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Abstract

Recent literature has made much progress in understanding online LOR: a modern
learning-theoretic take on the classical control problem where a learner attempts to
optimally control an unknown linear dynamical system with fully observed state,
perturbed by i.i.d. Gaussian noise. The optimal regret over time horizon 7' against

the optimal control law scales as é(\/T) In this paper, we show that the same re-
gret rate (against a suitable benchmark) is attainable even in the considerably more
general non-stochastic control model, where the system is driven by arbitrary ad-

versarial noise [3].  We attain the optimal O(v/T') regret when the dynamics
are unknown to the learner, and poly(log T') regret when known, provided that
the cost functions are strongly convex (as in LQR). Our algorithm is based on a
novel variant of online Newton step [19], which adapts to the geometry induced
by adversarial disturbances, and our analysis hinges on generic regret bounds for
certain structured losses in the OCO-with-memory framework [6].

1 Introduction

In control tasks, a learning agent seeks to minimize cumulative loss in a dynamic environment
which responds to its actions. While dynamics make control problems immensely expressive, they
also pose a significant challenge: the learner’s past decisions affect future losses incurred.

This paper focuses on the widely-studied setting of linear control, where the the learner’s environ-
ment is described by a continuous state, and evolves according to a linear system of equations,
perturbed by process noise, and guided by inputs chosen by the learner. Many of the first learning-
theoretic results for linear control focused on online LOR [1, 13, 12, 25], an online variant of the
classical Linear Quadratic Regulator (LQR) [21]. In online LQR, the agent aims to control an
unknown linear dynamical system driven by independent, identically distributed Gaussian process
noise. Performance is measured by regret against the optimal LQR control law on a time horizon 7',

for which the optimal regret rate is @(\/T) [12, 25, 26, 9]. Theoretical guarantees for LQR rely
heavily on the strong stochastic modeling assumptions for the noise, and may be far-from-optimal if
these assumptions break. A complementary line of work considers non-stochastic control, replacing
stochastic process noise with adversarial disturbances to the dynamics [3, 28]. Here, performance
is measured by regret: performance relative to the best (dynamic) linear control policy in hindsight,
given full knowledge of the adversarial perturbations.

Though many works have proposed efficient algorithms which attain sublinear regret for non-
stochastic control, they either lag behind optimal guarantees for the stochastic LQR problem, or
require partial stochasticity assumptions to ensure their regret. And while there is a host of litera-
ture demonstrating that, in many online learning problems without dynamics, the worst-case rates
of regret for the adversarial and stochastic settings are the same [8, 31, 19], whether this is true
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in control is far from clear. Past decisions affect future losses in control settings, and this may be
fundamentally more challenging when perturbations are adversarial and unpredictable. Despite this
challenge, we propose an efficient algorithm that matches the optimal v/7" regret bound attainable
the stochastic LQR problem, but under arbitrary, non-stochastic disturbance sequences and arbitrary
strongly convex costs. Thus, from the perspective of regret with respect to a benchmark of linear
controllers, we show that the optimal rate for non-stochastic control matches the stochastic setting.

Our Setting Generalizing LQR, we consider partially-observed linear dynamics :
Xt+1 = A*Xt + B*llt + Wy, Yt = C*Xt + e (11)

Here, the state x; and process noise w; lie in R4 the observation y:+ and observation noise e; lie
in R%, and the input u; € R% is elected by the learner, and A, B,, C, are matrices of appropriate
dimensions. We call the (wy,e;) the disturbances, and let (w,e) denote the entire disturbance
sequence. Unlike LQR, we assume that the disturbances are selected by an oblivious' adversary,
rather than from a mean zero stochastic process, and the learner observes the outputs y;, but not the
full state x;. Appendix C describes how our setting strictly generalizes the online LQR problem, and
relates to its partially observed analogoue LQG. A policy 7 is a (possibly randomized) sequence
of mappings u; := m(y1.4, u1.t—1). We denote by yJ and u] sequence the realized sequence of
outputs and inputs produced by policy 7 and the noise sequence (w, €). Ateach time ¢, a convex cost
¢ : R%>de 5 R is revealed, and the learner observes the current y, and suffers loss /; (¥e,u).
The cost functional of a policy 7 is

Jr(n) = 3 b(yF, ¥T),

measuring the cumulative losses evaluated on the outputs and inputs induced by the realization of
the disturbances (w, e). The learner’s policy alg, is chosen to attain low control regret with respect
to a pre-specified benchmark class II of reference policies,

ControlRegy(alg; IT) := Jp(alg) — ian Jr(m), (1.2)
TE

which measures the performance of alg (on the realized losses/disturbances) compared to the best
policy m € II in hindsight (chosen with knowledge of losses and disturbances). We consider a re-
stricted a benchmark class II consisting of linear, dynamic controllers, formalized in Definition 3.1.
While this class encompasses optimal control laws for many classical settings [28], in general it
does not include the optimal control law for a given realization of noise. This is unavoidable: even
in the simplest settings, it is impossible to attain sublinear regret with respect to the optimal control
law [24]. We assume that the losses ¢;(-) are a-strongly convex, and grow at most quadratically:

Assumption 1. We suppose that all ¢, : R%+dw — R are L-subquadratic: 0 < ((v) <
Lmax{1, |lv]|3}, and || V£(v)||2 < Lmax{1, |lv||}. We also assume that ¢; are twice-continuously
differentiable, and a-strong convex (V2¢, = o). For simplicity, we assume L > max{1, a}.

This assumption is motivated by classical LQR/LQG, where the loss is a strongly convex quadratic
of the form £(y,u) = y" Ry + u"Qu for R,Q = 0. The central technical challenge of this work
is that, unlike standard online learning settings, the strong convexity of the losses does not directly
vield fast rates [4, 16].

1.1 Our Contributions

For the above setting, we propose Disturbance Reponse Control via Online Newton Step, or DRC-
ONS - an adaptive control policy which attains fast rates previously only known for settings with
stochastic or semi-stochastic noise [25, 28, 12, 4]. Our algorithm combines the DRC controller
parametrization [28] with Semi-ONS, a novel second-order online learning algorithm tailored to our
setting. We show that DRC-ONS achieves logarithmic regret when the learner knows the dynamics:

Theorem 3.1 (informal) When the agent knows the dynamics (1.1) (but does not have foreknowl-
edge of disturbances nor the costs {;), DRC-ONS has ControlReg; = (’)(%2 - poly(log T)).

!The oblivious assumption is only necessary if the dynamics are unknown to the learner; if the dynamics
are known, our guarantees hold against adaptive adversaries as well.



This is the first bound to guarantee logarithmic regret with general strongly convex losses and non-
stochastic noise. Past work required stochastic or semi-stochastic noise [4, 28], or was limited to
fixed quadratic costs [16]. For unknown dynamics, we find:

Theorem 3.2 (informal) When the dyamics are unknown, DRC-ONS with an initial estimation
phase attains ControlReg, = O(%\/T ).

This bound matches the optimal /T -scaling for stochastic online LQR [26]. Thus, from the perspec-
tive of regret minimization with respect to the benchmark II, non-stochastic control is almost as easy
as stochastic. This is not without many caveats, which are left to the discussion in Appendix B.1.

Technical Contributions While our main results are control theoretic, our major technical insights
pertain to online convex optimization (OC0). Our control algorithm leverages a known reduction
[3] to the online convex optimization with memory (OCOM) framework [6], which modifies OCO
by allowing losses to depend on past iterates. Past OCOM analyses required bounds on both the
standard OCO regret and total Euclidean variation of the iterates produced (Section 2.4). But for
the the losses that arise in our setting, Theorem 2.3 shows that there is a significant tradeoff between
the two, obviating sharp upper bounds. To overcome this , we show that online control enjoys
additional structure we call OCO with affine memory, or OCOAM. We propose a novel second order
method, Semi-ONS, based on online Newton step (ONS, [19]), tailored to this structure. Under a
key technical condition satisfied by online control, we establish logarithmic regret.

Theorem 2.1 (informal) Under the aforementioned assumption (Definition 2.2), the Semi-ONS
algorithm attains O (é log T) regret in the OCOAM setting.

The above bound directly translates to logarithmic control regret for known systems, via the control-
to-OCOAM reduction spelled out in Section 3. For control of unknown systems, the undergirding
OCOAM bound is quadratic sensitivity to e-approximate losses:

Theorem 2.2 (informal) Consider the OCOAM setting with e-approximate losses (in the sense of
Assumption 2). Then, Semi-ONS has regret O (é logT - TEQ).

Quadratic sensitivity to errors in the gradients was previously demonstrated for strongly convex
stochastic optimization [15], and subsequently for strongly convex Oc0 [28]. Extending this guar-
antee to Semi-ONS is the most intricate technical undertaking of this paper.

1.2 Prior Work

In the interest of brevity, we restrict our attention to previous works regarding online control with a
regret benchmark; for a survey of the decades old field of adaptive control, see e.g. [29]. Much work
has focused on obtaining low regret in online LQR with unknown dynamics [1, 13, 25, 12], a setting
we formally detail in Appendix C.1. Recent algorithms [25, 12] attain /7" regret for this setting,
with polynomial runtime and polynomial regret dependence on relevant problem parameters. This
was recently demonstrated to be optimal [26, 9], with Cassel et al. [9] showing that logarithmic regret
is possible the partial system knowledge. In the related LQG setting (partial-observation, stochastic
process and observation noise, Appendix C.2), Mania et al. [25] present perturbation bounds which
suggest T%/3 regret, improve to v/T by Lale et al. [23], matching the optimal rate for LQG. For
LQG with both non-denegerate process and observation noise, Lale et al. [22] attain poly(log T')
regret, demonstrating that in the presence of observation, LQG is in fact easier than LQR (with no
observation noise) in terms of regret; see Appendix B.1 for further discussion.

Recent work first departed from online LQR by considered adversarially chosen costs under known
stochastic or noiseless dynamics [2, 11]. Agarwal et al. [4] obtain logarithmic regret for fully ob-
served systems, stochastic noise and adversarially chosen, strongly convex costs. The non-stochastic
control setting we consider in this paper was established in Agarwal et al. [3], who obtain v/7T-regret
for convex, Lipschitz (not strongly convex) cost functions and known dynamics. Hazan et al. [20]
attains 7'2/3 regret for the same setting with unknown dynamics. Simchowitz et al. [28] generalizes
both guarantees to partial observation, and generalize the optimal rate of logarithmic and /T for
known and unknown systems, respectively to strongly convex losses and a ‘semi-stochastic” noise
model. This assumption requires the noise to have a well-conditioned, stochastic component; in
contrast, our methods allow truly adversarial noise sequences. Lastly, for the known system set-
ting, Foster and Simchowitz [16] propose a different paradigm which yields logarithmic regret with



truly adversarial noise, but fixed quadratic cost functions and with full observation. In contrast,
our algorithm accomodates both partial observation and arbitrary, changing costs, and its analysis
and presentation are considerably simpler. Our work also pertains to the broader literature of on-
line optimization with policy regret and loss functions with memory [7, 6], and our lower bound
(Theorem 2.3) draws on the learning-with-switching-costs literature [5, 10, 14].

1.3 Organization and Notation

Section 2 formulates the general OCOAM setting, describes our Semi-ONS algorithm, and states its
guarantees (Theorems 2.1 and 2.2), and the regret-movement tradeoff that hindered past approaches
(Theorem 2.3). Section 3 turns to the control setting, describing the reduction to OCOAM, the
DRC-ONs algorithm, and stating our main results (Theorems 3.1 and 3.2). Discussion of our
results is deferred to Appendix B.1. All proofs are deferred to our appendix, whose organization of
the appendix is detailed in Appendix A. Throughout, let a < b denote that a < Cb, where C is
a universal constant independent of problem parameters. We use €2(-), O(+) as informal asymptotic
notation. We let a Vb denote max{a, b}, and a Ab to denote min{a, b}. For vectors x and A > 0, we

denote ||z s := V& T Az, and use ||z|| and ||z||2 interchangeably for Euclidean norm. We let || A||op
denote the operator norm, and given a sequence of matrices G' = (G1);>¢, we define ||G||¢, op =
350 IG|op. We use [(+); (+)] to denote vertical concatenation of vectors and matrices. Finally,
non-bold arguments (e.g. z) denote function arguments, and bold (e.g. z;) denote online iterates.

