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Abstract

Recent literature has made much progress in understanding online LQR: a modern
learning-theoretic take on the classical control problem where a learner attempts to
optimally control an unknown linear dynamical system with fully observed state,
perturbed by i.i.d. Gaussian noise. The optimal regret over time horizon T against
the optimal control law scales as Θ̃(

√
T ). In this paper, we show that the same re-

gret rate (against a suitable benchmark) is attainable even in the considerably more
general non-stochastic control model, where the system is driven by arbitrary ad-
versarial noise [3]. We attain the optimal Õ(

√
T ) regret when the dynamics

are unknown to the learner, and poly(log T ) regret when known, provided that
the cost functions are strongly convex (as in LQR). Our algorithm is based on a
novel variant of online Newton step [19], which adapts to the geometry induced
by adversarial disturbances, and our analysis hinges on generic regret bounds for
certain structured losses in the OCO-with-memory framework [6].

1 Introduction
In control tasks, a learning agent seeks to minimize cumulative loss in a dynamic environment
which responds to its actions. While dynamics make control problems immensely expressive, they
also pose a significant challenge: the learner’s past decisions affect future losses incurred.

This paper focuses on the widely-studied setting of linear control, where the the learner’s environ-
ment is described by a continuous state, and evolves according to a linear system of equations,
perturbed by process noise, and guided by inputs chosen by the learner. Many of the first learning-
theoretic results for linear control focused on online LQR [1, 13, 12, 25], an online variant of the
classical Linear Quadratic Regulator (LQR) [21]. In online LQR, the agent aims to control an
unknown linear dynamical system driven by independent, identically distributed Gaussian process
noise. Performance is measured by regret against the optimal LQR control law on a time horizon T ,
for which the optimal regret rate is Θ̃(

√
T ) [12, 25, 26, 9]. Theoretical guarantees for LQR rely

heavily on the strong stochastic modeling assumptions for the noise, and may be far-from-optimal if
these assumptions break. A complementary line of work considers non-stochastic control, replacing
stochastic process noise with adversarial disturbances to the dynamics [3, 28]. Here, performance
is measured by regret: performance relative to the best (dynamic) linear control policy in hindsight,
given full knowledge of the adversarial perturbations.

Though many works have proposed efficient algorithms which attain sublinear regret for non-
stochastic control, they either lag behind optimal guarantees for the stochastic LQR problem, or
require partial stochasticity assumptions to ensure their regret. And while there is a host of litera-
ture demonstrating that, in many online learning problems without dynamics, the worst-case rates
of regret for the adversarial and stochastic settings are the same [8, 31, 19], whether this is true
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in control is far from clear. Past decisions affect future losses in control settings, and this may be
fundamentally more challenging when perturbations are adversarial and unpredictable. Despite this
challenge, we propose an efficient algorithm that matches the optimal

√
T regret bound attainable

the stochastic LQR problem, but under arbitrary, non-stochastic disturbance sequences and arbitrary
strongly convex costs. Thus, from the perspective of regret with respect to a benchmark of linear
controllers, we show that the optimal rate for non-stochastic control matches the stochastic setting.

Our Setting Generalizing LQR, we consider partially-observed linear dynamics :

xt+1 = A?xt +B?ut + wt, yt = C?xt + et (1.1)

Here, the state xt and process noise wt lie in Rdx , the observation yt and observation noise et lie
in Rdy , and the input ut ∈ Rdu is elected by the learner, and A?, B?, C? are matrices of appropriate
dimensions. We call the (wt, et) the disturbances, and let (w, e) denote the entire disturbance
sequence. Unlike LQR, we assume that the disturbances are selected by an oblivious1 adversary,
rather than from a mean zero stochastic process, and the learner observes the outputs yt, but not the
full state xt. Appendix C describes how our setting strictly generalizes the online LQR problem, and
relates to its partially observed analogoue LQG. A policy π is a (possibly randomized) sequence
of mappings ut := πt(y1:t,u1:t−1). We denote by yπt and uπt sequence the realized sequence of
outputs and inputs produced by policy π and the noise sequence (w, e). At each time t, a convex cost
`t : Rdy×du → R is revealed, and the learner observes the current yt, and suffers loss `t(yt,ut).
The cost functional of a policy π is

JT (π) :=
∑T
t=1 `t(y

π
t ,y

π
t ),

measuring the cumulative losses evaluated on the outputs and inputs induced by the realization of
the disturbances (w, e). The learner’s policy alg, is chosen to attain low control regret with respect
to a pre-specified benchmark class Π of reference policies,

ControlRegT (alg; Π) := JT (alg)− inf
π∈Π

JT (π), (1.2)

which measures the performance of alg (on the realized losses/disturbances) compared to the best
policy π ∈ Π in hindsight (chosen with knowledge of losses and disturbances). We consider a re-
stricted a benchmark class Π consisting of linear, dynamic controllers, formalized in Definition 3.1.
While this class encompasses optimal control laws for many classical settings [28], in general it
does not include the optimal control law for a given realization of noise. This is unavoidable: even
in the simplest settings, it is impossible to attain sublinear regret with respect to the optimal control
law [24]. We assume that the losses `t(·) are α-strongly convex, and grow at most quadratically:

Assumption 1. We suppose that all `t : Rdy+du → R are L-subquadratic: 0 ≤ `(v) ≤
Lmax{1, ‖v‖22}, and ‖∇̀ (v)‖2 ≤ Lmax{1, ‖v‖}. We also assume that `t are twice-continuously
differentiable, and α-strong convex (∇2`t � αI). For simplicity, we assume L ≥ max{1, α}.

