x)− ∇̃h(y)
∥∥∥ =

∥∥∥∥x− proxη,r(x− η∇f(x))

η
−
y − proxη,r(y − η∇f(y))

η

∥∥∥∥
≤1

η
‖x− y‖+

1

η

∥∥proxη,r(x− η∇f(x))− proxη,r(y − η∇f(y))
∥∥

≤1

η
‖x− y‖+

1

η
‖(x− η∇f(x))− (y − η∇f(y))‖

≤
(

2

η
+ L

)
‖x− y‖

=3L ‖x− y‖ ,

where the last inequality is due to the L-smoothness of f(x).

Lemma 11. Let proxmη,R(·) denote the proximal operator defined in Eqn. (4). For any x ∈ Rm×d,
we have ∥∥∥∥proxηm,R(

1

m
11>x)− 1

m
11>proxηm,R(x)

∥∥∥∥ ≤ ‖x− 1x̄t‖ .
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Proof. Using Lemma 6, we expand the sum∥∥∥∥proxηm,R(
1

m
11>x)− 1

m
11>proxηm,R(x)

∥∥∥∥
=

√∥∥∥∥proxηm,R(
1

m
11>x)− 1

m
11>proxηm,R(x)

∥∥∥∥2

=

√√√√m

∥∥∥∥∥proxη,r(
1

m
1>x)− 1

m

m∑
i=1

proxη,r(x(i))

∥∥∥∥∥
2

.

Using the inequality (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i , and the non-expansiveness of proximal operator, we

can obtain that √√√√m

∥∥∥∥∥proxη,r(
1

m
1>x)− 1

m

m∑
i=1

proxη,r(x(i))

∥∥∥∥∥
2

=

√√√√m

∥∥∥∥∥ 1

m

m∑
i=1

(
proxη,r(

1

m
1>x)− proxη,r(x(i))

)∥∥∥∥∥
2

≤

√√√√ m∑
i=1

∥∥∥∥(proxη,r(
1

m
1>x)− proxη,r(x(i))

)∥∥∥∥2

≤

√√√√ m∑
i=1

∥∥∥∥( 1

m
1>x− x(i)

)∥∥∥∥2
= ‖x− 1x̄t‖ .

Lemma 12. Define the estimated generalized gradient

Gt = η−1
(
yt − proxηm,R(yt − ηst)

)
, and, G(i)

t = η−1
(
y
(i)
t − proxη,r(y

(i)
t − ηs

(i)
t )
)
. (16)

Letting the functions satisfy the properties in Lemma 1, we have following error bound for the
estimated generalized gradient∥∥∥ η

m
1>Gt − η∇̃h(ȳt)

∥∥∥ ≤4 + 2Mη√
m

‖yt − 1ȳt‖+
2η√
m
‖st − 1s̄t‖ ,∥∥∥ η

m
1 · 1>Gt − η1∇̃h(ȳt)

∥∥∥ ≤(4 + 2Mη) ‖yt − 1ȳt‖+ 2η ‖st − 1s̄t‖ ,∥∥∥ηGt − η1∇̃h(ȳt)
∥∥∥ ≤ (7 + 2Mη) ‖yt − 1ȳt‖+ 4η ‖st − 1s̄t‖ ,

where the generalized gradient ∇̃h(·) is defined in Eqn. (12).

Proof. Using Lemma 6, we have the i-th index of Gi is

η−1
(
y
(i)
t − prox(i)

ηm,R(yt − ηst)
)

=η−1
(
y
(i)
t − proxη,r(y

(i)
t − ηs

(i)
t )
)

=G
(i)
t .

(17)

Therefore G(i)
t is the i-th index of Gt.
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Combining with the inequality (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i , we can obtain

∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥ =

√√√√∥∥∥∥∥ 1

m

m∑
i=1

(
ηG

(i)
t − η∇̃h(ȳt)

)∥∥∥∥∥
2

≤

√√√√ 1

m
·
m∑
i=1

∥∥∥(ηG(i)
t − η∇̃h(ȳt)

)∥∥∥2.