2 Fast Rates for OCO with Affine Memory

Building on past work [28, 3], our results for control proceed via a reduction to online convex
optimization (OCO) with memory, proposed by Anava et al. [6], and denoted by OCOM in this work.
Our lower bound in Section 2.5 explains why this past strategy is insufficient. Thus, we consider a
structured special case, OCOAM , which arises in control, present a second-order algorithm for this
setting, Semi-ONS, and state its main guarantees.

OCOM preliminaries Let C C R? be a convex constraint set. OCOM is an online learning game
where, at each time ¢, the learner plays an input z; € C, nature reveals an h + 1l-argument loss

Fy : C"*! — R, and the learner suffers loss Fy(z¢,z¢_1, ..., 2%¢_5), abbreviated as F}(zs.;_,). For
each F}, we define its unary specialization f;(z) := Fi(z,...,z). The learner’s performance is
measured by what we term memory-regret:

MemoryReg, := Ef:l Fi(z4t—p) —inf.cc Ethl fi(2). 2.1)

Because the learner’s loss is evaluated on a history of past actions, OCOM encodes learning prob-
lems with dynamics, such as our control setting. This is in contrast to the standard OCO setting,
which measures regret evaluated on the unary f;: OCORegy := ZtT:l fi(zy) —inf, cc Z;T:l fe(2).
Our goal is to attain logarithmic memory-regret, and quadratic sensitivity to structured errors (in a
sense formalized below).

2.1 OCO with Affine Memory

While we desire logarithmic memory regret, Theorem 2.3 shows that existing analyses cannot yield
better rates than Q(7'/3). Luckily, the control setting gives us more structure. Let us sketch this with
a toy setting, and defer the full reduction to Section 3. Consider a nilpotent, fully observed system:
y: = x4, and AP = 0. Defining Gl) := [Ai"1B,; I - T,—], the linear dynamics give [x;;u;] :=
Z?:o Gllu,_; + [x4,0;0], where x; 9 = E?:o Alw,;_; . For simple policies parametrized by
uf = z-wy,z € R, the loss incured under iterates zy.¢—p, £¢([X¢,0;0] + Z?:o Glilw,_iz_;) =:
Fi(2t:t—n), exhibits affine dependence on the past. Generalizing the above, the OCO with affine
memory (OCOAM) setting is as follows. Fix G = (G);5¢ € (RP*%n)N across rounds. At each
t > 1, the learner selects z; € C C R%, and the adversary reveals a convex cost £; : RP — R,

2Throughout, the initial iterates (zs)s<o are arbitrary elements of C. We note that Anava et al. [6] referred
to MemoryReg as “policy regret”, but this differs slightly from the policy regret proposed by Arora et al. [7].
To avoid confusion, we use “memory regret”.



an offset vector v; € R?, and a matrix Y; € R%n%9 The learner suffers loss with-memory loss
Fy(z4—pn), given by Fy(zp.e—p) := Ce(ve + Z?:o Gl Y:_izt—;). The induced unary losses are

fi(z) = l(vs + Hyz), where H; := E?:o Glily,_,. (2.2)
We consider two settings for OCOAM. In the exact setting, G is known to the learner, and ¢;, v;, Y
are revealed at each ¢. Thus f; and H; can be computed after each round. The approximate setting,

the learner knows only an approximation G of (G, and recieves an estimate v; of v; (Y; and ¢;
remain exact). Our algorithm uses approximate unary losses:

ﬁ(Z) = Zt(Vt + I:itZ), where I:it = Z?:O é[z] thz‘. (23)

We desire low sensitivity to the approximation errors of G and v, translating to low estimation error
sensitivity for control of an unknown system. For both exact and approximate losses, memory
regret is evaluated on the exact losses F}, f;, consistent with OCOM.

2.2 The Semi-ONS algorithm

The standard algorithmic template for OCOM is to run an online optimization procedure on the
unary losses f;, otherwise disregarding F}; (but accounting for the discrepancy between the two
in the analysis) [6]. We take this approach here, but with a tailored second order method. Let
Zi_h+t1,--.,%20 € C be arbitrary initial parameters. For step size and regularization parameters
7> 0and A > 0, and setting V; := V/f;(z:), the Semi-ONS(Algorithm 1) iterates are:

Zi11 & Zg — T]At_lvt, Zi11 < arg r?in ||A1/2(Zt+1 —2)|, A=A+ ZZ:l H'H, 24
ze

The updates are nearly identical to online Newton step (ONS) [19], but whereas the ONS uses pre-

conditioner Ay ons 1= A + 22:1 Vfi(z:)Vfi(z:) ", Semi-ONS uses outer products of H;. This
decision is explained in the paragraph concluding Section 2.4. In the approximate setting Semi-ONS

proceeds using the following approximations, with %t = Vfi(z¢)

it+1 — Zy — 77//{;1%,5, Zi1 < arg nélln ||K1/2(Zt+1 — Z)”, Kt =AM+ ZZ:l I/_\ITI/_it, (25)
zE

defined using the quantities in Eq. (2.3). In other words, approximate Semi-ONS is equivalent to
exact Semi-ONS, treating ( f;, H;) like the true (f;, Hy).

parameters: Learning rate 7 > 0, regularization parameter A > 0, convex domain C C R¢,
initialize: Ag = A\ - I3, z1 <+ Oy
fort=1,2,...:do

recieve triple (¢;, v;,H;). % For approximate setting, replace (v;, H;) « (Vt,ﬁt)

Vi « Vfi(z:), where fi(z) = £y(vi +H;z).

At — At—l +H;|—Ht .

Et+1 — Zy — nAt_IVt

2041 < argmin, e || A, (2 — %) 13

Algorithm 1: Online Semi-Newton Step - Semi-ONS (A, 7, C)

2.3 Guarantees for Semi-ONS

To state our guarantees, we assume the a-strong convexity and L-subquadratic assumption of As-
sumption 1. We assume various upper bounds on relevant quantities:

Definition 2.1 (Bounds on Relevant Parameters). We assume C contains the origin. Further, we

define the diameter D := max{||z — 2’| : 2,2/ € C}, Y-radius Ry := max; ||Y|op, and
Ry ¢ := max; max,ec | Y¢2||; In the exact setting, we define the radii R, := max; max{||v¢||2}
and Rg := max{L,||G|l¢, 0p}. In the approximate setting, R, := max, max{||v|2, ||[V¢||2}

Re = max{1, |G| ops ||(A¥||g1}op}; For settings, we define the H-radius Ry = RgRy, and
define the effective Lipschitz constant Leg := L max{1, R, + RgRyc}.



Lastly, our analysis requires that the smallest singular value of G, viewed as linear operator acting
by convolution with sequences (uy, us, . ..) € (R%»)N, is bounded below:

Definition 2.2. We define the convolution invertibility-modulus as r(G) := 1 Ainf (g 4, ..
{ano >0, G, |3 >, lutl|3 = 1}, and the decay-function g (n) := Ziz" ||G[’]||Op.

A Fourier-analytic argument (Lemma 3.1) demonstrates that x(G) > 0 when expressing reduc-
ing our control setting to OCOAM (Section 3), and stability of our control parametrization en-
sures 1 (n) decays exponentially; the reader should have in mind the scalings x(G) = (1) and
Ya(n) = exp(—Q(n)). For the exact setting, we have the following guarantee:

Theorem 2.1 (Semi-ONS regret, exact case). Suppose & = k(G) > 0, Assumption 1 holds, and
consider the update rule Eq. (2.4) with parameters n = é, A := 6h R} R%,. Suppose in addition that
h is large enough to satisfy ¥ (h + 1)? < RZ,/T. Then, we have MemoryReg, < 3ahD?*R?%, +

3 Len Ra 100 (1 4 T0),

ar'/?

The above regret mirrors fast rates for strongly convex rates OCOM and exp-concave standard OCO.
Its proof departs significantly from those of existing OCOM bounds, and is sketched in Section 2.4,
and formalized in Appendix F. For the approximate setting, we assume

Assumption 2 (Approximate Semi-ONS assumptions). We assume that ||é — Gylley,op < €as
max;>; ||vi — V¢l|2 < cyeq for some ¢, > 0, and that G = 0 for all i > h.

For simplicity, the following theorem considers €2, > 1/ VT, which arises in our estimation-

exploitation tradeoff for control of unknown linear systems. It shows that Semi-ONS exhibits a

quadratic sensitivity to the estimation error e, with MemoryReg scaling as é log T - T2,

Theorem 2.2 (Semi-ONS regret, approximate case). Suppose Assumptions 1 and 2 holds, and

in addition V*{; = LI uniformly, and €2G > 1/\/T Consider the update rule Eq. (2.5) with

< logT( 011/2 +C’2)
ak

- (T€Z + h*(R% + Ry)), where Cy := (1+ Ry)Rg(h + d)L2; and Cy := (L?c2 /o + aD?).

parameters 1 = % and A\ = (Te% + hR%). Then MemoryRegr

The above mirrors the strongly convex setting, where online gradient descent with e-approximate
gradients attains éTc2 regret [28]. In Appendix G we provide two stronger versions: The first
(Theorem 2.2a) includes a certain negative regret term which is indispensible for the control setting,

and accomodates misspecified A. The second (Theorem G.1) allows for €2, < 1/ VT, establishing

(T 6@)2/ 3 regret for small . Appendix G also details the proof of Theorem 2.2, which constitutes
the main technical undertaking of the paper. The proof draws heavily on ideas from the proof of
Theorem 2.1, which we presently sketch.

2.4 Proof Sketch for Exact Semi-ONS (Theorem 2.1)

Recall the with-memory and unary regret defined at the start of Section 2, and set V; := Vf;(z;).
Following [6], our analysis begins with the following identity:

MemoryReg; = OCOReg, + MoveDiffr, where MoveDiff := 23:1 F(ze—n) — f(2t).

That is, MemoryReg equals the standard regret on the f; sequence, plus the cumulative difference
between F; (with memory) and f; (unary). The bound on OCOReg for Semi-ONS mirros the anal-
ysis of standard ONS, using that V2 f(z;) 5 H/ H; = V; V] (Lemma F.2). To bound MoveDiffr,
past work on OCOM applies the triangle inequality and an L-Lipschitz condition on F' to bound the
movement difference by movement in the Euclidean norm:

MoveDiffr < poly(L, k) - EucCostp, where EucCostry := Zthl lze —z¢—1]| (2.6)

The standard approach is to run OGD on the unary losses [6] When doing so, the differences ||z; —
z;—1|| scale with Lipschitz constant L and step sizes ;. In particular, for the standard 7 o é step

size for a-strongly convex losses, Zthl |zt —2¢—1|| = O(L log T). Since OGD also has logarithmic

unary regret, we obtain O(w log T')) memory regret. However, when ¢; are strongly convex,



the induced OCOAM losses f; need not be [16], and Theorem 2.3 shows that it is impossible to
attain both logarithmic regret and logarithmic movement cost simultaneously. As a work around,
we establish a refined movement bound in terms of Y;-sequence (see Lemma F.6):
h T
MoveDiff < poly(L, h) - AdapCost,, AdapCosty := Z Z Yt(zi—i — Ze—i—1)]l2,
i=1 t=1
Via Lemma F.7, the Semi-ONS updates and an application of Cauchy-Schwartz yields:

1/5 1/5
AdapCostz < O (poly(L,0) - (Z, VAW ) (S, YTAZ'Y, ) T @)
— —
V-movement Y -movement

Readers familiar with the analysis of ONS will recognize the V-movement as the dominant term
in its regret bound, and can be bounded in a similar fashion. To address the 'Y-movement, we use
the convolution-invertibility assumption (Definition 2.2). This assumption implies that convolution
with G’ = (G),5 is invertible, meaning that we can essentially invert the sequence (H;, Ha, . ..)

defined by H; := Zz};o GUY,_; soastoback out (Y1,Y5,...). Linear algebraically, this implies
(see Proposition E8) A, — Al = Y.\ HIH, = @S vy, — O(1). In other words,

s=1
up to an additive remainder term and multiplicative factor of x(G), the H-covariance dominates
that Y 4-covariance. Hence, A; roughly dominates 22;11 Y/ Y, + Al Hence, Y-movement is also
O(dlogT') by an application of the log-determinant lemma (Lemma F.5). This yields a logarithmic
upper bound on MoveDiff, and thus logarithmic memory regret.

Semi-ONS v.s. ONS  Standard ONS uses a preconditioner based on outer products of V;. However,
the movement difference depends on gradients of the with-memory loss Fi(,...,-), which may
not be aligned with direction of V;. Indeed, V; € RowSpace(Y), but this is in general a strict
inclusion; that is, Y, accounts for more possible directions of movement that V,. Thus, Semi-ONS
forms its preconditioner to ensure slower movement in all Y,-directions, using H; as a proxy via
the convolution-invertibility analysis.