This assumption is motivated by classical LQR/LQG, where the loss is a strongly convex quadratic
of the form `(y, u) = y>Ry + u>Qu for R,Q � 0. The central technical challenge of this work
is that, unlike standard online learning settings, the strong convexity of the losses does not directly
yield fast rates [4, 16].

1.1 Our Contributions

For the above setting, we propose Disturbance Reponse Control via Online Newton Step, or DRC-
ONS - an adaptive control policy which attains fast rates previously only known for settings with
stochastic or semi-stochastic noise [25, 28, 12, 4]. Our algorithm combines the DRC controller
parametrization [28] with Semi-ONS, a novel second-order online learning algorithm tailored to our
setting. We show that DRC-ONS achieves logarithmic regret when the learner knows the dynamics:

Theorem 3.1 (informal) When the agent knows the dynamics (1.1) (but does not have foreknowl-
edge of disturbances nor the costs `t), DRC-ONS has ControlRegT = O(L

2

α · poly(log T )).

1The oblivious assumption is only necessary if the dynamics are unknown to the learner; if the dynamics
are known, our guarantees hold against adaptive adversaries as well.
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This is the first bound to guarantee logarithmic regret with general strongly convex losses and non-
stochastic noise. Past work required stochastic or semi-stochastic noise [4, 28], or was limited to
fixed quadratic costs [16]. For unknown dynamics, we find:
Theorem 3.2 (informal) When the dyamics are unknown, DRC-ONS with an initial estimation
phase attains ControlRegT = Õ(L

2

α

√
T ).

This bound matches the optimal
√
T -scaling for stochastic online LQR [26]. Thus, from the perspec-

tive of regret minimization with respect to the benchmark Π, non-stochastic control is almost as easy
as stochastic. This is not without many caveats, which are left to the discussion in Appendix B.1.

Technical Contributions While our main results are control theoretic, our major technical insights
pertain to online convex optimization (OCO). Our control algorithm leverages a known reduction
[3] to the online convex optimization with memory (OCOM) framework [6], which modifies OCO
by allowing losses to depend on past iterates. Past OCOM analyses required bounds on both the
standard OCO regret and total Euclidean variation of the iterates produced (Section 2.4). But for
the the losses that arise in our setting, Theorem 2.3 shows that there is a significant tradeoff between
the two, obviating sharp upper bounds. To overcome this , we show that online control enjoys
additional structure we call OCO with affine memory, or OCOAM. We propose a novel second order
method, Semi-ONS, based on online Newton step (ONS, [19]), tailored to this structure. Under a
key technical condition satisfied by online control, we establish logarithmic regret.
Theorem 2.1 (informal) Under the aforementioned assumption (Definition 2.2), the Semi-ONS
algorithm attains O

(
1
α log T

)
regret in the OCOAM setting.

The above bound directly translates to logarithmic control regret for known systems, via the control-
to-OCOAM reduction spelled out in Section 3. For control of unknown systems, the undergirding
OCOAM bound is quadratic sensitivity to ε-approximate losses:
Theorem 2.2 (informal) Consider the OCOAM setting with ε-approximate losses (in the sense of
Assumption 2). Then, Semi-ONS has regret O

(
1
α log T · Tε2

)
.

Quadratic sensitivity to errors in the gradients was previously demonstrated for strongly convex
stochastic optimization [15], and subsequently for strongly convex OCO [28]. Extending this guar-
antee to Semi-ONS is the most intricate technical undertaking of this paper.

1.2 Prior Work

In the interest of brevity, we restrict our attention to previous works regarding online control with a
regret benchmark; for a survey of the decades old field of adaptive control, see e.g. [29]. Much work
has focused on obtaining low regret in online LQR with unknown dynamics [1, 13, 25, 12], a setting
we formally detail in Appendix C.1. Recent algorithms [25, 12] attain

√
T regret for this setting,

with polynomial runtime and polynomial regret dependence on relevant problem parameters. This
was recently demonstrated to be optimal [26, 9], with Cassel et al. [9] showing that logarithmic regret
is possible the partial system knowledge. In the related LQG setting (partial-observation, stochastic
process and observation noise, Appendix C.2), Mania et al. [25] present perturbation bounds which
suggest T 2/3 regret, improve to

√
T by Lale et al. [23], matching the optimal rate for LQG. For

LQG with both non-denegerate process and observation noise, Lale et al. [22] attain poly(log T )
regret, demonstrating that in the presence of observation, LQG is in fact easier than LQR (with no
observation noise) in terms of regret; see Appendix B.1 for further discussion.