By the definition of the estimated generalized gradient Gt and G(i)
t , we have

√√√√ 1

m
·
m∑
i=1

∥∥∥(ηG(i)
t − η∇̃h(ȳt)

)∥∥∥2

=

√
1

m
·

√√√√ m∑
i=1

∥∥∥(y(i)
t − proxη,r(y

(i)
t − ηs

(i)
t )
)
−
(
ȳt − proxη,r(ȳt − η∇f(ȳt))

)∥∥∥2

≤
√

1

m
·

√√√√ m∑
i=1

(
2
∥∥∥y(i)

t − ȳt
∥∥∥2 + 2

∥∥∥proxη,r(y
(i)
t − ηs

(i)
t )− proxη,r(ȳt − η∇f(ȳt))

∥∥∥2)

≤
√

1

m
·

√√√√ m∑
i=1

(
2
∥∥∥y(i)

t − ȳt
∥∥∥2 + 2

∥∥∥(y
(i)
t − ηs

(i)
t )− (ȳt − η∇f(ȳt))

∥∥∥2)

=

√
1

m
·
√

2 ‖yt − 1ȳt‖2 + 2 ‖ηst − η1∇f(ȳt) + yt − 1ȳt‖2

≤4 ‖yt − 1ȳt‖+ 2η ‖st − 1s̄t‖+ 2η ‖1s̄t − 1∇f(ȳt)‖

≤
√

1

m
·
(

(4 + 2Mη) ‖yt − 1ȳt‖+ 2η ‖s̄t − 1s̄t‖
)
,

where the second inequality is due to the non-expansiveness of proximal operator, and the last
inequality is from Eqn. (14). Combining above two inequalities, we can obtain that

∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥
≤
√

1

m

√√√√ m∑
i=1

∥∥∥(ηG(i)
t − η∇̃h(ȳt)

)∥∥∥2
≤4 + 2Mη√

m
‖yt − 1ȳt‖+

2η√
m
‖s̄t − 1s̄t‖ .

Because
∥∥∥ ηm11>Gt − η1∇̃h(ȳt)

∥∥∥ is
√
m times of

∥∥∥ ηm1>Gt − η∇̃h(ȳt)
∥∥∥, we can obtain the matrix

version of the inequality

∥∥∥ η
m
11>Gt − η1∇̃h(ȳt)

∥∥∥ =
√
m ·

∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥
≤(4 + 2Mη) · ‖yt − 1ȳt‖+ 2η ‖st − 1s̄t‖ .
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Finally, combining above results, we can obtain the gap of the approximated generalized gradients∥∥∥ηGt − η1∇̃h(ȳt)
∥∥∥

≤
∥∥∥ηGt − η

m
1 · 1>Gt

∥∥∥+
∥∥∥ η
m
1 · 1>Gt − η1∇̃h(ȳt)

∥∥∥
≤‖yt − 1ȳt‖+

∥∥∥∥proxηm,R(yt − ηst)−
1

m
11>proxηm,R(yt − ηst)

∥∥∥∥
+ (4 + 2Mη) ‖yt − 1ȳt‖+ 2η ‖st − 1s̄t‖
≤‖yt − 1ȳt‖+

∥∥proxηm,R(yt − ηst)− proxηm,R(1ȳt − η1s̄t)
∥∥+ 2η ‖st − 1s̄t‖

+

∥∥∥∥proxηm,R(1ȳt − η1s̄t)−
1

m
11>proxηm,R(yt − ηst)

∥∥∥∥+ (4 + 2Mη) ‖yt − 1ȳt‖

= (7 + 2Mη) ‖yt − 1ȳt‖+ 4η ‖st − 1s̄t‖ ,

where the second inequality is from the definition of the Gt and the last inequality is from the
non-expansiveness of proximal operator and Lemma 11.

Lemma 13. Letting s
(i)
t be the i-th row of st defined in Algorithm 1, and functions satisfy the

properties described in Lemma 1, we have

m∑
i=1

∥∥∥s(i)t −∇f(x
(i)
t )
∥∥∥2 ≤ 2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2 .

Proof. Using the inequality that (a+ b)2 ≤ 2a2 + 2b2, we have

m∑
i=1

∥∥∥s(i)t −∇f(x
(i)
t )
∥∥∥2 ≤2

m∑
i=1

∥∥∥s(i)t − s̄t∥∥∥2 + 2

m∑
i=1

∥∥∥s̄t −∇f(x
(i)
t )
∥∥∥2

≤2

m∑
i=1

∥∥∥s(i)t − s̄t∥∥∥2 + 4

m∑
i=1

‖s̄t −∇f(x̄t)‖2 + 4

m∑
i=1

∥∥∥∇f(x̄t)−∇f(x
(i)
t )
∥∥∥2

≤2 ‖st − 1s̄t‖2 + 4M2 ‖1x̄t − xt‖2 + 4L2 ‖1x̄t − xt‖2

≤2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2 ,

where the third inequality is from Eqn. (14) and the L-smoothness of f(x), the last inequality is due
to L ≤M .