2.5 The Regret-Movement Tradeoff

As described above, the standard analysis of OCOM bounds the sum of the unary regret and Eu-
clidean total variation of the iterates. While this permits logarithmic regret when f; are strongly
convex, OCOAM losses f; are not strongly convex even if ¢; are (see e.g. below). We now
show that for a simple class of quadratic OCOAM losses, there is a nontrivial trade-off between
the two terms. We lower bound p-Reg; := OCOReg, + pEucCosty = Zthl fe(ze) + pl|lze —
Zi—1]| — inf,ec Zthl fi(z¢), which characterizes the Pareto curve between unary regret and Eu-
clidean movement. ~ We consider d = 1, C = [~1,1], £(u) = u?, and the memory-1 OCOAM
losses f; = €(vy — €z), where € € (0,1] is fixed and v, € {—1,1} are chosen by an adversary .
On C, f; are O(e)-Lipschitz, and have Hessian €2 (thus arbitrarily small strong convexity). Still, ¢
satisfies Assumption 1 with « = L = 1. We prove the following in Appendix J.1:

Theorem 2.3. Let ¢y, ..., cq be constants. For T > 1 and j1 < 1T, there exists e = €(, T) and a
joint distribution D over vy, . ..,vy € {—1,1}" such that any proper (i.e. z; € C for all t) possibly
randomized algorithm alg suffers E[u-Regy] > co(Tu?)Y/3.  In particular, E[1-Regy] > ¢T3,
and if E[OCOReg] < R < ¢3T, then, E[EucCostr] > c4/T/R.

Hence, existing analyses based on Euclidean movement cannot ensure better than 7/ regret .
Moreover, to ensure OCORegy = O(logT'), then one must suffer /7'/log T movement. In The-
orem J.1 in Appendix J.2, we show that standard ONS with an appropriately tuned regularization
parameter attains this optimal tradeoff (up to logarithmic and dimension factors), even in the more
general case of arbitrary exp-concave losses.

3 From OCOAM to Online Control

This sections proposes and analyzes the DRC-ONS algorithm via OCOAM. Recall the control set-
ting with dynamics described by Eq. (1.1), and regret defined by Eq. (1.2). Throughout, we assume



that the losses satisfy the strong convexity and quadratic growth assumption of Assumption 1. Out-
puts y lie in R% inputs u lie in R%. For the main text of this paper, we assume knowledge of
a stabilizing, static feedback policy: that is a matrix K € R% X9y such that the policy u; = Ky,
which is stabilizing (p(A, + B,KC,) < 1, where p denotes the spectral radius). * For this stabiliz-
ing K, we select inputs u®® := Ky®® + u®™8, where u{™" is the exogenous output dictated by
an online learning procedure. We let the nominal iterates y X, ulf denote the sequence of outputs

and inputs that would occur by selecting u®® = Ky2'%, with no exogenous inputs. We exploit the
superposition identity (using [-; -] to denote vertical concatenation)
| | K. K t—1 i
[yi&ule] = [y uf] + 25 GEK]uteflv (3.D

where GIY = [0;1,,] and G} = [C,; KC,] (A, + B,KC,)""'B, fori > 1. We call G the
nominal Markov operator. Since K is stabilizing, we will assume that G[;{] decays geometrically,
and that the nominal iterates are bounded. For simplicity, we take x; = 0.

Assumption 3. For some cx > 0 and px € (0,1) and all n > 0, ||G[Ii(]||Op <ck pf.

Assumption 4. We assume that (w, e;) are bounded such that, for all ¢ > 1, || (v, uff)||2 < Ruat

Assumption 3 is analogous to “strong stability” [11], and holds for any stabilizing K. Assump-
tion 4 is analogous to the bounded assumption in Simchowitz et al. [28]: since K is stabilizing, any
bounded sequence of disturbances implies a uniform upper bound on ||(y &, uf<)|2*

Benchmark Class We compete with linear dynamical controllers (LDCs) 7 € II}q. whose closed
loop iterates are denoted (y T, u7,x7) (see Definition E.2 for further details). These policies include
static fedback laws 0] = Ky7, but are considerably more general due to the internal state. We
consider stabilizing m: for all bounded disturbance sequences max;>1 |[w¢||,||€:]] < oo, it holds
that max;>1 [|y7T|, |luf|] < oo. These policies enjoy geometric decay, motivating the following
parametrization of our benchmark class.

Definition 3.1 (Policy Benchmark). Fix parameters p, € (0,1) and ¢, > 0. Our regret bench-
mark competes LDC’s 7w € II, := Igab(cs, px), where we define Ilgap(c, p) := {7 € 4. :

(HGE],CIHOP < ¢p",¥n > 0}, where the Markov operator G 1 is in Definition E.3.

Known v.s. Unknown Dynamics = We refer to the known dynamics setting as the setting where the
learner knows the matrices Ay, B, Cy defining the dynamics in Eq. (1.1). In the unknown dynamics
setting, the learner does not know these matrices (but knows K).

The DRC parametrization Given radius B¢ > 0 and memory m € N, we adopt the DRC
parametrization of memory-m controllers M € M [28] :
M = Mare(m, Rp) = {M = (MU)725" € (Rtvde)m Z:r;_ol [Mllop < R} (3.2)

Controllers M € M are then applied to estimates of the nominal outputs y*. When the dynamics
are known, ytK and uf{ are recovered exactly via Eq. (3.1). If A,, By, C, are not known, we use an

estimate G of G ¢ to construct estimates y1<,, 6%,

SK.K] — Ig. | t—1 A[4],.ex,alg

[y af] = [yi'® Kyi®] — X0, Glluys e (3.3)
Going forward, we use the more general ¥%¢, notation, noting that it specializes to y¥, for known

systems (i.e. when G=aG ). The DRC parametrization selects exogenous inputs as linear combi-
nations of y15, under M € M: via u$*(M | y1,) := S P MUgE .

3.1 Reducing DRC to OCOAM

Fixing the DRC length m > 1, let d = d,d,m, and p = d,, + d,,. Further, let (¥, 0);>; and G
denote estimates of (y,uff);>1 and G, respectively

3This may be restrictive for partially observed systems [17], see Appendix D for generalizations.
“The assumed bound can be stated in terms of max; |[w¢, et||2. One may allow Rnat to grow logarithmi-
cally (e.g. Rnat = O(logl/ 2T for subguassian noise), by inflating logarithmic factors in the final bounds.



Definition 3.2 (OCOAM quantities for control). Let ¢[-] denote the natural embedding of M € M
into R?, and let ¢™![-] denote its inverse; Define the OCOAM matrices Y, := ¢, [/, ,,,;1], Where
¢, is embedding satisfying Y;2 = uf*(M | y£,) for all z of the form z = ¢[M]; Define the offset
vE = (yE,uf) € RP, and its approximation v& = (yX 1) € RP; Define the constraint set

C := ¢(M) C R9 (that is, embed the DRC set into R%).

We now define the relevant OCOAM losses as those consistent with the above notation.

Definition 3.3 (OCOAM losses for control). Let Yy, vtK , Qf be as above. For h € N, define the
exact losses Fy(zi—p) = L(VE + Z?:o G[Ii(] Y izi_i), and fi(2) = £(vE + H;z), where
H; = Z?:o G[Ii] Y, ;. Given an estimate G of G, the approximate unary loss is ﬁ(z) =
0, (VE + Hyz) with Hy := Y1 Gl Y, ;.

We take h = O(logT), since the exponential decay assumption (Assumption 3) ensures G[;(] =
exp(—Q(h)) ~ 0 for ¢ > h. The resulting OCOAM problem is to produce a sequence of it-
erates z; minimizing MemoryReg, on the sequence (F3, f;). Since z; are embeddings of con-
trollers, this gives rise to a natural control algorithm: for each iterate z;, back out a DRC controller
M, = ¢~ !(z;), and applies exogenous input uS™*' := u*(M, | yX,). In Appendix E, we stream-
line past work [28] by providing black-box reductions bounding the control regret (Eq. (1.2)) of such
an algorithm by its memory regret. Proposition E.5 addresses the known system case, and Proposi-
tion E.8 the unknown case. Because the latter is more intricate, we conclude the present discussion
with an informal statement of the known system reduction:

Proposition E.5 (informal). Let algorithm alg which produces iterates z, € R?. Let alg’ denote
the control algorithm which selects u$™™% := u®(M, | yK,), where M; = ¢~ *(z;). Then, for
m = O (1), we have ControlRegy(alg’) < MemoryRegy(alg) + O(1).

Remark 3.1 (Hat-accent notation). We use Y even when defined using the approximate y#¢,. How-
ever, G and v¥ do recieve hat-accents when estimates are used. This is because, while OCOAM can
account for the approximation error on GG and v (Theorem 2.2), the approximation error introduced
by setting Y, := ¢, [y/5_,,,,1] requires control specific arguments

3.2 The DRC-ONS algorithm and guarantees

Stating the DRC-ONS algorithm is now a matter of putting the pieces together. For known systems,

the learner constructs the losses in Definition 3.3 with G = G K, and runs Semi-ONS on f;, and uses
these to perscribe a DRC controller in accordance with the above discussion. For unknown systems,

one constructs the estimate G via least squares, and then runs Semi-ONS on ﬁ; formal pseudocode
is given in Algorithms 2 and 3 in Appendix D.1. Our formal guarantees are

Theorem 3.1 (Guarantee for Known System). Suppose Assumptions 1, 3 and 4 holds, and for
given p, € (0,1),¢, > 0, let I, be as in Definition 3.1. For simplicity, also assume c, >
Cx,px > pr. Then, for a suitable choice of parameters, DRC-ONS(Algorithm 2) achieves the

bound ControlReg,(alg;T1,) < log*(1 +T) - Ci(%ﬂiﬁg‘gpf - dydyR2,, - %2

Theorem 3.2 (Guarantee for Unknown System). Suppose Assumptions 1, 3 and 4 holds, and for
given p, € (0,1), ¢, > 0, let I1, be as in Definition 3.1. For simplicity, also assume ¢, > cx, ps >
pr. In addition, assume V?{; < LI uniformly. Then, for any § € (0,1/T), DRC-ONS with an
initial estimation phase (Algorithm 3) for an appropriate choice of parameters has the following

regret with probability 1 — §: ControlRegy(alg;II,) < VT log®*(1 + T) 1og% . W .
dy(dy +dy) R, - L.

nat @
Together, these bounds match the optimal regret bounds for known and unknown control, up to
logarithmic factors [4, 26]. The above theorems are proven Appendix E, which also gives complete
statements which specify the parameter choices Theorems 3.1a and 3.2a. In addition, Appendix D
generalizates the algorithm by replacing static K in the DRC algorithm with a dynamic nominal
controller 7y, for which analogous guarantees are stated in Appendix E. Importantly, Appendix E.3
verifies that convolution-invertibility holds:

min{1, || K1|53}

Lemma 3.1. For « as in Definition 2.2, we have k(G k) > i



Broader Impact

Though this paper is primarily theoretical in nature, we believe that the non-stochastic control setting
is an important one. Historically, one of the greatest strengths of control theory is its ability to
provide robust, mathematical guarantees on performance quality. As control theory merges with
recent developments in reinforcement learning, we see novel applications in domains with little room
for error: control algorithms in automated transportation, server cooling, and industrial robotics can
wreak havoc when gone awry. These tasks may range from easy-to-model to wildly unpredictable,
and purely stochastic models may not suffice to capture the full extent of the uncertainty in the task.
On the other hand, traditional techniques from robust control may be overly conservative, and deem
certain tasks infeasible from the outset.

While far from perfect, we believe that the non-stochastic control model inches us closer towards ro-
bustness to modeling assumptions, without succumbing to excessive pessimism. As such, we find it
important to understand what, if any, challenges this more accomodating model poses to data-driven
control. We hope that our central theoretical contribution - demonstrating that the uncertainty in the
noise model is in fact not a significant barrier to achieving near optimal performance - may encour-
age practioners not to abandon considerations of robustness for fear of sacrificing performance. But
there is still a long road ahead, and we recognize that non-stochastic control does not capture many
important senses of robustness in the decades-old control literature. We also recognize that there are,
and will continue to be, instances when performance must be sacrificed for robustness, and hope our
work will contribute a small but helpful part in a broader dialogue about the tensions between safety
and performance in data-driven control.
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A Organization of the Appendix and Notation

The appendix is organized as follows:

Appendix B provides further discussion, describing how our work serves to characterize the
relative difficulty of adversarial noise in online control settings when compared to stochas-
tic.