Recent work first departed from online LQR by considered adversarially chosen costs under known
stochastic or noiseless dynamics [2, 11]. Agarwal et al. [4] obtain logarithmic regret for fully ob-
served systems, stochastic noise and adversarially chosen, strongly convex costs. The non-stochastic
control setting we consider in this paper was established in Agarwal et al. [3], who obtain

√
T -regret

for convex, Lipschitz (not strongly convex) cost functions and known dynamics. Hazan et al. [20]
attains T 2/3 regret for the same setting with unknown dynamics. Simchowitz et al. [28] generalizes
both guarantees to partial observation, and generalize the optimal rate of logarithmic and

√
T for

known and unknown systems, respectively to strongly convex losses and a ‘semi-stochastic” noise
model. This assumption requires the noise to have a well-conditioned, stochastic component; in
contrast, our methods allow truly adversarial noise sequences. Lastly, for the known system set-
ting, Foster and Simchowitz [16] propose a different paradigm which yields logarithmic regret with
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truly adversarial noise, but fixed quadratic cost functions and with full observation. In contrast,
our algorithm accomodates both partial observation and arbitrary, changing costs, and its analysis
and presentation are considerably simpler. Our work also pertains to the broader literature of on-
line optimization with policy regret and loss functions with memory [7, 6], and our lower bound
(Theorem 2.3) draws on the learning-with-switching-costs literature [5, 10, 14].

1.3 Organization and Notation

Section 2 formulates the general OCOAM setting, describes our Semi-ONS algorithm, and states its
guarantees (Theorems 2.1 and 2.2), and the regret-movement tradeoff that hindered past approaches
(Theorem 2.3). Section 3 turns to the control setting, describing the reduction to OCOAM, the
DRC-ONS algorithm, and stating our main results (Theorems 3.1 and 3.2). Discussion of our
results is deferred to Appendix B.1. All proofs are deferred to our appendix, whose organization of
the appendix is detailed in Appendix A. Throughout, let a . b denote that a ≤ Cb, where C is
a universal constant independent of problem parameters. We use Ω(·),O(·) as informal asymptotic
notation. We let a∨b denote max{a, b}, and a∧b to denote min{a, b}. For vectors x and Λ � 0, we
denote ‖x‖Λ :=

√
x>Λx, and use ‖x‖ and ‖x‖2 interchangeably for Euclidean norm. We let ‖A‖op

denote the operator norm, and given a sequence of matrices G = (G[i])i≥0, we define ‖G‖`1,op :=∑
i≥0 ‖G[i]‖op. We use [(·); (·)] to denote vertical concatenation of vectors and matrices. Finally,

non-bold arguments (e.g. z) denote function arguments, and bold (e.g. zt) denote online iterates.

2 Fast Rates for OCO with Affine Memory

Building on past work [28, 3], our results for control proceed via a reduction to online convex
optimization (OCO) with memory, proposed by Anava et al. [6], and denoted by OCOM in this work.
Our lower bound in Section 2.5 explains why this past strategy is insufficient. Thus, we consider a
structured special case, OCOAM , which arises in control, present a second-order algorithm for this
setting, Semi-ONS, and state its main guarantees.

OCOM preliminaries Let C ⊂ Rd be a convex constraint set. OCOM is an online learning game
where, at each time t, the learner plays an input zt ∈ C, nature reveals an h + 1-argument loss
Ft : Ch+1 → R, and the learner suffers loss Ft(zt, zt−1, . . . , zt−h), abbreviated as Ft(zt:t−h). For
each Ft, we define its unary specialization ft(z) := Ft(z, . . . , z). The learner’s performance is
measured by what we term memory-regret:2

MemoryRegT :=
∑T
t=1 Ft(zt:t−h)− infz∈C

∑T
t=1 ft(z). (2.1)

Because the learner’s loss is evaluated on a history of past actions, OCOM encodes learning prob-
lems with dynamics, such as our control setting. This is in contrast to the standard OCO setting,
which measures regret evaluated on the unary ft: OCORegT :=

∑T
t=1 ft(zt)− infz∈C

∑T
t=1 ft(z).

Our goal is to attain logarithmic memory-regret, and quadratic sensitivity to structured errors (in a
sense formalized below).

2.1 OCO with Affine Memory

While we desire logarithmic memory regret, Theorem 2.3 shows that existing analyses cannot yield
better rates than Ω(T 1/3). Luckily, the control setting gives us more structure. Let us sketch this with
a toy setting, and defer the full reduction to Section 3. Consider a nilpotent, fully observed system:
yt ≡ xt, and Ah? = 0. Defining G[i] := [Ai−1

? B?; I · Ii=0], the linear dynamics give [xt;ut] :=∑h
i=0G

[i]ut−i + [xt,0; 0], where xt,0 =
∑h
i=0A

i
?wt−i . For simple policies parametrized by

uzt = z · wt, z ∈ R, the loss incured under iterates zt:t−h, `t([xt,0; 0] +
∑h
i=0G

[i]wt−izt−i) =:
Ft(zt:t−h), exhibits affine dependence on the past. Generalizing the above, the OCO with affine
memory (OCOAM) setting is as follows. Fix G = (G[i])i≥0 ∈ (Rp×din)N across rounds. At each
t ≥ 1, the learner selects zt ∈ C ⊂ Rd, and the adversary reveals a convex cost `t : Rp → R,