C Proof of core lemmas

C.1 Proof of Lemma 1

Proof. Reformulate the Eqn. (5) as x̄t = 1
m1> · xt, ȳt = 1

m1> · yt, and s̄t = 1
m1> · st, ḡt =

1
m

∑m
i=1 fi(y

(i)
t ), one can check the following equations by induction and similar results can be

found in [26, 14]

ȳt+1 =x̄t+1 +
1− α
1 + α

(x̄t+1 − x̄t)

s̄t+1 =ḡt+1.
(18)

For simplicity, we denote FastMix(·,K) operation as T(·). From Proposition 1 we can know that∥∥∥∥T(x)− 1

m
11>x

∥∥∥∥ ≤ ρ ∥∥∥∥x− 1

m
11>x

∥∥∥∥ . (19)
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First, we have

‖1x̄t+1 − xt+1‖ ≤ρ
∥∥∥∥proxηm,R(yt − ηst)−

1

m
11>proxηm,R(yt − ηst)

∥∥∥∥
≤ρ
∥∥proxηm,R(yt − ηst)− proxηm,R (1(ȳt − ηs̄t))

∥∥
+ ρ

∥∥∥∥proxηm,R (1(ȳt − ηs̄t))−
1

m
11>proxηm,R(yt − ηst)

∥∥∥∥
≤ρ ‖yt − 1ȳt‖+ ρη ‖st − 1s̄t‖+ ρ ‖(yt − ηst)− 1 (ȳt − ηs̄t)‖
≤2ρ ‖yt − 1ȳt‖+ 2ρη ‖st − 1s̄t‖ ,

(20)

where the first inequality is due to Eqn. (19), and the third inequality is because of Lemma 11 and the
non-expansiveness of proximal operator.

Using the definition of yt+1 in Algorithm 1 and the property of FastMix operation, we have

‖yt+1 − 1ȳt+1‖ ≤
2ρ

1 + α
‖xt+1 − 1x̄t+1‖+ ρ

1− α
1 + α

‖xt − 1x̄t‖

≤4ρ2 ‖yt − 1ȳt‖+ 4ρ2η ‖st − 1s̄t‖+ 2ρ ‖xt − 1x̄t‖ ,

where the last inequality is from Eqn. (20).

Now we are going to bound the value of ‖st+1 − 1s̄t+1‖. Combining the results we have obtain on
‖yt+1 − 1ȳt+1‖, we have

‖st+1 − 1s̄t+1‖
≤ρ ‖st +∇F (yt+1)−∇F (yt)− 1 · (s̄t + ḡt+1 − ḡt)‖
≤ρ ‖st − 1s̄t‖+ ρM ‖yt+1 − yt‖
≤ρ ‖st − 1s̄t‖+ ρM ‖yt+1 − 1ȳt+1‖+ ρM ‖1ȳt+1 − 1ȳt‖+ ρM ‖1ȳt − yt‖
≤ρ ‖st − 1s̄t‖+ ρM

(
4ρ2 ‖yt − 1ȳt‖+ 4ρ2η ‖st − 1s̄t‖+ 2ρ ‖xt − 1x̄t‖

)
+ ρM ‖1ȳt+1 − 1ȳt‖+ ρM ‖1ȳt − yt‖

=
(
ρ+ 4ρ3Mη

)
‖st − 1s̄t‖+ 2ρ2M ‖xt − 1x̄t‖+

(
ρM + 4ρ3M

)
‖1ȳt − yt‖+ ρM ‖1ȳt+1 − 1ȳt‖ ,

where the second inequality is because it holds that
∥∥x− 1

m11>x
∥∥ ≤ ‖x‖ for any x ∈ Rm×d from

[14].

Then we only need to consider the term ‖1ȳt+1 − 1ȳt‖. Using the iteration of average variables
illustrated in Eqn. (18), we have

‖1ȳt+1 − 1ȳt‖

=

∥∥∥∥ 2

1 + α
1x̄t+1 −

1− α
1 + α

1x̄t − 1ȳt

∥∥∥∥
=

∥∥∥∥ 2

1 + α
· 1

m
11>(proxηm,R(yt − ηst))−

1− α
1 + α

· 1

m
11>xt −

1

m
11>yt

∥∥∥∥
=

∥∥∥∥ 2

1 + α
· 1

m
11>(proxηm,R(yt − ηst)− yt)−

1− α
1 + α

1 (x̄t − ȳt)
∥∥∥∥

≤ 2

1 + α
·
∥∥∥∥ 1

m
11>

(
yt − proxηm,R(yt − ηst)

)
− η1 · ∇̃h(ȳt)

∥∥∥∥
+

2

1 + α

∥∥∥η1 · ∇̃h(ȳt)
∥∥∥+

1− α
1 + α

(‖1x̄t − 1x∗‖+ ‖1ȳt − 1x∗‖) .