Appendix C provides an in-depth comparison with the classic LQR and LQG settings, to-
gether with an in-depth discussion in Appendix B.1 about the extent to which stochasticity
affects the optimal regret rates in online control.

Appendix D provides the full statement of the algorithm DRC-ONS algorithm for the known
and unknown settings, and describes the more general DRC-ONS-DYN algorithm for use
with a non-static internal controller.

Appendix E provides full statements and proofs of our main regret bounds for the control
setting, Theorems 3.1 and 3.2. In particular, we provide the full analogues with the full
parameter settings required for the regret bounds, Theorems 3.2b and G.1. We also provide
generalizations of our DRC-ONS-DYN algorithm , Theorems 3.1b and 3.2b.

Appendix F gives the full proof of the logarithmic regret bound for Semi-ONS, Theo-
rem 2.1, and Appendix H provides the omitted proofs.

Appendix G gives the full proof of the quadratic error sensitivity of Semi-ONS, Theo-
rem 2.2, and Appendix I provides the omitted proofs.

Appendix J gives the proof of Theorem 2.3 , and then demonstrates the standard online
Newton step matches the tradeoff (Theorem J.1)

Notation: We use a = O (b) and a < b interchangably to denote that a < Cb, where C is a
universal constant independent of problem parameters. We also use a V b to denote max{a, b}, and
a A b to denote min{a, b}. Notation relevant to the control problem is reviewed where-necessary
in Appendices C and D. In what follows, we review notation relevant to the generic analyses of
Semi-ONS.

In Semi-ONS, we have the with-memory loss functions

h

Fi(zty ..y 2e—n) = L(ve + Z G[i]thithi)7
i=0

and their unary specializations

h
ft(Z) = Ft(Z, cee ,Z) = Et(vt + HtZ), Ht = Z G[i]Yt_i.
i=0

Here the losses /¢, v, Y change at each round, and G = (G (il )i>0 is regarded as part of an infinite-
length Markov operator which is fixed throughout.

For unknown systems, we are use approximate losses, where v; ~ v;, G = G,

h
ft(Z) = Ft(Z, ey Z) = ét(Vt + HtZ), Ht = Z G[l]Yt,Z
=0

Throughout, we use bold z; to refer to the iterates of the algorithm.

B Further Discussion

B.1 Discussion of Results

In this work, we demonstrate that fast rates for online control, and in particular, the optimal /T
regret rate [26] for the online LQR setting, are achievable with non-stochastic noise. Interestingly,
simultaneous work by Lale et al. [22] shows that the presence of observation noise implies that the
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optimal regret for purely stochastic LQG is in fact polylogarithmic. At first this seems puzzling
because, on face, LQG appears to be a strict generalization of LQR. However, poly (log T') regret
occurs when LQG has a strictly non-degenerate stochastic observation noise e;, which is not the
case in LQR. This faster rate is achievable because the noise on the observation provides continuous
exploration, allowing the learner to continue to learn with dynamics while simultanously exploiting
near-optimal policies. Alternatively, this observation noise can be understood as making the baseline
comparator easier (i.e. min,cr K7 () is larger), because the underlying control problem is more
difficult.

Since we are not guaranteed this observation noise in purely non-stochastic control (indeed, there
may be no observation noise at all), /7 is still the optimal rate in our setting. Thus, our regret
guarantees contribute to the following surprising characterization of regret (with respect to linear
dyanic policies) in linear control:

e For known system dynamics, non-stochastic control is just easy as stochastic (Theo-
rem 3.1). There is no substantial price to pay for past mistakes, even under potentially
unpredictable, non-stochastic disturbances.

e For unknown system dynamics, stochastic process noise confers little advantage over ad-
versarial noise; both have quadratic sensitivity to error (Theorem 3.2).

e However, there is an advantage to having non-degenerate observation noise. But this is due
to continual exploration induced by stochastic noise, and not because stochastic reduces
sensitivity to error.

As mentioned in the introduction, competing with arbitrary policies (e.g. the optimal control law
given the noise) requires regret which is linear in 7" [24]. Understanding the optimal competive ratio,
or further assumptions which allow sublinear regret with respect to the optimal control law, remain
an interesting direction for future work.

B.2 Conclusion

In this work, we demonstrate that fast rates for online control, and in particular, the optimal \/T
regret rate [26] for the online LQR setting, are achievable with non-stochastic noise.

Future Work It is an interesting direction for future research to determine if non-degenerate obser-
vation noise can be used to attain polylogarithmic regret for unknown systems in the semi-stochastic
regime considered by Simchowitz et al. [28]. This regime interpolates between purely stochastic
non-degenerate noise, and arbitrary adversarial noise considered in this setting.

Furthermore, it may be possible that v/T" regret for unknown systems is attainable even without
strongly convex cost function; currently, the state of the art in this setting is 7%/ [28, 20].

Finally, we hope future work will take up a more ambitious direction of inquiry, investigating
whether these techniques can be applied beyond linear time invariant systems with bound noise.
Such directions understanding slowly-varying dynamics, robustness to non-linearities, and model-
predictive control.

Open Question: System Stability and Fast Rates Lastly, an open question that remains is the
extent to which stability of the dynamics affects the extent to which stochastic control is easier
than non-stochastic. For example, the guarantees in Lale et al. [22] assume that the dynamics of
the system are internally stable, which presumbaly simplifies the system identification procedure.
On the other hand, our work assumes only that our system can be stabilized by a static feedback
controller, which holds without loss of generality for fully observed systems.

As discussed in Appendix D, there are many partially observed systems which cannot be stabilized
even by static feedback, but can be stabilized by more general linear control laws. For such systems,
our guarantees do extend, but under the opaque technical assumption on the dynamics induced by
this more general stabilizing controller have the invertibility property of Definition 2.2. Recall that
for the simple case of static feedback, this invertible property is proven to hold in Lemma 3.1.

On the other hand, Simchowitz et al. [28] show that for semi-stochastic disturbances (disturbances
with a non-degenerate stochastic component), one can still achieve fast rates for any any linear sta-
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bilizing scheme.’ This seems to suggest that for controller parametrizations based on more powerful
stabilizing controllers, stochasticity may in fact be beneficial. It is an interesting direction for future
work to understand whether these more general stabilizing controllers admit fast regret rates for
non-stochastic control.

Part 1
Appendices for Control

C Past Work and Classical Settings

In this section, we describe in detail how our non-stochastic control setting compares with other
control settings considered in the literature. At the end of the section, we conclude with a more
thorough discussion of the separations (and lack thereof) between stochastic and non-stochastic
control. Recall that our linear system is described by the dynamic equations

X1 = Axy + Bouy +wy,  y, = Cuxy + ey, (C.1)

Of special interest are the fully observed settings, where y; = x;. We may also imagine an interme-
diate, full-rank observation setting, where d,, = d, and omin(C,) > 0. Note that this latter setting
allows for observation noise e;, while the former does not. Finally, in full generality C, € R%v%=
may have rank rank(C,) < d., and thus states cannot in general be recovered from observations.

C.1 Online LQR

The linear quadratic regularity, or LQR, corresponds to the setting where the state is fully observed
Xy = ¥, and the noise wy is selected from a mean-zero, light-tailed stochastic process - typically
i.i.d. Gaussian. Crucially, the noise w; is assumed to have some non-degenerate covariance: e.g.,
iid

Wi (0,%) for some ¥ = 0. One then considers quadratic cost functions which do not vary

with time:
(i(x,u) = £(x,u) =z Rz +u' Qu,

where R and () are positive definite matrices. In particular, £(x, u) is a strong-convex function, and
thus the LQR setting is subsumed by our present work.

For the above setting, the optimal control policy (in the limit as 7' — o) is described by a static
feedback law u; = K,x;, where K, solves the Discrete Algebraic Riccati Eugation, or DARE; we
denote the corresponding control policy 7%+ . Note that this is in fact the optimal unrestricted control
policy (say, over any policy which executes inputs as functions of present and past observations),
despite having the simple static feedback form.

Results for online LQR consider a regret benchmark typically considered performance with respect
to this benchmark (see e.g. [1, 13, 25, 12])

Rr(alg) := Jr(alg) — T lim le[Jn(wK*)]

n—oo N

where the righthand term is the infinite horizon average cost induced by placing the optimal control
law K. One can show (e.g. [26]) Ey [J,,(75*)] is increasing in n. Thus, by Jensen’s inequality, it

SIntuitively, this is because with (semi-stochastic) noise, one can replace the infinite-horizon invertibility
condition k(@) of Definition 2.2 with a finite-horizon analogue, K., (G). It is shown that this analogue decays
at most polynomially in m, h, even though x(G) may be zero. This translates into a polynomial dependence on
m, h in the final bound, which contributes only logarithmic factors for the typical choice m, h = O (log T).
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holds that for any IT C II;4. containing A

Ew[Rr(alg)] = Ew[Jr(alg)] — T lim le[Jn(wK*)]

< Jr(alg) — By [J7(754)]
= Ew[/r(alg)] - inf Ew[Jr(m)]
)

< Ew[Jr(alg)] — Ew 11€1fH Jr(m)
< Ew[Jr(alg) — Hel% Jr(m)] := Ew[Regretp(alg; IT)],

where Regret is our non-stochastic benchmark. Hence, we find that, in expectation, the standard
benchmark for online LQR is weaker than ours. Nevertheless, the two benchmark typically concide
up to lower order terms due to martingale concentration. Observe however a key conceptual dif-
ference: the LQR regret Ry can be defined with an a prior benchmark, because the dynamics are
stochastic. On the other hand, the non-stochastic benchmark is defined a posteriori, after because
the noises are selected by an adversary.

C.2 Online LQG

In the LQG, or linear quadratic gaussian control, one typically assumes a partially observed dynam-
ical system, inheriting the full generality of Eq. (C.1). Again, the cost function is typically taken to
be quadratic function of input and output:

ly,u) =Ly u) =y Ry +y'Qy,
Again, R, () are assumed to be positive defined, and thus our assumption that ¢; are strongly convex
subsumes the LQG setting. Typically, online LQG assumes that both the process noise wy and the
observation noise e; are not only mean zero and stochastic, but also well conditioned. For example,

wi %N (0,%,) and e, X N(0, 5, where By, e - 0.

Whereas the unconstrained optimal policy in LQR is an szatic feedback law, the optimal LQG policy
is dynamic linear controller of the form considered in this work. This is true even if C, = I but
there is non-zero process noise e;; that is, y; = x; + €.

D Pseudocode, and Dynamic Feedback Generalization

D.1 Full Pseudocode for Static Feedback Parametrization

parameters:
Newton parameters 1, A > 0
DRC parameters radius B¢ > 0, DRC length m > 1, memory length h > O
closed-loop Markov operator estimate G. % if known system, set G+ Gy
initialize:
Constraint set M < Mgyc(h, Rr) (Eq. (3.2))
Semi-ONS subroutine A <— Semi-ONS (7, A, ¢e(M)) (Algorithm 1)
initial values ¥4, ¥, ..., §%,, ) ¢ Ofort =1,2,...: do
recieve y; 28 from env1r0nment iterate z, from A, and set DRC parameter M, < ¢! [Z¢].
Construct estlmate vE = (yK,aK) viaEq. (3.3)
play input u'® + Ky 4 u®(M, | 5%,).
suffer loss /; (y?'g, ui'g) and observe /4 (-) .
feed A the pair (¢;, H;, vE), defined in Eq. (2.3), and update A.

Algorithm 2: Disturance Response Control via Online Newton Step (DRC-ONS).