2Throughout, the initial iterates (zs)s≤0 are arbitrary elements of C. We note that Anava et al. [6] referred
to MemoryRegT as “policy regret”, but this differs slightly from the policy regret proposed by Arora et al. [7].
To avoid confusion, we use “memory regret”.
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an offset vector vt ∈ Rp, and a matrix Yt ∈ Rdin×d.The learner suffers loss with-memory loss
Ft(zt:t−h), given by Ft(zt:t−h) := `t(vt +

∑h
i=0G

[i] Yt−izt−i). The induced unary losses are

ft(z) := `t(vt + Htz), where Ht :=
∑h
i=0G

[i] Yt−i. (2.2)

We consider two settings for OCOAM. In the exact setting, G is known to the learner, and `t,vt,Yt

are revealed at each t. Thus ft and Ht can be computed after each round. The approximate setting,
the learner knows only an approximation Ĝ of G, and recieves an estimate v̂t of vt (Yt and `t
remain exact). Our algorithm uses approximate unary losses:

f̂t(z) := `t(v̂t + Ĥtz), where Ĥt :=
∑h
i=0 Ĝ

[i] Yt−i. (2.3)

We desire low sensitivity to the approximation errors of Ĝ and v̂, translating to low estimation error
sensitivity for control of an unknown system. For both exact and approximate losses, memory
regret is evaluated on the exact losses Ft, ft, consistent with OCOM.

2.2 The Semi-ONS algorithm

The standard algorithmic template for OCOM is to run an online optimization procedure on the
unary losses ft, otherwise disregarding Ft (but accounting for the discrepancy between the two
in the analysis) [6]. We take this approach here, but with a tailored second order method. Let
zt−h+1, . . . , z0 ∈ C be arbitrary initial parameters. For step size and regularization parameters
η > 0 and λ > 0, and setting∇t := ∇ft(zt), the Semi-ONS(Algorithm 1) iterates are:

z̃t+1 ← zt − ηΛ−1
t ∇t, zt+1 ← arg min

z∈C
‖Λ1/2(z̃t+1 − z)‖, Λt := λI +

∑t
s=1 H

>Ht, (2.4)

The updates are nearly identical to online Newton step (ONS) [19], but whereas the ONS uses pre-
conditioner Λt,ONS := λI +

∑t
s=1∇ft(zt)∇ft(zt)>, Semi-ONS uses outer products of Ht. This

decision is explained in the paragraph concluding Section 2.4. In the approximate setting Semi-ONS

proceeds using the following approximations, with ∇̂t := ∇f̂t(zt)

z̃t+1 ← zt − ηΛ̂−1
t ∇̂t, zt+1 ← arg min

z∈C
‖Λ̂1/2(z̃t+1 − z)‖, Λ̂t := λI +

∑t
s=1 Ĥ

>Ĥt, (2.5)

defined using the quantities in Eq. (2.3). In other words, approximate Semi-ONS is equivalent to
exact Semi-ONS, treating (f̂t, Ĥt) like the true (ft,Ht).

parameters: Learning rate η > 0, regularization parameter λ > 0, convex domain C ⊂ Rd.
initialize: Λ0 = λ · Id, z1 ← 0d
for t = 1, 2, . . . : do

recieve triple (`t,vt,Ht). % For approximate setting, replace (vt,Ht)← (v̂t, Ĥt)
∇t ← ∇ft(zt), where ft(z) = `t(vt + Htz).
Λt ← Λt−1 + H>t Ht .
z̃t+1 ← zt − ηΛ−1

t ∇t.
zt+1 ← arg minz∈C ‖Λ

1/2
t (z − z̃t+1)‖22.

Algorithm 1: Online Semi-Newton Step - Semi-ONS(λ, η, C)

2.3 Guarantees for Semi-ONS

To state our guarantees, we assume the α-strong convexity and L-subquadratic assumption of As-
sumption 1. We assume various upper bounds on relevant quantities:
Definition 2.1 (Bounds on Relevant Parameters). We assume C contains the origin. Further, we
define the diameter D := max{‖z − z′‖ : z, z′ ∈ C}, Y -radius RY := maxt ‖Yt‖op, and
RY,C := maxt maxz∈C ‖Ytz‖; In the exact setting, we define the radii Rv := maxt max{‖vt‖2}
and RG := max{1, ‖G‖`1,op}. In the approximate setting, Rv := maxt max{‖vt‖2, ‖v̂t‖2},
RG := max{1, ‖G‖`1,op, ‖Ĝ‖`1,op}; For settings, we define the H-radius RH = RGRY , and
define the effective Lipschitz constant Leff := Lmax{1, Rv +RGRY,C}.
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Lastly, our analysis requires that the smallest singular value of G, viewed as linear operator acting
by convolution with sequences (u1, u2, . . . ) ∈ (Rdin)N, is bounded below:
Definition 2.2. We define the convolution invertibility-modulus as κ(G) := 1 ∧ inf(u0,u1,... )

{
∑
n≥0 ‖

∑n
i=0G

[i]un−i‖22 :
∑
t ‖ut‖22 = 1}, and the decay-function ψG(n) :=

∑
i≥n ‖G[i]‖op.