Furthermore, by Lemma 12, we can obtain that

2

1 + α
·
∥∥∥∥ 1

m
11>

(
yt − proxηm,R(yt − ηst)

)
− η1 · ∇̃h(ȳt)

∥∥∥∥ ≤ (8+4Mη) ‖yt − 1ȳt‖+4η ‖st − 1s̄t‖ .
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Furthermore, by Lemma 8 and the fact that ∇̃h(x∗) = 0, we can obtain

2

1 + α

∥∥∥η1 · ∇̃h(ȳt)
∥∥∥+

1− α
1 + α

(‖1x̄t − 1x∗‖+ ‖1ȳt − 1x∗‖)

≤2η
√
m

1 + α

∥∥∥∇̃h(ȳt)− ∇̃h(x∗)
∥∥∥+

1− α
1 + α

· 2 ·
√

2

µ
Vt

≤
(

6η
√
mL

1 + α
+

1− α
1 + α

· 2
)√

2

µ
Vt

≤
(
6
√
m+ 2

)√ 2

µ
Vt,

where the second inequality is because of the Eqn.(15). Thus, we can obtain that

‖1ȳt+1 − 1ȳt‖ ≤ (8 + 4Mη) ‖yt − 1ȳt‖+ 4η ‖st − 1s̄t‖+
(
6
√
m+ 2

)√ 2

µ
Vt.

Combining above results, we can bound the value of ‖st+1 − 1s̄t+1‖ as follows

‖st+1 − 1s̄t+1‖ ≤
(
ρ+ 4ρ3Mη

)
‖st − 1s̄t‖+ 2ρ2M ‖xt − 1x̄t‖+

(
ρM + 4ρ3M

)
‖1ȳt − yt‖

+ ρM ‖1ȳt+1 − 1ȳt‖
≤
(
ρ+ 4ρ3Mη

)
‖st − 1s̄t‖+ 2ρ2M ‖xt − 1x̄t‖+

(
ρM + 4ρ3M

)
‖1ȳt − yt‖

+ ρM

(
(8 + 4Mη) ‖yt − 1ȳt‖+ 4η ‖st − 1s̄t‖+

(
6
√
m+ 2

)√ 2

µ
Vt

)
≤
(
ρ+ 4ρ3Mη + 4ρMη

)
‖st − 1s̄t‖+ 2ρ2M ‖xt − 1x̄t‖

+
(
9ρM + 4ρ3M + 4ρM2η

)
‖1ȳt − yt‖+ 8ρM

√
m

√
2

µ
Vt.

If we denote zt = [‖xt − 1x̄t‖ , ‖yt − 1ȳt‖ , ‖st − 1s̄t‖]>, then due to ρ < 1, L ≤M , and 1 ≤ m,
we can have

zt+1 ≤ A′zt + 8ρM
√
m[0, 0,

√
2

µ
Vt]
>

where

A′ =

 0 2ρ 2ρη
2ρ 4ρ2 4ρ2η

2ρ2M 9ρM + 4ρ3M + 4ρM2η ρ+ 4ρ3Mη + 4ρMη


≤

(
0 2ρ 2ρη
2ρ 4ρ 4ρη

2ρM ρM(13 + 4Mη) ρ(1 + 6Mη)

)

=ρ

(
0 2 2η
2 4 4η

2M M(13 + 4Mη) 1 + 6Mη

)
= A

Finally, we simplify the result and obtain that

zt+1 ≤ Azt + 8ρM
√
m[0, 0,

√
2

µ
Vt]
>.
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C.2 Proof of Lemma 2

Proof. By the µ-strongly convexity , L-smoothness of f(x) and the property of proximal operator
showed in Lemma 9, we can have for any given z ∈ Rd

h(proxη,r(y
(i)
t − ηs

(i)
t )) = f(proxη,r(y

(i)
t − ηs

(i)
t )) + r(proxη,r(y

(i)
t − ηs

(i)
t ))

=f(y
(i)
t + proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t ) + r(proxη,r(y

(i)
t − ηs

(i)
t ))

≤f(y
(i)
t ) +∇f(y

(i)
t )>

(
proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t

)
+
L

2

∥∥∥proxη,r(y
(i)
t − ηs

(i)
t )− y

(i)
t

∥∥∥2
+ r(z) +

1

η
(proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t + ηs

(i)
t )>(z − proxη,r(y

(i)
t − ηs

(i)
t ))

≤h(z)−∇f(y
(i)
t )>(z − y

(i)
t )− µ

2

∥∥∥z − y
(i)
t

∥∥∥2 +∇f(y
(i)
t )>

(
proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t

)
+
L

2

∥∥∥proxη,r(y
(i)
t − ηs

(i)
t )− y

(i)
t

∥∥∥2 +
1

η
(proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t + ηs

(i)
t )>(z − proxη,r(y

(i)
t − ηs

(i)
t )).