D.2 Stabilizing with dynamic feedback

In general, a partially observed system can not be able to be stabilized by static feedback. To circum-
vent this, we describe stabilizing the system with an dynamic feedback controller, a parameterization
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Input:
Newton parameters 1, A > 0
DRC parameters radius Rxq > 0, DRC length m > 1, memory length & > 0

Estimation Length N > 0 % N o< VT

Initialize G0 = {Odfdx dy} ,and Gl = 0 fori > h.

forr=1,2,...,Ndo
receive y>'¢
play ualg =uy" 2lg 4 Kya'g where u;™ alg 1l ~ N0, 14,).
estimate G111 = (CA;'[“) eln] 4 arg mingpu Sop P — 3 alilueee) 2,
run Algorithm 2 for timest = N + 1, N +2,...,T, using G as the Markov parameter estimate,
and parameters m, h, A, 7).
Algorithm 3: Full DRC-ONS for Unknown System, with estimation

we refer to as DRC-DYN. The following exposition mirrors Simchowitz et al. [28], but is abridged

considerably. Specificially, we assume that our algorithm maintains an internal state salg, which
evolves according to the dynamical equations

Silfl = Amsilg + Bﬂoyilg + By ully™, (D.1)

and selects inputs as a combination of an exogenous input ug*, and an endogenous input determined
by the system:
' = w8 4 (O, 838 + Dy y ). (D.2)
Lastly, the algorithmic prescribes an control output, denoted by w;, given by
[ d.,
wify = Cﬂ'o,wst + Drow¥y % e R%
which we use to parameterize the controller. In the special case of static feedback, we take C, ., = 0

and Dy, ., = I, so that w™® = y?. We assume that  is stabilizing, meaning that, if we have

maxy e, [[wel], [|uy™ alg|| < oo are bounded, then with max, [|u2®||, |[y2|, |w™€|| < cc. Asa
consequence of the Youla parametrization [30], one can always construct a controller my which has
this property for sufficiently non-pathological systems.

Analogous to the sequence y, ul<, we consider a sequence that arises under no exogenous inputs:

Definition D.1. We define the ‘Nature’ sequence y?‘"‘t, nat 'wnat as the sequence obtained by exe-
cuting the stabilizing policy 7 in the absence of uf* = 0 we see viat = (yhat yrat) ¢ Rdvtdu,
Each such sequence is determined uniquely by the dlsturbances Wi, €.

Moreover, the ‘Nature’ sequences can be related to the sequences visited by the algorithm via linear
Markov operators
Definition D.2. We define the linear Markov operators Gex v, Gex—sw as the operators for which

g_ nat § : [t—1] a _ nat § : [t—i a|g
Wy + Gex%wu - + Gex—)'u

‘We note that GLS(]HW = 04, x4, by construction.

Finally, we describe our controller parametrization:

Definition D.3 (DRC with dynamic stabilizing controller). Generalizing Eq. (3.2), let
Mare(m, Rpm) denote M e Qd *dw for which || M|z, op < Ram, and MU = 0 for all i > m.
Given estimates @, |, ..., @, we select

m—1
(M | G = 3 Mlep
=0
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We recover the static feedback setting in the following example:

Example D.1 (Static Feedback). To recover the special case of static feedback, we make the fol-
lowing substitutions

o Wesetsl® =0 forallt, Cr, = 0and D,, = K.
e Weset Cr, o, =0and Dy, ., = I, so that ualg fx’a'g + Kyiilg

e We set we set Cry o, = 0 and D, = I, so that walg =y; 2 for all ¢.

e The quantities y?** and w?' both correspond to y X, and ul'** = uff, the operator Geyx_,
becomes the Markov operator G, and Gex_,, becomes the top d, x d, block of G,
capturing the response from uy* — y;.

e Thus, u*(M | &3t corresponds to u* (M | y&,).

D.3 Full Algorithm under Dynamic Feedback

Let us now turn to the specific of the main algorithm with dynamic feedback, DRC-ONS-DYN.
Throughout the algorithm, we maintain an internal state updated according to the nominal controller

o via Eq. (D.1). Moreover, all inputs are selected as u® = uf™*% 4 (C, s + D, y ) in
accordance with Eq. (D.2).

Next, we specify how we recover vt € and wt'g Given estimates Ge,H (y,u)> @ex_w, we parallel
Eq. (3.3) in defining

Shat alg
ﬁnat R yt y G ueX ,alg
t c— |fynat | — al al t— )
u; C,TOS g g z : ex—(y,u) i

ﬂ-oyt i=1

&\"tndt Z Gex%w :X 1a|g (D3)

nat

As in the static feedback case, the above exactly vi?', w for exact estimates @ex%(y,u) = Gex—o

and Gex_w = Gex—w- We then contruct optlmlzatlon losses as follows, mirroring Eq. (2.3):

ﬁ(z) = L(VE + H,z), where H, := ZGM i, and Y, = =e [@l 1 (D.4)

ex— (y,u) sis—m

where ¢, is an embedding map analogues to e,,.

With these estimates and definitions, Algorithms 4 and 5 provides the pseudocode generalizing
Algorithms 2 and 3 to our setting. The main differences are

e Using @ for the controller parameterization, rather than y <.
e Mainting the internal state '8

e Estimating two sets of Markov parameters, CA?QX_M and @exﬁ(ym).

E Full Control Regret Bounds and Proofs

This section states and proves our main results for the control setting. We state and prove The-
orems 3.1b and 3.2b for the general, dynamic-internal controllers described in Appendix D. We
then derive the regret bounds Theorems 3.1 and 3.2 in the main text as consequences of the above
theorems. In addition, we state variations of the main-text bounds which make explicit the param-
eter settings which attain the desired regret (Theorems 3.1a and 3.2a). The section is organized as
follows:

e Appendix E.1 gives the requisite assumptions and conditions for the general setup of Ap-
pendix D, which replaces the static K controller with dynamics internal controller.
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parameters: Newton parameters 7, A, radius R ¢, DRC length m, memory h, closed-loop Markov
operator estimate Gox_s., Gex_>(
initialize:
constraint set M < Myc(h, Raq) (Eq. (3.2)), with C < e(M).
optimization subroutine A < Semi-ONS(n, A, C) (Algorithm 1), with iterates z,
initial values W', &Y. .. ,CJ_“(?fL <0
fort=1,2,...:do
. alg .
recieve y; - from environment
Construct estimate up?* = (yp2*, ') and &,"*' via Eq. (D.3)
Recieve iterate z; from A and back out DRC parameter M; < ¢ ![z,].
play input u€ « D, y2'% + C, s + u® (M, | G0, .
suffer loss Et(yilg, u‘z'g) and observe /()
feed A the pair ( 7, Ht) defined in Eq. (D.4), and update A

update internal state st'+1 according to Eq. (D.1).

y,u)» iNitial internal state s1

Algorithm 4: DRC-ONS-DYN from Markov Parameter Estimates

Input: Number of samples N, system length h, DRC length m, learning parameters 7, A.
Initialize G = Od, xd, ,and G AL = 0fori > h, and Gex_w = 0 for 7 = 0 and for
ex—(yu) — | Iy, )

ex—(y,u

i>h,s?®=0forr=1,2,...,N do
draw u{™*® ~ N(0, 1,
receive v?'g = (ye, u?'g) and we.
play ualg; ex ,alg + (Cﬂ_osilg + D?TO ilg)
update 1nterna1 state st #1 according to Eq. (D.1).

estimate G via

@[Lh] < arg min Z ”valg ZG[Z] exa|g||2

ex—(y,u)
GOy
h
1:h § : 2 : bl exalg
GLX—!UJ < arg min HUJ G[ ||2
G T i=1

run Algorithm 4 for timest =N+ 1, N +2,...,T, using @ex%w, @exﬁ(yyu) as the Markov
parameter estimates, and parameters m, i, A, 7, and state st 5.
Algorithm 5: Full DRC-ONS-DYN for Unknown System (with estimation)

e Appendix E.2 states the general regret guarantees Theorems 3.1b and 3.2b for the dynamic-
internal-controller setup. It also states Theorems 3.1a and 3.2a - the complete regret bounds
for static feedback with parameter settings made explicit. The static regret bounds are
derived in Appendix E.2.1.

e Appendix E.3 proves the bound on the invertibility modulus (G k), Lemma 3.1. It also
provides discussion regarding the invertibility modulus in the dynamically-stabilized set-
ting (see Remark E.2.

e Appendix E.4 proves the dynamically-stabilized setting guarantee for the known system,
Theorem 3.1b. The proof combines the regret decomposition from Simchowitz et al. [28]
with our policy regret bound, Theorem 2.1.

e Appendix E.5 proves the dynamically-stabilized setting guarantee for the unknown system,
Theorem 3.1b. Again, we combine the existing regret decompositions with the policy regret
bound Theorem 2.2.
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The arguments that follow essentially reuse lemmas from [28] to port over our policy regret bounds
for Semi-ONS to the control setting. We state formal reductions for the known and unknown sys-
tem settings in Propositions E.5 and E.8, which may be useful in future works applying the DRC
parameterization.

The only significant technical difference from [28] is in the analysis of the unknown system, where
we use an intermediate step in their handling of one of the approximation errors. This yields an
offset in the Y;-geometry (see Proposition E.8), which is explained further in Appendix E.5.

Asymptotic Notation: Throughout, we will use Oyg¢(5) to denote a quantity a which is at most
Cb, where C'is a universal constant independent of problem parameters. Equivalently, a = Ocpgq(p)
if and only if @ < b. We use both notations interchangably, and O, (.) affords convenience.

E.1 Preliminaries and Assumptions for Dynamic Feedback

While the main theorems in the main body of the main text assume explicity geometric decay, the
results in this result will be established with a more abstract, yet theoretically more streamlined
construction called a decay function:
Definition E.1 (Decay Function). For a Markov operator G = (Gm)izo, we define the decay
function as Yg(n) == 3 .o, ||G]op. We say that G is stable if 1)(0) < oo, which implies
that lim,, o ¥g(n) = 0. In general, we say that ¢ is a proper, stable decay function if ¥)(n) is
non-negative, non-increasing, and t(0) < oo.
Assumption 3b (Stability). We assume that R, := max{||Gex—uv|l¢;,0p: [|Gexswller,op} < 00.
We further assume that the decay function of Gex—, and Gex_,., are upper bounded by a proper,
stable decay function v,. Note that, when the static analogue Assumption 3b holds, we can take
Ry = 1 - , Wme(n) = Ry plc.

~PK
For any stabilizing 7y, Assumption 3b always holds, and in fact 1, will have geometric decay. In
the special case of static feedback K, Assumption 3 implies that

CK Pk
YK (n) < :
) 1—pK
Again, since T is stabilizing, we also may also assume that the iterates <, e are bounded for all
t:
Assumption 4b (Bounded Nature’s-iterates). We assume that (wy, e;) are bounded such that, for

all t > 1, ||[v@]], [|w™*|| < Ryat. This is equivalent to Assumption 4 in when 7o corresponds to
static feedback K.

(E.1)

E.1.1 Policy Benchmarks

Definition E.2 (Linear Dynamic Controller). An LDC is specified by a linear dynamical system
(Ay, By, Cxr, D), with internal state 87 € R, equipped with the internal dynamical equations
ST, = AT 4+ Bry7 and uf := Cr8] + D,y7. We let IIjq. denote the set of all LDC’s .
These policies include static fedback laws u] = Ky7, but are considerably more general due to
the internal state. The closed loop iterates (y7,ul,x7,sT) denotes the unique sequence consistent

with Eq. (1.1), the above internal dynamics, and the equalities u] = u;, yJ = y:. The sequence
(yE, uk) is a special case with D, = K and C,; = 0.

Dynamic Policy Benchmark Lastly, let us quantitatively define our policy benmark, from [28].
Definition 3.1b (Policy Benchmark). We define a 1y — 7 as a Markov operator G',_,, such that
the inputs u{* ™7 = 3 G%{jﬁw?at satisfies the following for all ¢:

, t
yr| _ |y [t—i] | ex,mo—m
|:11;T:| - |:u?at:| + EGex—)vui :
where (y7,u]) is the sequence obtained by executed LDC 7. We define the comparator class
IL, := stab,x, (R*,w*), where Igap, (Rﬂb) = {7T € Iqc : ||G7'ro~>7l'H£1,Op <R, LZJGwOﬁn (n) < ¢(n)7vn}

Exact expressions for conversion operators are detailed in Simchowitz et al. [28, Appendix C].
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Static Policy Benchmark

Definition E.3 (Static Feedback Operator). Let G, . denote the Markov operator Ggf]cl
Dy alizo + Cr 1A% Br cilis0, where we define
A, + B,D,C, B*C’W] B {B*Dﬂ —B*]
) mw,cl —

A= B,.C, A, B, 0

Oﬂ,cl = [(DW - -Dm))C* Cﬂ‘} ,Dﬂ—,cl = [D‘n' 0]

To specialize to the static-feedback setting described in the main text of the paper, we develop the
following concrete expression:

Lemma E.1 (Conversion operators for static feedback). Consider the special case of the above,
where T is corresponds to static feedback with matrix K. Then, the following is a K — m conver-
sion operator.