A Fourier-analytic argument (Lemma 3.1) demonstrates that κ(G) > 0 when expressing reduc-
ing our control setting to OCOAM (Section 3), and stability of our control parametrization en-
sures ψG(n) decays exponentially; the reader should have in mind the scalings κ(G) = Ω(1) and
ψG(n) = exp(−Ω(n)). For the exact setting, we have the following guarantee:
Theorem 2.1 (Semi-ONS regret, exact case). Suppose κ = κ(G) > 0, Assumption 1 holds, and
consider the update rule Eq. (2.4) with parameters η = 1

α , λ := 6hR2
YR

2
G. Suppose in addition that

h is large enough to satisfy ψG(h + 1)2 ≤ R2
G/T . Then, we have MemoryRegT ≤ 3αhD2R2

H +
3dh2L2

effRG

ακ1/2
log (1 + T ).

The above regret mirrors fast rates for strongly convex rates OCOM and exp-concave standard OCO.
Its proof departs significantly from those of existing OCOM bounds, and is sketched in Section 2.4,
and formalized in Appendix F. For the approximate setting, we assume

Assumption 2 (Approximate Semi-ONS assumptions). We assume that ‖Ĝ − G?‖`1,op ≤ εG,
maxt≥1 ‖vt − v̂t‖2 ≤ cvεG for some cv > 0, and that Ĝ[i] = 0 for all i > h.

For simplicity, the following theorem considers ε2G ≥ 1/
√
T , which arises in our estimation-

exploitation tradeoff for control of unknown linear systems. It shows that Semi-ONS exhibits a
quadratic sensitivity to the estimation error εG, with MemoryRegT scaling as 1

α log T · Tε2G.
Theorem 2.2 (Semi-ONS regret, approximate case). Suppose Assumptions 1 and 2 holds, and
in addition ∇2`t � LI uniformly, and ε2G ≥ 1/

√
T . Consider the update rule Eq. (2.5) with

parameters η = 3
α and λ = (Tε2G + hR2

G). Then MemoryRegT . log T
(

C1

ακ1/2
+ C2

)
·
(
Tε2G + h2(R2

G +RY )
)
, where C1 := (1 +RY )RG(h+ d)L2

eff and C2 := (L2c2v/α+ αD2).

The above mirrors the strongly convex setting, where online gradient descent with ε-approximate
gradients attains 1

αTε
2 regret [28]. In Appendix G we provide two stronger versions: The first

(Theorem 2.2a) includes a certain negative regret term which is indispensible for the control setting,
and accomodates misspecified λ. The second (Theorem G.1) allows for ε2G � 1/

√
T , establishing

(TεG)2/3 regret for small εG. Appendix G also details the proof of Theorem 2.2, which constitutes
the main technical undertaking of the paper. The proof draws heavily on ideas from the proof of
Theorem 2.1, which we presently sketch.

2.4 Proof Sketch for Exact Semi-ONS (Theorem 2.1)

Recall the with-memory and unary regret defined at the start of Section 2, and set ∇t := ∇ft(zt).
Following [6], our analysis begins with the following identity:

MemoryRegT = OCORegT + MoveDiffT , where MoveDiffT :=
∑T
t=1 F (zt:t−h)− f(zt).

That is, MemoryRegT equals the standard regret on the ft sequence, plus the cumulative difference
between Ft (with memory) and ft (unary). The bound on OCORegT for Semi-ONS mirros the anal-
ysis of standard ONS, using that ∇2ft(zt) % H>t Ht % ∇t∇>t (Lemma F.2). To bound MoveDiffT ,
past work on OCOM applies the triangle inequality and an L-Lipschitz condition on F to bound the
movement difference by movement in the Euclidean norm:

MoveDiffT ≤ poly(L, h) · EucCostT , where EucCostT :=
∑T
t=1 ‖zt − zt−1‖. (2.6)

The standard approach is to run OGD on the unary losses [6] When doing so, the differences ‖zt −
zt−1‖ scale with Lipschitz constant L and step sizes ηt. In particular, for the standard ηt ∝ 1

αt step
size for α-strongly convex losses,

∑T
t=1 ‖zt−zt−1‖ = O( 1

α log T ). Since OGD also has logarithmic
unary regret, we obtain O(poly(L,h)

a log T ) memory regret. However, when `t are strongly convex,
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the induced OCOAM losses ft need not be [16], and Theorem 2.3 shows that it is impossible to
attain both logarithmic regret and logarithmic movement cost simultaneously. As a work around,
we establish a refined movement bound in terms of Yt-sequence (see Lemma F.6):

MoveDiffT ≤ poly(L, h) ·AdapCostT , AdapCostT :=

h∑
i=1

T∑
t=1

‖Yt(zt−i − zt−i−1)‖2,

Via Lemma F.7, the Semi-ONS updates and an application of Cauchy-Schwartz yields:

AdapCostT ≤ O (poly(L, h)) ·
(∑T

t=1∇>t Λ−1
t ∇t︸ ︷︷ ︸

∇-movement

)1/2

·
(∑T

t=1 Y
>
t Λ−1

t Yt︸ ︷︷ ︸
Y-movement

)1/2

. (2.7)