(21)
Multiplying 1− α on both sides of Eqn. (21) and setting z = x̄t, we get

(1− α)h(proxη,r(y
(i)
t − ηs

(i)
t ))

≤(1− α)h(x̄t)− (1− α)∇f(y
(i)
t )>(x̄t − y

(i)
t )− µ(1− α)

2

∥∥∥x̄t − y
(i)
t

∥∥∥2
+ (1− α)∇f(y

(i)
t )>

(
proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t

)
+
L(1− α)

2

∥∥∥proxη,r(y
(i)
t − ηs

(i)
t )− y

(i)
t

∥∥∥2
+

(1− α)

η
(proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t + ηs

(i)
t )>(x̄t − proxη,r(y

(i)
t − ηs

(i)
t )).

(22)
Similarly multiplying α on both sides of Eqn. (21) and setting z = x∗, we obtain that

α(proxη,r(y
(i)
t − ηs

(i)
t ))

≤αh(x∗)− α∇f(y
(i)
t )>(x∗ − y

(i)
t )− µα

2

∥∥∥x∗ − y
(i)
t

∥∥∥2
+ α∇f(y

(i)
t )>

(
proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t

)
+
αL

2

∥∥∥proxη,r(y
(i)
t − ηs

(i)
t )− y

(i)
t

∥∥∥2
+
α

η
(proxη,r(y

(i)
t − ηs

(i)
t )− y

(i)
t + ηs

(i)
t )>(x∗ − proxη,r(y

(i)
t − ηs

(i)
t )).

(23)

Adding above two inequalities and by the definition of Gt and G(i)
t in Lemma 12, we have

h(proxη,r(y
(i)
t − ηs

(i)
t ))− h(x∗)

≤(1− α) (h(x̄t)− h(x∗))− α · µ
2

∥∥∥x∗ − y
(i)
t

∥∥∥2 +
1

2L

∥∥∥G(i)
t

∥∥∥2
+
(
s
(i)
t −G

(i)
t −∇f(y

(i)
t )
)> (

(1− α)x̄t + αx∗ + ηG
(i)
t − y

(i)
t

)
.

(24)

Note that by Jensen’s inequality, we can get that

‖x∗ − ȳt‖ =

∥∥∥∥∥x∗ − 1

m

m∑
i=1

y
(i)
t

∥∥∥∥∥ ≤
√√√√ 1

m

m∑
i=1

∥∥∥x∗ − y
(i)
t

∥∥∥2.
19



Then averaging Eqn. (24) from i = 1 to i = m, we have

h(x̄t+1)− h(x∗)

≤ 1

m

m∑
i=1

h(proxη,r(y
(i)
t − ηs

(i)
t ))− h(x∗)

≤(1− α) (h(x̄t)− h(x∗)) +
1

m

m∑
i=1

1

2L

∥∥∥G(i)
t

∥∥∥2
+

1

m

m∑
i=1

(
s
(i)
t −G

(i)
t −∇f(y

(i)
t )
)> (

(1− α)x̄t + αx∗ + ηG
(i)
t − y

(i)
t

)
− α · µ

2
‖x∗ − ȳt‖2

=(1− α) (h(x̄t)− h(x∗))− 1

m

m∑
i=1

1

2L

∥∥∥G(i)
t

∥∥∥2 +
1

m

m∑
i=1

(
s
(i)
t −∇f(y

(i)
t )
)>

((1− α)x̄t + αx∗ − ȳt)

− 1

m

m∑
i=1

(G
(i)
t − ∇̃h(ȳt))

> ((1− α)x̄t + αx∗ − ȳt) +
η

m

m∑
i=1

(
s
(i)
t −∇f(y

(i)
t )
)> (

G
(i)
t − ∇̃h(ȳt)

)
+

1

m

m∑
i=1

(
s
(i)
t −∇f(y

(i)
t )
)> (

ȳt − y
(i)
t

)
− 1

m

m∑
i=1

(G
(i)
t − ∇̃h(ȳt))

>
(
ȳt − y

(i)
t

)
− 1

m

m∑
i=1

∇̃h(ȳt)
>
(

((1− α)x̄t + αx∗ − ȳt)− η
(
s
(i)
t −∇f(y

(i)
t )
)

+
(
ȳt − y

(i)
t

))
− α · µ

2
‖x∗ − ȳt‖2 ,

(25)
where the first inequality is because of the convexity of h(x), the second inequality is from Eqn. (24),
and the last equality is a reorganization of above expression.