4 i— I
G[K]—>7r = Dyli=0 + Hi>oc7r,clA7r,clleC1 [K] J

Next, fix c,, > 0, ps € (0,1), and recall the set Uggap (Cy, pi) 1= {7 : Vn, ||G£:]Cl||op < copt}. Then
defining

1 K w0 1 Kllop)cx
U+ [ Kloplewpt . (LF [Klop)er (E2)

w*(n) = 1—p, 1—p,

we have that m € 11, where I1, = Il sab(Ry,¥s) as defined in Definition 3.1b. Lastly, in the
special case where the target policy w corresponds to another static feedback law u; = Ky, then

Gl =1, oK, + (K, — K)C,(A, + B,KC,)" 'B,(K, — K) (E.3)

K—m

Proof. The first and third statements are a special case of Simchowitz et al. [28, Proposition 1],
taking D, = K, and A,,, Br,, Cx, identically zero. For the second statement follows from the

fact that [ GE flop < (14 1K [lop) 1GEL llop- =

E.2 Complete Statement of Regret Bounds for control setting

Here, we state our main regret bounds for both general dynamical internal controllers (Theo-
rems 3.1b and 3.2b), and specialization for static controllers, Theorems 3.1a and 3.2a. The main
theorems in the text Theorems 3.1 and 3.2 are special cases of the latter. Proofs of specialization to
static controllers are provided in Appendix E.2.1 below.

Assumption 5 (Invertibility Modulus). For the setting setting, where the system is stabilized by a
possibility non-static nominal controller 7y, we assuch that the Markov operator Gex—,, satisfies
K(Gex—sv) > 0.

Remark E.1 (Conditions under which Assumption 5 holds). From Lemma 3.1, we note that As-
sumption 5 holds whenever 7y corresponds to stabilizing the system with a static controller. In
general, it is more opaque when Assumption 5 assumption holds. We discuss this in more detail in
the Appendix E.3.

With our general setting and notation in place, we are ready to state our general bound. Throughout,
we consider a comparator class

IL, = Hstabﬂro (R*7 ’(/}*)’ where
Istab,m, (R,w) = {77 € Ihqe : ||G71'0—>7TH€170P <R, wGwo%ﬂ (Tl) < ’(/)(’I’L),Vn},
as defined in Definition 3.1b.

Theorem 3.1b (Main Regret Guarantee of DRC-ONS-DYN: Known System). Suppose that 1,3b,4b,
5 hold. Moreover, choose A = 6hRZ, RZ , 1 = 1/a, and suppose that m,h are selected so that
that Yry(h+1) < Rn, /T, 0 (m) < cR, /T, and Ry > Ry. Then, the DRC-ONS-DYN algorithm
(Algorithm 4) enjoys the following regret bound:

ControlRegy(alg; I1,) < (a/k) " 'mh*d,d,RE R2, R3,L*log (1+T),

nat

The above guarantee is also inherited by DRC-ONS (Algorithm 2) as a special case.
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The above theorem is proven in Appendix E.4. For static stabilizing controllers, we obtain the
following specialization.

Theorem 3.1a (Main Regret Guarantee of DRC-ONS: Known System, with Explicit Parameters).
Suppose Assumptions 1, 3 and 4 holds, and for given p, € (0,1),c, > 0, let II, be as in Defini-
tion 3.1. Select parameters

log T
o h= k8L
o m=[72"]

Bpm = Ry = (1 +[|Kllop) =2

1—ps
e n=1/a, and A = 6hR2 . c% (1 — pK)*
Then,

3 .2 1 K 3 LQ
ControlRegy(alg; IT,) < e (1 + [ Kllop) 5 dudyRY . - - log*(1 4+ T)

~ (1= pr)P(1 = py)

For unknown systems, the following guarantees O (\/T) regret:

Theorem 3.2b (Main Regret Guarantee of DRC-ONS-DYN: Unknown System). Suppose that As-
sumptions 1,3b,4b, 5 hold, and that {; are L-smooth (V*{; =< L). Lastly, fix 6 € (0,1/T). Then,
when the unknown-system variant of DRC-ONS-DYN with estimation (Algorithm 5) is run with the
following choice of parameters

o \=R2,1og(1/8)VT + hR2 andn = 3/a
o N =n*VT max{d,,d, +d,}
o VT > 4. 1764h2R§V{ R?m + cthdi, where cq is a universal constant arising from condi-
tioning of the least squraes problem®.
e m > my + 2h and Ryq > 2R,.
o Y (h+1)< R, /T, i(m) < R,)T
Then, the following regret bound holds with probability 1 — §:
(dw + dy)(dy + d)mhL?R: RS, R%,VT log(1/6)

ControlRegy(alg; II,) Slog(1+T) 7
K

The same guarantee also holds for the static analgoue Algorithm 3).

The following specializes to static control:

Theorem 3.2a (Main Regret Guarantee of DRC-ONS: Unknown System, with Explicit Parameters).
Suppose that 1,3b,4b, 5 hold, and that ¢, are L-smooth (V?{; < L). For simplicity, further select
comparator parameters p. > pr, ¢+ > Cri. Finally, fix 6 € (0,1/T). Then, when the unknown-
system variant of DRC-ONS-DYN with estimation (Algorithm 5) is run with the following choice of
parameters

o h=[(1—p,) " logT], m = 3h, Rpy = 21 Elepee
o \=R2, 1og(1/8)VT + hed /(1 — p)? andn = 3/
e N =n*/T(d,+d,)

o VT > clog? T((1 — py) ¢kl + || Kllop)? + (1 — pi)~2d2) for some universal constant
¢ (satisfied for T = O (1)).

SEmpirically, one can just verify whether the LS problem is well conditioned
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Then, the following regret bound holds with probability 1 — §:

4 4 5 72p5
. CKC*(l + HKHOP) L Rn'lt
ControlReg(alg; I1,.) S VT - 0= ) (1= pu)0 " log?(1 4 T) log(1/6)

The same guarantee also holds for the static analgoue Algorithm 3).

E.2.1 Specializing Dynamic Stabilizing Controller to Static

Proof of Theorems 3.1 and 3.1a . For the static case, as noted in Assumptions 3b and 4b, Assump-
tion 4 implies Assumption 4b, and Assumption 3 implies Assumption 3b with

CK n
Rﬂ'o = 1 5 1/)71'0 (’I’L) = R‘n'opK'
— PK

Moreover, recall that our benchmark is 7 € Tlgap(cx, p), as defined in Definition 3.1. from
Lemma E.1, this benchmark is subsumed by the benchmark II, for the choice of 1, R,, as in
Eq. (E.2):

(1+ HKHOP)C*

R, :=
1—p,

) 1p*(n) S R*pf
Let us now use the following technical claim:

Fact E.2. Let p € (0,1). Then p™ < 1/T forn > li’%

Proof of Fact E.2. We have p™ < 1/T for n > log(T')/log(1/p). But log(1/p) < % 1= 1;p,

so it suffices to select n > log(T")(p/1 — p) > log(T)/(1 — p). O

Thus, our conditions ¥, (h + 1) < Ry, /T, «(m) < ¢R, /T, and Ryq > R, hold as soon as

log T S log T

h > , = .
1_pK 1—P*

Thus, setting h = [2517 m = [long and Ry = Ry = (14 ||K||op) 725, and £(Gk) >

1—pK

L min{L, | K[ 22} 2 (1+ | Klop) = we obtain

i (L [|Klop)®
(1= pr)®(1 = py)3

This requires the step size choice of ) = 1/ and A = 6hR2, c% (1 — pk )% O

12
ControlReg(alg; 1) < ~dydyR2,, - 1og4(1 +7)

Theorem 3.2a. For static feedback, we have d,, = d,,. Thus, (d,, + dy)(dy + dy) = dy(dy + du).
Next, we have R} Ry, = (1 — px) *cf - (1 + ||K||0p) (1—py)tct,andh <m < (1-
px) " tlog(1 + T). This gives

(1 + 1K lop)*

(dw +dy)(dy + du)mhRioRK}V‘ S dy(dy + du )(1 = pr)H (1= ps)°

log?(1+ 7).

Using 1/y/k < (14 || K|op), we then get

/T . CKC (1 + HKHOp)S R L 3
ControlReg(alg; I1,) < na -log”(14+1T)log(1/6

The correctness of the various parameter settings can e checked analogously. O
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E.3 Invertibility-Modulus and Proof of Lemma 3.1

In this section, we bound the condition-modulus (G k) defined in Definition 2.2, and generalize
the notion to DRC-DYN parametrizations. To begin, we recall our desired bound:

Lemma 3.1. For & as in Definition 2.2, we have k(G ) > % min{1, K523

For general DRC-DYN parameters, the Z-transform yields a clean lower bound for the condition-
modulus of Geyx_s, from Definition 2.2:

Proposition E.3. Define the Z-transform G ey, := C — Cldvtdu)xdu g5 the function

EX%U z GBX*)'U

Then, we have the lower bound:

H(Gex%v) > Il'lel%[‘l Umin(Gex—)v(z))27

where K(Gex—v) is the condition-modulus of Gex—sy, as defined in Definition 2.2. In particular, if
Glex— takes the form

1
GLZ)](_W = Hi:ODex—m + H11>00ex—>vAéx_>UBex—>'ua
then

: —1 2
Rg > Inelﬂll‘l Umil1(Dex—>1) + Cex—w(ZI - Aex—)v) Bex—w) .
z

Proof of Proposition E.3. Part 2 applies the well-known formula that the Z-transform of an LTI
system with operator GI/ = DI;_y + C' A" Bl;~, which can be computed via

Gz)=D+C S 4127 | B

i>1

=D+C|z") (4/2) | B

>0
=D+C(z'(I- A/z "B
—D+C(:I-4) ' B,

where we use formal identity identity » -, X f=(T-X)!

Let us turn to the first part of the proof. We adopt the argument from [28, Appendix F]. Fix
Ug, U1, - .. with 3-n = 0°°||u,||> = 1, and define a Markov-shaped vector U = (Ul), with U,
and its Z-transform U (2) := Y"1, Ul 27%. We have that

E:ZWMZ=ZW%WW

n>0 2 n>0
where * denotes the convolution operator. By Parseval’s identity, we have that

ZH G*U[”

n>0

2
I(G * ) () 1340,

2 o7

where (CT;TJ )(2) = 3550 (G*U) 27 is the Z-transform of G+ U. Because convolutions become
multiplications under the Z-transformation, we have that for the Z-transform of U,

1 o N7 L0y (12 1 o N ONTT( L0V ]2
3 | IGO0 = 5 [ G T .
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This establishes the first equality of the claim. For the inequality, we have
1 2

. . 1 [ . .
L6 0y)12 > . 10\\2 0y )12
3 | 1GENTE30> 5 [ g G0 e

1 27 .
Z Hllerl O—min(z)Q : 7/ ”U(ebe)”gdo
zE

2m
To conclude, we note that by Parsevals identity, - f T (er? ||§d9 = > oo =
ano ||Un|| = 1, giving anoHZi:o G[l]un—ng = E 0 ||G(€L6)(7(6L0)H%d0 >
min, et omin(2)?, as needed.
O

We now turn to giving an explicit lower for the static-feedback stabilized setting:

Proof of Lemma 3.1. For the special case of static feedback, we recall from Eq. (3.1) that

G, =GRl =Tz H +Lino [KCC } (A, + BLKC,) B, i > 1.

Thus, defining A(z) := (2 — A, + B,KC,)™!, we have from Proposition E.3 that

= . C,A(2)B,

G“*“@[L+Kaﬁgﬂx’
where the above holds for all z € T since K is stabilizing. We now invoke a simple linear algebraic
fact:

Claim E.4 (Lemma F.2 in [28]). Consider a matrix of the form

— YZ (di+d)xd
WL+X4€R1 )

withY € Raxd X 7T ¢ R9%4, Then, oppin (W) > %min{l, TXHZ,)}

Applying the above clalm with Y = I, X = K, and W = C,A(z)B,, we conclude that
Omin(Gexso(2)) > 3 5 min{1, || K[|, } for all z € C. Thus, by Proposition E.3, k(Gg) >
(3 min{1, || K||;;})? = § min{1, ||K||OPQ} as needed. O
Remark E.2 (Generic Bounds on Invertibility). In general, we do not have a generic lower bound on
the invertibility modulus which is verifiably no-negative for all choices of stabilizing controllers. For
one, it is not clear that our lower bound in Proposition E.3 is sharp, in part because we are working
with real operators. However, there are certain conditions (e.g. Youla parametrization, where A,

has no eigenvalues z € T, Simchowitz et al. [28, F.2.3]) where we have min, cr omin(Gex—sv(2))?
is strictly positive.