Readers familiar with the analysis of ONS will recognize the ∇-movement as the dominant term
in its regret bound, and can be bounded in a similar fashion. To address the Y-movement, we use
the convolution-invertibility assumption (Definition 2.2). This assumption implies that convolution
with G = (G[i])i≥0 is invertible, meaning that we can essentially invert the sequence (H1,H2, . . . )

defined by Ht :=
∑h
i=0G

[i]Yt−i so as to back out (Y1,Y2, . . . ). Linear algebraically, this implies
(see Proposition F.8) Λt − λI =

∑t
s=1 H

>
s Hs � κ(G)

2

∑t
s=1 Y

>
t Yt − O(1). In other words,

up to an additive remainder term and multiplicative factor of κ(G), the Hs-covariance dominates
that Ys-covariance. Hence, Λt roughly dominates

∑t−1
s=1 Y

>
s Ys +λI . Hence, Y-movement is also

O(d log T ) by an application of the log-determinant lemma (Lemma F.5). This yields a logarithmic
upper bound on MoveDiff , and thus logarithmic memory regret.

Semi-ONS v.s. ONS Standard ONS uses a preconditioner based on outer products of∇t. However,
the movement difference depends on gradients of the with-memory loss Ft(·, . . . , ·), which may
not be aligned with direction of ∇t. Indeed, ∇t ∈ RowSpace(Yt), but this is in general a strict
inclusion; that is, Yt accounts for more possible directions of movement that ∇t. Thus, Semi-ONS
forms its preconditioner to ensure slower movement in all Yt-directions, using Ht as a proxy via
the convolution-invertibility analysis.

2.5 The Regret-Movement Tradeoff

As described above, the standard analysis of OCOM bounds the sum of the unary regret and Eu-
clidean total variation of the iterates. While this permits logarithmic regret when ft are strongly
convex, OCOAM losses ft are not strongly convex even if `t are (see e.g. below). We now
show that for a simple class of quadratic OCOAM losses, there is a nontrivial trade-off between
the two terms. We lower bound µ-RegT := OCORegT + µEucCostT =

∑T
t=1 ft(zt) + µ‖zt −

zt−1‖ − infz∈C
∑T
t=1 ft(zt), which characterizes the Pareto curve between unary regret and Eu-

clidean movement. We consider d = 1, C = [−1, 1], `(u) = u2, and the memory-1 OCOAM
losses ft = `(vt − εz), where ε ∈ (0, 1] is fixed and vt ∈ {−1, 1} are chosen by an adversary .
On C, ft are O(ε)-Lipschitz, and have Hessian ε2 (thus arbitrarily small strong convexity). Still, `
satisfies Assumption 1 with α = L = 1. We prove the following in Appendix J.1:
Theorem 2.3. Let c1, . . . , c4 be constants. For T ≥ 1 and µ ≤ c1T , there exists ε = ε(µ, T ) and a
joint distributionD over v1, . . . ,vT ∈ {−1, 1}T such that any proper (i.e. zt ∈ C for all t) possibly
randomized algorithm alg suffers E[µ-RegT ] ≥ c2(Tµ2)1/3. In particular, E[1-RegT ] ≥ c2T

1/3,
and if E[OCORegT ] ≤ R ≤ c3T , then, E[EucCostT ] ≥ c4

√
T/R.

Hence, existing analyses based on Euclidean movement cannot ensure better than T 1/3 regret .
Moreover, to ensure OCORegT = O(log T ), then one must suffer

√
T/ log T movement. In The-

orem J.1 in Appendix J.2, we show that standard ONS with an appropriately tuned regularization
parameter attains this optimal tradeoff (up to logarithmic and dimension factors), even in the more
general case of arbitrary exp-concave losses.

3 From OCOAM to Online Control

This sections proposes and analyzes the DRC-ONS algorithm via OCOAM. Recall the control set-
ting with dynamics described by Eq. (1.1), and regret defined by Eq. (1.2). Throughout, we assume
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that the losses satisfy the strong convexity and quadratic growth assumption of Assumption 1. Out-
puts y lie in Rdy , inputs u lie in Rdu . For the main text of this paper, we assume knowledge of
a stabilizing, static feedback policy: that is a matrix K ∈ Rdu×dy such that the policy ut = Kyt
which is stabilizing (ρ(A? +B?KC?) < 1, where ρ denotes the spectral radius). 3 For this stabiliz-
ing K, we select inputs ualg

t := Kyalg
t + uex,alg

t , where uex,alg
t is the exogenous output dictated by

an online learning procedure. We let the nominal iterates yKt ,u
K
t denote the sequence of outputs

and inputs that would occur by selecting ualg
t = Kyalg

t , with no exogenous inputs. We exploit the
superposition identity (using [·; ·] to denote vertical concatenation)[

yalg
t ;ualg

t

]
=
[
yKt ;uKt

]
+
∑t−1
i=0 G

[i]
Kuex

t−1, (3.1)

where G
[0]
K = [0; Idu ] and G[i]

K = [C?;KC?] (A? + B?KC?)
i−1B? for i ≥ 1. We call GK the

nominal Markov operator. Since K is stabilizing, we will assume that G[i]
K decays geometrically,

and that the nominal iterates are bounded. For simplicity, we take x1 = 0.