For
∥∥∥G(i)

t

∥∥∥2, we have following equality

∥∥∥G(i)
t

∥∥∥2 =
∥∥∥G(i)

t − ∇̃h(ȳt) + ∇̃h(ȳt)
∥∥∥2

=
∥∥∥G(i)

t − ∇̃h(ȳt)
∥∥∥2 + 2

〈
G

(i)
t − ∇̃h(ȳt), ∇̃h(ȳt)

〉
+
∥∥∥∇̃h(ȳt)

∥∥∥2 . (26)

Now we bound another term of Vt+1 as follows

µ

2
‖v̄t+1 − x∗‖2

=
µ

2

∥∥∥∥x̄t +
1

α
(x̄t+1 − x̄t)− x∗

∥∥∥∥2
=
µ

2

∥∥∥∥x̄t +
1

α
(

1

m
1>proxηm,R (yt − ηst)− x̄t)− x∗

∥∥∥∥2
≤µ

2

∥∥∥∥x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗

∥∥∥∥2 +
µ

2

∥∥∥∥ȳt − η∇̃h(ȳt)−
1

m
1>proxηm,R (yt − ηst)

∥∥∥∥2
+ µ

∥∥∥∥x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗

∥∥∥∥ · ∥∥∥∥ȳt − η∇̃h(ȳt)−
1

m
1>proxηm,R (yt − ηst)

∥∥∥∥ .
Because of ȳt − x̄t = α(ȳt − v̄t), we have

x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗ =v̄t − α(v̄t − ȳt)−

η

α
∇̃h(ȳt)− x∗

=(1− α)(v̄t − x∗) + α(ȳt − x∗)−
η

α
∇̃h(ȳt).
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Thus, we can obtain

µ

2

∥∥∥∥x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗

∥∥∥∥2
=
µ− µα

2
‖v̄t − x∗‖2 +

µα

2
‖ȳt − x∗‖2 − α

〈
∇̃h(ȳt), (1− α)v̄t + αȳt − x∗

〉
+

1

2L

∥∥∥∇̃h(ȳt)
∥∥∥2 − α(µ− µα)

2
‖ȳt − v̄t‖2

≤µ− µα
2

‖v̄t − x∗‖2 +
µα

2
‖ȳt − x∗‖2 − α

〈
∇̃h(ȳt), (1− α)v̄t + αȳt − x∗

〉
+

1

2L

∥∥∥∇̃h(ȳt)
∥∥∥2

=
µ− µα

2
‖v̄t − x∗‖2 +

µα

2
‖ȳt − x∗‖2 +

〈
∇̃h(ȳt), αx

∗ + (1− α)x̄t − ȳt
〉

+
1

2L

∥∥∥∇̃h(ȳt)
∥∥∥2 ,

where the last equality comes from Lemma 7. We can further obtain that

µ

2
‖v̄t+1 − x∗‖2

=
µ

2

∥∥∥∥x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗

∥∥∥∥2 +
µ

2

∥∥∥∥ȳt − η∇̃h(ȳt)−
1

m
1>proxηm,R (yt − ηst)

∥∥∥∥2
+
µ

2

〈
x̄t +

1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗, ȳt − η∇̃h(ȳt)−

1

m
1>proxηm,R (yt − ηst)

〉
≤µ− µα

2
‖v̄t − x∗‖2 +

µα

2
‖ȳt − x∗‖2 +

〈
∇̃h(ȳt), αx

∗ + (1− α)x̄t − ȳt
〉

+
1

2L

∥∥∥∇̃h(ȳt)
∥∥∥2

+
µ

2

∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥2 +
µ

2

∥∥∥∥x̄t +
1

α
(ȳt − η∇̃h(ȳt)− x̄t)− x∗

∥∥∥∥ · ∥∥∥ ηm1>Gt − η∇̃h(ȳt)
∥∥∥ .