E.4 Control Proofs for Known System

We focus on the dynamic version of our algorithm, DRC-ONS-DYN, with stabilizing controller 7.
For known Markov operator, this algorithm specializes to DRC-ONS in the case of static feedback.
The following theorem reduces to bounding the policy regret:

Proposition E.5 (Reduction to policy regret for known dynamics). Consider the DRC-ONS-DYN

algorithm (Algorithm 4) initialized with the exact Markov operators Gexﬁ(y,u) = Gex—v, @ex_w =
Gex—sw, and iterates M produced by an arbitrary black-box optimization procedure A. Further,
suppose that P, (m) < cRy /T, ¢)ry (h+ 1) < cthny (h + 1)/ Ry, for some ¢ > 0. Then,

ControlReg(alg) < MemoryRegy(alg) + 12LcRA R2 R} ..
where, for the Fy, f; losses in Deﬁnmon 3.3b, we define

MemoryReg(alg) : ZFt Zigp | WP — mf th z | wiat)

The same is true for Algorithm 2 (for static feedback).
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Remark E.3. . In the above, we allow a slack parameter c on the choice of m, h. This means that our
main theorems can be generalized slightly to accomodate when m, h are chosen larger-than-needed.

Next, we bound the relevant parameters required:
Lemma E.6 (Parameter Bounds). Assume Ry .t, Raq > 1. The following bounds hold

(a) We have D = max{||z — 2’| : 2,2’ € M.} < 2/mRpnm.

(b) We have Ry := maxy ||[Y¢|lop = maxy [[ew(wi3)|lop < Rnat-

(¢) We have Ry ¢ = max; max,cc || Y¢2|| < RaqRuat-

(d) For G = Gex—sy, we have R = ||Gex—u |ty ,0p < Rrgr Y < Yry, and Ry < Ry Ryay
(e) We have R, < Rpat, and Leg < 2LR; R Rpat.

Moreover, d = md,d,,

We are now ready to prove our general regret bound for the known system case, encompassing

Proof of Theorem 3.1b. From Theorem 2.1, we have the bound:

a 3dh® L% R
MemoryRegr(alg) = Z Fy(zy.4—p,) Englgz fi(z) < 3ahD?*RY, + Tf/fg log (1+1),
t=1

Let us now specific the above constants using Lemma E.6. From this lemma, we have that
ahD?*R% = ahmR2 RﬁatRﬁ,l. Moreover, dh?L%; R = 4mh2dude2R3 R3%,RZ,.. Thus, with
A= 6hRﬁatR72m and n = 1/a, we get

MemoryReg(alg) < mh?R2 RiatR%,l(oz + (av/®) ' L? Ry, dyd,, log (14 T))

< (av/m) " mh?dydy, RS R, Rag L log (1 + T)),

nat -

where we used that L? /a+/k > L?/a > « by the assumption o < L. Combining with Proposi-
tion E.5 and again using L < L?/a+/k ensures that the total control regret ControlReg suffers an
additional constant L in the bound, yielding at most

ControlRegy(alg) < (av/k)~'mh*d,dRE R:, R3L*log (1+T),

as needed.

E.4.1 Proof of Proposition E.5

We follow the regret decomposition from [28], noting that our assumptions on the dynamics, mag-
nitude bounds, and costs ¢; all align. To facilitate reuse of the technical material from [28], we
introduce the following loss notation in the M/-domain:

Definition 3.3b (Losses for the analysis). Generalizing Definition 3.3, we introduce the z-space

losses,
Fy(zp—n | @102%) i= £y (vi?t + Z G[CZX_)Uthith’L')a where Y = ¢, (@722Y),
with unary specialization Fy (2.4 | @12%) := fi(2,...,2 | @ 2"). and their analogues in M -space
Fy(Meen | @13 = Lo(vi™ + Z GEL, u(M | &fh),

and unary specialization f;(M | @) := Fy(M,..., M | @), Observe that, for z; = ¢(M,)
for s € [T, and z = ¢(M), then

Fy(zei—n | @1FY) = Fy(Myg—p | @15, and  fi(z |@1FY) = fu(M | @F). (E4)
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Moving forward, let (y,u™) denote the sequence produced by selecting input u$*(M | what) at
each 7. We then have

ControlReg,(alg; I1,)

Il
M’ﬂ

T
| | .
((y?®,ui®) — inf > 4(yF,uf)
Ft=1

~
Il

1

gt(Y?gvu?lg) Ft(Mt:tfh | wrf

[M]=

T
ZF’ My g | WP — mf thM|w“dt)

ﬁ
Il
-

(i-a) (i)

T
n maXZ‘ft (M | w2y — ¢,(yM, uM ‘—i— 1nf Zét yM uM) - 1nf Zét yi,uy)|.

(i.b) (i)

Let’s proceed term by term. From Simchowitz et al. [28, Lemma 5.3] (replacing their notation
R¢, ,¥¢, with our notation R, ¥, ).

(i.a) + (i.b) < ALT Ry R3(R2 thmy (h + 1). (E.5)

Secondly, from Eq. (E.4), we have

T
= ZFt(Zt:t—h | what) — 1nf th z | wiat) := MemoryReg(alg). (E.6)
t=1

Finally, from Simchowitz et al. [28, Theorem 1b], we have that for R > R,
(iii) < 2LTR,R2 R2,, 1(m) (E.7)
Thus, we obtain

ControlRegy(alg; I1,.) < (i.a) + (i.b) + (44) + (¢4i)

* 25 1
< MemoryRegT(a|g) + 4LTRMR2 Rgdt <¢]§m) + P Ojgh + )) 7
* T

Finally, bound ¢, (m) < ¢R, /T and 2¢,(h 4+ 1) < cRy, /T concludes. O

E.4.2 Proof of Lemma E.6

We go term by term:

(a) We have D < 2max{|z| : 2z € M,.}. For z = ¢(M), have that ||z|]| = |M|r <
Vm||M||e, .op < v/mRa by Simchowitz et al. [28, Lemma D.1]

(b) Each matrix Y can be represented as a block diagonal, with blocks as rows correspond-

ing to w? for s € {t,t — 1,...,t — m + 1}. This matrix has operator norm as most
max{||w|| : s € {t,t —1,...,t —m+1}} < Ryas-
(©) We have that Y,z = ui(M | i) < 37t (M0 op|f™lop < RacFuae by

Holder’s inequality.
(d) These bounds followly directly from our definitions.

(e) We have R,, < Ry, by assumption, and Leg := 2L R, R Rnat follows from the defini-
tion Leg = Lmax{R, + RgRy,}, and the assumption s R, Ryat > 1, and R, > 1 by

definition (RT['O = ||Gex~>v||Z1,Op’ and Gg’](_”} = |:?:| )
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E.5 Unknown Systen

We begin by stating guarantees for the estimation procedures Algorithm 3 and Algorithm 5, which
follow directly past work:

Lemma E.7 ( Theorem 6b in Simchowitz et al. [28]). Let 6 € (e~7,T77'), N,d, < T, and
Yo, (h+1) < \/iﬁ Define dmax = max{dy, + dy, d.}, and set

h?Ry.
\/Nth, where Cs := 14\/du + dmax + log %, and Ry est = 3/ dy, +1og(1/9).

and suppose that N > h*C3 Rﬁ ost
satisfied by taking

ec(N,0) =

R%\/l Rfro + coh?d? for an appropriately large ¢, which can be

N > 1764(dmax + du + log(1/8))*h* R R2, + coh®d2.
Then with probability 1 —§ — N~ log” N , Algorithm 5 satisfies the following bounds
1. eqg < 1/max{Ry est, RrmBr, }-

utH S Ru,est = 3\/du + 10g(1/5)

3. For estimation error is bounded as
Héex—w - Gex—m”h ,0p < ||Gex—>w - e?cﬂw”&pp + Ru esth (h + 1) <eq

HGex—>(y,u) ex—)v”él ,op > < ”ch% (you) ex—wal op + Ry esth (h + 1) < eq-

2. Forallt € [N],

Moreover, Algorithm 3 also satisfies the above for écxﬁ(yyu) =G and Gex—o = Gk.

The above bounds are in turn a consequence of Simchowitz et al. [27]. We denote the event of
Lemma E.7 as £, and the following exposition assumpt it holds.

Next, we state a blackbox reduction to the DRC online controller framework. This reduction cru-
cially uses the fact that we have over-parameterized the set M. Specifically, over comparator set
is
M, = Marc(my, Ry),
whereas the algorithm uses the over-parametrized set
M := Myye(m, Raq), with Ryqg > 2R, and m > 2m, + h. (E.8)
By over-parametrizing the controller set as above, we obtain the following guarantee:

Proposition E.8 (Reduction to policy regret for known dynamics). . Suppose that Eq. (E.8) holds,
and that V¥, (h + 1) < cR, /T and 1p.(m) < cR, /T for some ¢ > 1, and that N > m + h. Con-
sider the DRC-ONS-DYN algortthm with estimation (Algorithm 5) initialized with the exact Markov

operators Gex_,(y u) = Gexoo, Gex_w = Gex—w, and iterates My produced by an arbitrary black-
box optimization procedure A.

T
ControlReg(alg; I1,) < MemoryRegp(z,) + v Z IY:(z — z*)Hg
t=N-+m-+2h+1

+ Ocn@t(LRS (N+cm)) (d + log(l/é) + RMRnat)
LmR2, )

v

+ Ocnst(LR3, R2, R2,,Te2,) (1 +

7o 'nat
where Ocngi(1) hides a universal numerical constants. Here, for the Fy, fi losses in Definition 3.3b,
we define the term:

T T

RO . — 7 hat 3 7 nat
MemoryRegr(alg; z,) := Z Fi(zy—n | ©78) — ér}ﬂ Z fi(z | @0F).
t=N-+m+2h+1 TS e N ma2n41

Moreover, the same guarantee is also true of Algorithm 3.
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Again, we allow a slack parameter c to allow for over-specifying m, h, demonstrating low sensitivity
to imperfectly tuned algorithm parameters. Next, we translate the parameter bounds from the control
setting to the ones required for the policy regret analysis of Semi-ONS:

Lemma E.9 (Parameter Bounds for Unknown Setting). Assume R, > 1, and that -. Then, for
to := N +m + h + 1, the following hold

(a) We have D = max{||z — 2’| : 2,2’ € M.} < /mRpm.
(b) We have RY = maxtzto ||Yt||0p S 2Rnat~

(c) We have Ry ¢ = max;>;, max,ec | Yi2|| < 2RpmRuat-

(d) For G = Gex%v; we have RG = |Gex—>(y,u)||ﬁ1,op V ||Gex~>vH51,op < 2R7r0) wG < wﬂ'o;
and RH S 2R7r0Rnat

(e) We have R, := max;>, |VE|| V |[VE] < 2Rpat, and Leg := 8LRy R Ruat.-
(f) We can take c, to be 3R pqRpat-
Moreover; d = d.,d,m

Finally, we are in place to prove our main theorem:

Proof of Lemma E.9. The bounds follow analogously to those in Lemma E.6, with the modification
that, for t > N + h, we have |@,"*| < 2Ry, (by Simchowitz et al. [28, Lemma 6.1]), and

that ||@ex_>(y,u) lley,op < 2Ry, under £, Moreover, we can take the constant ¢, which bounds

[|[apat — viat]|y < cpeq to be 3R A Ryat by Simchowitz et al. [28, Lemma 6.4b]. O

Proof of Theorem 3.2b. Let us prove the bound for the dynamic-controller variant Algorithm 5; the
static-controller variant works similarly. Recall that we assume the following

o \=RZ, log(l/é)\/TJthfro,n:?)/a

o N = h*VTdpax

o VT >4-1764h°R3 R2 + coh*d?

e m >my, + 2h, Rapq > 2R,

o Yo (h+1) < Rey /T, s(m) < R,JT.