Assumption 3. For some cK > 0 and ρK ∈ (0, 1) and all n ≥ 0, ‖G[i]
K‖op ≤ cK ρnK .

Assumption 4. We assume that (wt, et) are bounded such that, for all t ≥ 1, ‖(yKt ,uKt )‖2 ≤ Rnat

Assumption 3 is analogous to “strong stability” [11], and holds for any stabilizing K. Assump-
tion 4 is analogous to the bounded assumption in Simchowitz et al. [28]: since K is stabilizing, any
bounded sequence of disturbances implies a uniform upper bound on ‖(yKt ,uKt )‖24

Benchmark Class We compete with linear dynamical controllers (LDCs) π ∈ Πldc whose closed
loop iterates are denoted (yπt ,u

π
t ,x

π
t ) (see Definition E.2 for further details). These policies include

static fedback laws ůπt = Kẙπt , but are considerably more general due to the internal state. We
consider stabilizing π: for all bounded disturbance sequences maxt≥1 ‖wt‖, ‖et‖ < ∞, it holds
that maxt≥1 ‖yπt ‖, ‖uπt ‖ < ∞. These policies enjoy geometric decay, motivating the following
parametrization of our benchmark class.
Definition 3.1 (Policy Benchmark). Fix parameters ρ? ∈ (0, 1) and c? > 0. Our regret bench-
mark competes LDC’s π ∈ Π? := Πstab(c?, ρ?), where we define Πstab(c, ρ) := {π ∈ Πldc :

(‖G[i]
π,cl‖op ≤ cρn,∀n ≥ 0}, where the Markov operator Gπ,cl is in Definition E.3.

Known v.s. Unknown Dynamics We refer to the known dynamics setting as the setting where the
learner knows the matricesA?, B?, C? defining the dynamics in Eq. (1.1). In the unknown dynamics
setting, the learner does not know these matrices (but knows K).

The DRC parametrization Given radius RM > 0 and memory m ∈ N, we adopt the DRC
parametrization of memory-m controllers M ∈M [28] :

M = Mdrc(m,RM) := {M = (M [i])m−1
i=0 ∈ (Rdydu)m :

∑m−1
i=0 ‖M‖op ≤ RM}. (3.2)

Controllers M ∈ M are then applied to estimates of the nominal outputs yKt . When the dynamics
are known, yKt and uKt are recovered exactly via Eq. (3.1). If A?, B?, C? are not known, we use an
estimate Ĝ of GK to construct estimates ŷK1:t, û

K
1:t:[

ŷKt ; ûKt
]

=
[
yalg
t ;Kyalg

t

]
−
∑t−1
i=1 Ĝ

[i]uex,alg
t−i . (3.3)

Going forward, we use the more general ŷK1:t notation, noting that it specializes to yK1:t for known
systems (i.e. when Ĝ = GK). The DRC parametrization selects exogenous inputs as linear combi-
nations of ŷK1:t under M ∈M: via uex

t (M | ŷK1:t) :=
∑m−1
i=0 M [i]ŷKt−i.

3.1 Reducing DRC to OCOAM

Fixing the DRC length m ≥ 1, let d = dydum, and p = dy + du. Further, let (ŷKt , û
K
t )t≥1 and Ĝ

denote estimates of (yKt ,u
K
t )t≥1 and GK , respectively

3This may be restrictive for partially observed systems [17], see Appendix D for generalizations.
4The assumed bound can be stated in terms of maxt ‖wt, et‖2. One may allow Rnat to grow logarithmi-

cally (e.g. Rnat = O(log1/2 T ) for subguassian noise), by inflating logarithmic factors in the final bounds.
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Definition 3.2 (OCOAM quantities for control). Let e[·] denote the natural embedding of M ∈ M
into Rd, and let e91[·] denote its inverse; Define the OCOAM matrices Yt := ey[ŷKt:t9m+1], where
ey is embedding satisfying Ytz = uex

t (M | ŷK1:t) for all z of the form z = e[M ]; Define the offset
vKt = (yKt ,u

K
t ) ∈ Rp, and its approximation v̂Kt = (ŷKt , û

K
t ) ∈ Rp; Define the constraint set

C := e(M) ⊂ Rd (that is, embed the DRC set into Rd).

We now define the relevant OCOAM losses as those consistent with the above notation.
Definition 3.3 (OCOAM losses for control). Let Yt,v

K
t , v̂

K
t be as above. For h ∈ N, define the

exact losses Ft(zt:t−h) := `t(v
K
t +

∑h
i=0G

[i]
K Yt−izt−i), and ft(z) := `t(v

K
t + Htz), where

Ht :=
∑h
i=0G

[i]
K Yt−i. Given an estimate Ĝ of GK , the approximate unary loss is f̂t(z) :=

`t(v̂
K
t + Ĥtz) with Ĥt :=

∑h
i=0 Ĝ

[i] Yt−i.