(27)

Recalling for any a > 0, b > 0, {ai > 0}, it holds that ab ≤ a2+b2

2 , 1
m

∑m
i=1 ai ≤

√
1
m

∑m
i=1 a

2
i ,

and (a+ b)2 ≤ 2a2 + 2b2. Combining with Cauchy’s inequality, Eqn. (25), Eqn. (26) and Eqn. (27),
we can obtain that

Vt+1

=h(x̄t)− h(x∗) +
µ

2
‖x̄t − x∗‖2

≤(1− α)Vt +
∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥ · ∥∥∥∇̃h(ȳt)
∥∥∥

+

√√√√ 1

m

m∑
i=1

∥∥∥s(i)t −∇f(y
(i)
t )
∥∥∥2 · ‖(1− α)x̄t + αx∗ − ȳt‖

+

∥∥∥∥ 1

m
1>Gt − ∇̃h(ȳt)

∥∥∥∥ · ‖(1− α)x̄t + αx∗ − ȳt‖+
2η

m

m∑
i=1

∥∥∥s(i)t −∇f(y
(i)
t )
∥∥∥2

+
2

m

m∑
i=1

∥∥∥s(i)t −∇f(y
(i)
t )
∥∥∥2 +

4

m
‖1ȳt − yt‖2 +

2

m

∥∥∥Gt − 1∇̃h(ȳt)
∥∥∥2 +

2η

m

∥∥∥Gt − 1∇̃h(ȳt)
∥∥∥2

+
∥∥∥∇̃h(ȳt)

∥∥∥
η
√√√√ 1

m

m∑
i=1

∥∥∥s(i)t −∇f(y
(i)
t )
∥∥∥2
+

µ

2

∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥2
+
µ

2

(
(1− α) ‖v̄t − x∗‖+ α ‖ȳt − x∗‖+

η

α

∥∥∥∇̃h(ȳt)
∥∥∥) · ∥∥∥ η

m
1>Gt − η∇̃h(ȳt)

∥∥∥ .
(28)
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By the lemma 8, 10, 11, 12, and 13, we can collect the following inequalities∥∥∥Gt − 1∇̃h(ȳt)
∥∥∥2 ≤2 (2M + 7L)

2 ‖yt − 1ȳt‖2 + 32η2 ‖st − 1s̄t‖2∥∥∥ η
m
1>Gt − η∇̃h(ȳt)

∥∥∥ ≤4 + 2Mη√
m

‖yt − 1ȳt‖+
2η√
m
‖st − 1s̄t‖

m∑
i=1

∥∥∥s(i)t −∇f(y
(i)
t )
∥∥∥2 ≤2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2

∥∥∥∇̃h(ȳt)
∥∥∥ ≤3L

√
2

µ
Vt

‖(1− α)x̄t + αx∗ − ȳt‖ ≤
√

2

µ
Vt.

Replacing above inequalities to Eqn. (28), we can obtain

Vt+1

≤(1− α)Vt +

(
4 + 2Mη√

m
‖yt − 1ȳt‖+

2η√
m
‖st − 1s̄t‖

)
·
(

3L

√
2

µ
Vt

)
+

1√
m
·
√

2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2 ·
√

2

µ
Vt

+ L

(
4 + 2Mη√

m
‖yt − 1ȳt‖+

2η√
m
‖st − 1s̄t‖

)
·
√

2

µ
Vt +

2(1 + η)

m

(
2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2

)
+

4

m
‖1ȳt − yt‖2 +

2(1 + η)

m

(
2 (2M + 7L)

2 ‖yt − 1ȳt‖2 + 32η2 ‖st − 1s̄t‖2
)

+ 3

√
2

µ
Vt ·

√
1

m

(
2 ‖st − 1s̄t‖2 + 8M2 ‖1x̄t − xt‖2

)
+
µ

2

(
4 + 2Mη√

m
‖yt − 1ȳt‖+

2η√
m
‖st − 1s̄t‖

)2

+
µ

2

(√
2

µ
Vt +

η

α
· 3L

√
2

µ
Vt

)
·
(

4 + 2Mη√
m

‖yt − 1ȳt‖+
2η√
m
‖st − 1s̄t‖

)
.

≤(1− α)Vt +

(
4(4 + 2Mη)√

mη
+
µ

2
(

3

α
+ 1) · 4 + 2Mη√

m

)√
2

µ
Vt · ‖yt − 1ȳt‖

+
8
√

2L√
m
·
√

2

µ
Vt · ‖xt − 1x̄t‖+

(
8√
m

+
4
√

2√
m

+
µ

2
(

3

α
+ 1) · 2η√

m

)√
2

µ
Vt · ‖st − 1s̄t‖

+
(2µ+ 68 + 68η) η2

m
‖st − 1s̄t‖2 +

16 (η + 1)L2

m
‖xt − 1x̄t‖2

+

(
4

m
+
µ(4 + 2Mη)2

m
+

4(1 + η)(2M + 7L)2

m

)
‖yt − 1ȳt‖2

≤(1− α)Vt +
4√
m

(
21L+ 2

√
Lµ(2 + 2Mη) + 3µ(2 + 2Mη) + 8 +

µ

L
+ 3

√
µ

L

)
· ‖zt‖

√
2

µ
Vt

+
8

m
(1 + µ) ·

(
9 · (12 + 8L+ 4M)

2
+ 16L(L+ 1) +

133 + 79L

L

)
‖zt‖2 ,

where the last inequality is because of Cauchy’s inequality and L ≤M .