We take h = Θ(log T ), since the exponential decay assumption (Assumption 3) ensures G[i]
K =

exp(−Ω(h)) ≈ 0 for i > h. The resulting OCOAM problem is to produce a sequence of it-
erates zt minimizing MemoryRegT on the sequence (Ft, ft). Since zt are embeddings of con-
trollers, this gives rise to a natural control algorithm: for each iterate zt, back out a DRC controller
Mt = e−1(zt), and applies exogenous input uex,alg

t := uex
t (Mt | yK1:t). In Appendix E, we stream-

line past work [28] by providing black-box reductions bounding the control regret (Eq. (1.2)) of such
an algorithm by its memory regret. Proposition E.5 addresses the known system case, and Proposi-
tion E.8 the unknown case. Because the latter is more intricate, we conclude the present discussion
with an informal statement of the known system reduction:
Proposition E.5 (informal). Let algorithm alg which produces iterates zt ∈ Rd. Let alg′ denote
the control algorithm which selects uex,alg

t := uex
t (Mt | yK1:t), where Mt = e−1(zt). Then, for

m = Õ (1) , we have ControlRegT (alg′) ≤ MemoryRegT (alg) +O(1).
Remark 3.1 (Hat-accent notation). We use Yt even when defined using the approximate ŷK1:t. How-
ever,G and vK do recieve hat-accents when estimates are used. This is because, while OCOAM can
account for the approximation error onG and vK (Theorem 2.2), the approximation error introduced
by setting Yt := ey[ŷKt:t9m+1] requires control specific arguments

3.2 The DRC-ONS algorithm and guarantees

Stating the DRC-ONS algorithm is now a matter of putting the pieces together. For known systems,
the learner constructs the losses in Definition 3.3 with Ĝ = GK , and runs Semi-ONS on ft, and uses
these to perscribe a DRC controller in accordance with the above discussion. For unknown systems,
one constructs the estimate Ĝ via least squares, and then runs Semi-ONS on f̂t; formal pseudocode
is given in Algorithms 2 and 3 in Appendix D.1. Our formal guarantees are
Theorem 3.1 (Guarantee for Known System). Suppose Assumptions 1, 3 and 4 holds, and for
given ρ? ∈ (0, 1), c? > 0, let Π? be as in Definition 3.1. For simplicity, also assume c? ≥
cK , ρ? ≥ ρK . Then, for a suitable choice of parameters, DRC-ONS(Algorithm 2) achieves the
bound ControlRegT (alg; Π?) ≤ log4(1 + T ) · c

5
?(1+‖K‖op)3

(1−ρ?)5 · dudyR2
nat · L

2

α .

Theorem 3.2 (Guarantee for Unknown System). Suppose Assumptions 1, 3 and 4 holds, and for
given ρ? ∈ (0, 1), c? > 0, let Π? be as in Definition 3.1. For simplicity, also assume c? ≥ cK , ρ? ≥
ρK . In addition, assume ∇2`t � LI uniformly. Then, for any δ ∈ (0, 1/T ), DRC-ONS with an
initial estimation phase (Algorithm 3) for an appropriate choice of parameters has the following
regret with probability 1 − δ: ControlRegT (alg; Π?) .

√
T log3(1 + T ) log 1

δ ·
c8?(1+‖K‖op)5

(1−ρ?)10 ·
dy(du + dy)R5

nat · L
2

α .

Together, these bounds match the optimal regret bounds for known and unknown control, up to
logarithmic factors [4, 26]. The above theorems are proven Appendix E, which also gives complete
statements which specify the parameter choices Theorems 3.1a and 3.2a. In addition, Appendix D
generalizates the algorithm by replacing static K in the DRC algorithm with a dynamic nominal
controller π0, for which analogous guarantees are stated in Appendix E. Importantly, Appendix E.3
verifies that convolution-invertibility holds:
Lemma 3.1. For κ as in Definition 2.2, we have κ(GK) ≥ 1

4 min{1, ‖K‖92
op}.
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Broader Impact

Though this paper is primarily theoretical in nature, we believe that the non-stochastic control setting
is an important one. Historically, one of the greatest strengths of control theory is its ability to
provide robust, mathematical guarantees on performance quality. As control theory merges with
recent developments in reinforcement learning, we see novel applications in domains with little room
for error: control algorithms in automated transportation, server cooling, and industrial robotics can
wreak havoc when gone awry. These tasks may range from easy-to-model to wildly unpredictable,
and purely stochastic models may not suffice to capture the full extent of the uncertainty in the task.
On the other hand, traditional techniques from robust control may be overly conservative, and deem
certain tasks infeasible from the outset.

While far from perfect, we believe that the non-stochastic control model inches us closer towards ro-
bustness to modeling assumptions, without succumbing to excessive pessimism. As such, we find it
important to understand what, if any, challenges this more accomodating model poses to data-driven
control. We hope that our central theoretical contribution - demonstrating that the uncertainty in the
noise model is in fact not a significant barrier to achieving near optimal performance - may encour-
age practioners not to abandon considerations of robustness for fear of sacrificing performance. But
there is still a long road ahead, and we recognize that non-stochastic control does not capture many
important senses of robustness in the decades-old control literature. We also recognize that there are,
and will continue to be, instances when performance must be sacrificed for robustness, and hope our
work will contribute a small but helpful part in a broader dialogue about the tensions between safety
and performance in data-driven control.
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