C.3 Proof of Lemma 3

Proof. It is easy to check that spectral norm of a matrix with all the indices positive will be less that
the sum of all its indices, then we have ‖A‖2 ≤ ‖A‖F ≤ ρD3, where ‖A‖F is the Frobenius norm
of A and

D3 =
∑
i,j

Ai,j/ρ = (9 + 6η + 15M + 4M2η + 6Mη).
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Therefore, if ρ < 1
2D3

, we will have ‖A‖2 <
1
2 .

C.4 Proof of Lemma 4

Our proof is based on the fact that error term ‖zt‖ in Eqn. (8) can be controlled by ρ. In total, what
we will do in this lemma are all about bounding the term D1

√
Vt · ‖zt‖ and D2 ‖zt‖2 to the level of

α
2 Vt in an induction way.

Proof. We will prove our result by induction. First, when t = 0, by Lemma 2 and the definition of C,
we have

V1 ≤(1− α)V0 +D1 ‖z0‖
√
V0 +D2 ‖z0‖2

≤(1− α)V0 +
1

2
αV0 +

D2
1

2α
· ‖z0‖2 +D2 ‖z0‖2

≤
(

1− α

2

)(
V0 + 2

(
D2

1

2α
+D2

)
‖z0‖2

)
=
(

1− α

2

)(
V0 + C ‖z0‖2

)
.

Therefore, we have that Eqn. (9) holds for t = 1. Next, we assume that for i = 1, . . . , t, it holds that

Vt ≤
(

1− α

2

)t (
V0 + C ‖z0‖2

)
.

By Lemma 3, we known that the spectral norm of A is upper bounded by 1
2 and ρD3. Then we can

obtain that

‖zt‖ ≤8Mρ

√
2m

µ

t−1∑
j=0

2−(t−1−j)
√
Vj + 2−(t−1) · ρD3 ‖z0‖

≤8Mρ

√
2m

µ

t−1∑
j=0

2−(t−1−j)
(√

1− α

2

)j (√
V0 +

√
C ‖z0‖

)
+ 2−t · (2ρD3 ‖z0‖)

=8Mρ

√
2m

µ

2
(√

1− α
2

)t − 2−(t−1)

2
√

1− α
2 − 1

(√
V0 +

√
C ‖z0‖

)
+ 2−t · (2ρD3 ‖z0‖)

≤24Mρ

√
2m

µ

(√
1− α

2

)t (√
V0 +

√
C ‖z0‖

)
+

(√
1− α

2

)t
· (2ρD3 ‖z0‖)

≤
(√

1− α

2

)t(
24M

√
2m

µ

(√
V0 +

√
C ‖z0‖

)
+ 2ρD3 ‖z0‖

)

≤ρ ·D4

(√
1− α

2

)t (√
V0 +

√
C ‖z0‖

)
,

where D4 = 24M
√

2m
µ + 2D3, and the first inequality is from splitting ‖A‖t2 = ‖A‖t−12 · ‖A‖2 ≤(

1
2

)t−1 · ρD3.

Therefore, we can obtain that

‖zt‖2 ≤2ρ ·D2
4

(
1− α

2

)t
(V0 + C ‖z0‖2).

Combining with the induction hypothesis that Vt ≤
(
1− α

2

)t (
V0 + C ‖z0‖2

)
, we have

√
Vt · ‖zt‖ ≤ρD4

(
1− α

2

)t√
V0 + C ‖z0‖2 ·

(√
V0 +

√
C ‖z0‖

)
≤2ρD4

(
1− α

2

)t (
V0 + C ‖z0‖2

)
.
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Using Eqn. (8), we can get if ρ < α

2(D1D4+D2D2
4)

,

Vt+1 ≤(1− α)Vt +D1

√
Vt · ‖zt‖+D2 ‖zt‖2

≤(1− α)
(

1− α

2

)t (
V0 + C ‖z0‖2

)
+ ρ ·

(
D1D4 +D2D

2
4

) (
1− α

2

)t (
V0 + C ‖z0‖2

)
≤
(

1− α

2

)t+1 (
V0 + C ‖z0‖2

)
.
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