Let e be an upper bound on the estimation error, which we will set to be greater than /7. By
taking A € [c, 1](T€Z + hR%), and applying Theorem 2.2a, we can bound

T

MemoryRegr(z,) + v Z 1Y¢(z — z*)||§ S
t=N+m-+2h+1

_ T C
cAllog(l—l—a) (a 1/ +02) (Teg, + h*(RE + Ry))

where C; := (1 4+ Ry )Rg(h +d)L%;, Co := (L?c%/a+ aD?), and v, =
which we must bound presently. Since d = d,dym > h, L > a,and k < 1

Rl

_avk
BO+REY) are constants

C1 S dudymBRyay Ry L2g < dodymL*R2 R

~ nat

L2
Cy S L?/aR?, R%+mR%, < L?/a(mR2, R3,) < f(mRiatRM).
a\/ K

nat

Thus, we can bound

c dod,mL*R® R® R2
11 +02 S w ym Iro at M'
ak'/? arY/?
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Thus, from Proposition E.8 with v = v,, taking ¢ = 1, and bounding R < Ry, Ry S Rpat from
Lemma E.9

T . dudymL*R3 R}

RQ
ControlReg(alg; 1) < Cl\llog(1+ =) nat Lt
Cx

el (s 4 12, + o)

LmR2
+ LR (N +m) (dy +log(1/8) + R4R2,,) + LR, R, R2, Te (1 N mw)

Vs

Using the above bounds we have v, = 48(%/1;;/) 2> an/k/Rnat. Thus, for L > o and k < 1, the
2

LmR; .
term — "¢ dominates 1, and we have
*

2 2 P3 4 3
LR3,R2, R, Té, (1 " LmR“”) < LR Bn o

av/k
Moreover, using N > m by assumption and aggregating terms and simplifying

T . dydy L2R4 R3.. R}
ControlRegy (alg; IT,) < ¢ ' log(1 + )\) m - M (Te, + h*(R2, + Ry)) ,.

Vy

oml/2
+ LR2 N (dy, +1log(1/8) + cR\R2,,) -

Next, recall dpax := max{d, +dy,d,}, letus take N = h? VTdpmax. From Lemma E.7, this yields

€2, = "l 02 o Mo uae(dmantl081/0)) _ 2 10g(1/5)/\/T and that €2, > +/T. This yields

T d,dymL*Rx R3, R3
ControlRegy (alg; IT,) < ¢5 ' log(1 + —) m 1/2 at” M
C) R

(VIR 108(1/6) + B2(B2, + Ruw) ) .-
+ LR h*VTdax (dy +log(1/6) + Ry, RZ,,)

Finally, we us bound LR h*VTdmax (dy + log(1/8) + R4 R2,.) <
LR3(RZ, R% h*log(1/6)d,, and take L < L?/a < L%/ay/k. Thus, we can bound the

nat

above by

T . d.d, + h? L2R4 R3
ControlRegy (alg; IT, ) < ¢ ' log(1 + —) y(m ) 7 nat (\FRmt log(1/6) + Rfr[J) )
S\ ak

Finally, for A = R2,, log(1/8)V'T + hR2 , we can take ¢y ~ 1. Together with m 4 h? < mh under

the present assumption, we conclude

(dudy + dmaxdy)mhL2R: R3

ControlReg(alg; IT,) < log(1 +T) nat (\FRHM log(1/8) + Rio) .

ak'/?

Finally, we require N > 1764(dmax + dy +10g(1/6))?h*R3(R% + coh?d3., which means for our
choice of N = h2V/Tdpax and dppax > do, our stipulation that VT > 4. 1764h2R3\A R?TO + cohzdi

suffices. This ensures in turn that /T R2,, log(1/§) dominates R2

- allowing us to drop the term
from the final bound, ultimately yields

(dwdy + dmaxdy)mhL?RE RS, R4(VT log(1/9)
aK'/? '

ControlRegy (alg; II,) < log(1+ 1)

Finally, using duax = max{d,,, d,+d,}, we have (d,dy+dmaxdy) < do(dy+dy)+dy(dy+dy) =
(dw + dy)(dy + dy), concluding the bound.

O

E.5.1 Proof of Proposition E.5

Recall that f;, F, losses from Definition 3.3b. In a fixed a comparator matrix M € M, where we
recall M = Mg,.(m, Raq), where Ryq > 2Ry and m > 2m, — 1 4+ h. M will be chosen towards
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the proof in a careful way, and is not necessarily the best-in-hindsight parameter on the M sequence.
Our regret decomposition is as follows:

T
lg __al .
ControlReg(alg; I1 Zét (yi8,ui®) — ﬂlené* ;ft(}’f,ug)
N+m+2h T
< D> e+ > Gy i) - F(Myn | 15
t=1 t=N+m+2h+1
(%) (ii.a)
T T
+ Y B(Mgealefh - > (M@
t=N+m+2h+1 t=N+m+2h+1
(i)
T T
Y RGeS RO e
t=N+m+2h+1 t=N+m+2h+1

(iv)
T

T
+ max \th (M | wif') — by, ulh)| + Mie%*;&(yy,uy)—Wienr{*;ft(y?u?) :

(i3.b) (v)

Again, let us work term-by-term, starting with the terms which are most similar to the terms that
arise in the known system. Together with Ry > R,, the last two terms can be bounded via Eq. (E.5)
and Eq. (E.7)

(ii.b) + (v) < LTR%,R%, R2,, (w*](;*m N 2¢m}gh+1)>.

Moreover, similar arguments can be used to bound (ii.a) < RHS of Eq. (E.5) (speciﬁcally, one
replaces the appearance of w}®* in the proof Simchowitz et al. | [28, Lemma 5.3] with &,*®*, and uses
the bound [|@,***|| < 2Ryt by Simchowitz et al. [28, Lemma 6.1] ). Thus, we have so far

<w*]<£@*) . 2%}_({/: 1)) |

(ii.a) + (ii.b) + (v) S LTR3(R2, Rouy
Next, analogously to Eq. (E.6), we recognize that
(791) = Me@RegT(z*), for z, := e(M).

Furthermore, from Simchowitz et al. [28, Lemma 6.3] and the definition of the term R, in Sim-
chowitz et al. [28, Lemma 6.1b], and with N > m—+2h, we have (i) < LNR?TO (Ruest+ R Ruat )%
Thus, collecting what we have thus far, we obtain

ControlRegy(alg; I1,)
< MemRegT(z*) + (iv)

(T ro(h+1
+ Ocnst(l) : LRErO ! <N(RU,CSt +RMRnat) +TRMRnat <w (m ) + 1/1 0( ks )>> ;

R, R

where Ocngt(l) supresses a universal constant. It remains to account for the term ( ) In particular,
for ¥z, (h + 1) < cRyr,/T and 9, (m,) < cR, /T, the above simplies to

ControlReg(alg; I1,) < Mem/OERegT(z*) + (iv)
+ OCHSt(L)RfrO : ((N =+ C) (R2 ,est + RMant)) (E9)

Lemma E.10 (Slight Modification of Equation E.6 in Simchowitz et al. [28], altering numerical
constants and allowing ¢ dependence). Suppose that £ holds, and that 1, (h + 1) < cR,/T.
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Futher, assume Ryq > 2R, and m > 2m, + h. Then, there exists an M € M such that, for all
v > 0, we have

. 3 p2 p2 2 LmR}
Term (ZU) < Ocnst(l) . LRMRﬂanatTEG 1+ fa (E.10)
+ Ocnst(c)LRf\/tRio Rnat((Ru,cst + RMRnat)Rrro + m)
T
ex ~ na ex( g | na 2
+vo > [[us* (M | @3%) — u$* (M | @13Y)]]- (E.11)

t=N+m+2h+1

Absorbing the first & terms in the sum into the term on the first line (using arguments as in
Lemma E.6, this contributes O, ( R%,R2,,h) < Ocnst( R3, R2,,m) ), and translating back to our

nat -

Y, z-notation, we have that there exists a z, € M, such that
: 3 p2 p2 2 LmR%,
Term (iv) < Ocngt(1) - LRy Ry Ryt Teg [ 1+ —
+ Ocnst(c) R?\/{ R72ro Rnat((Ru,est + RMRnat)R‘n'o + m)
T
LD DR AW
t=N-+m-+h+1
Putting things together with Eq. (E.9), we have the bound that for ¢, (h + 1) < R,,/T and
Y. < R, /T, we find
ControlRegy (alg; I1,.)
T
< MemoryReg(z,) + v Z Y4 (z — z*)Hg
t=N+m+2h+1
LmR?
+ Ocnst(l) : LR?\/[R?TORiatTG% (1 + 7"0)
v
+ Ocnst(L)R?ro ) ((N + C)(R?l,est + R.2/\/1R1?1at) + CR?\/anat((Ru,est + Ry Buat) Rry + m))
Finally, since N > m, we bound
LR?ro : <N<R2 ¢ CR?\/IRiat) + R?\/anat((Ru,est + R Ruat) Ry + m))

< Ocnst(p) B2y (N + em)(RY o + R R2.0) + MRy est Ra Ruat)
< Ocnst(L)Rfro (N + cm)(Ri,est + CRZ}\ARIQlat)a
where the last step is by AM-GM. Thus,
ControlReg - (alg; I1,)

T
< MemoryRegp(24) + v Z Y (2 — z*)||§
t=N-+m-+2h+1
LmR?
+ Ocnst(LR, (N+0) (Riest + B Raa) + Ocnst(LRj’\ARfrURgatTeg;) <1 T WO) 7

which after substituing in B2 ., < d,, + log(1/§) (Lemma E.7), concludes the bound.

u,est ~v

Part 11
Appendices for OCOM

F Proof of Logarithmic Memory Regret (Theorem 2.1)
This section proves Theorem 2.1. We begin by bounding the standard (no-memory) regret in Ap-

pendix F.1, and then turn to agressing the contribution of memory in Appendix F.2. All ommitted
proofs, as well as the proof of Proposition E.8, are given in Appendix I in numerical order.
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F.1 Bounding the (unary) OcoO Regret

As a warmup, we establish a bound on the no-memory regret for Semi-ONS. Throughout, recall the
parameters from Definition 2.1, which we assume to be finite.

Proposition F.1. Suppose the the losses satisfy Assumption 1, and ky, = k(G) > 0. Then, for
n> i, Semi-ONS(\, 7, C) fed pairs (f, H,) satisfies the following:

T T
o . ndLZ: TR% A\D?
OCORegy := ;:1 fi(ze) — I;ﬂel(r:l tEZI fi(z) < DR log [ 1+ h + o

This section proves the above proposition, and all ommited proofs in the proofs in this section are
deferred to Appendix H.2. First, let us establish two simple structural properties of f;:

Lemma F.2. Forall z € C
1. V2ft(z) t aH:Ht

2. There exists a function g;(z) € RO such that Vf,(z) = H] g;(2), and ||g:(2)|| < Leg. In
particular, Vf,(2)Vfi(2)T < L2sH/ H;.

Proof. Point (1): By the chain rule and the fact that V2(z +— v; + Hz) = 0, we have V2f(z2) =
H/ V2{(v;+H;z)H;. Since /; is strongly convex, V2/(v;+H;z) = al. Point (2): Again invoking
the chain rule, Vf,(z) = H/ g:(2), where g;(2) = V¥ (v, + H;z). Since ¢; is L-subquadratic,
lge(2)|| < Lmax{l,|v: + Hz|]2} < Lmax{l, R, + Rg max; cc || Yiz|l2} = Lmax{1l, R, +
RGRyc} = Leg. O

Next, we establish a simple quadratic lower bound, which mirrors the basic inequality in analysis of
standard ONS:

Lemma F.3 (Quadratic Lower Bound). For all z1, z5 € C, we have

Ji(z1) 2 fulea) + Vfilz2) + 5 [ Hi(z - 22)]3.

Proof of Lemma F.3. By Taylor’s theorem, there exists a z3 on the segment joining z; and z5 for
which f;(z1) > ft(ZQ)"’Vft(ZQ)"’%||(21_Z2)H2v2ft(z3). By LemmaF.2, V2f;(z3) = cH/H. O

Remark F.1. Observe that Lemma F.3 uses the fact that V2 f,(2) = «H,H, globally. Lemma F.3
may be false if instead one replaces H, H; in the definition with V2 f(z;), because the latter may
be very large at a given point. This is why we use H" H, in the definition of A,, as opposed to the
full-Hessian. This is no longer an issue if one assume that V2 f;(z) < 31 globally, in which case
one pays for the conditioning 3/c.

Remark F.2 (Comparision to Cannonical Online Newton). Let us compare the above to the cannon-
ical Online Newton Step algorithm [19]. This algorithm applies to exp-concave functions, which
satisfy the bound V2f = aVf(Vf)" globally. For these functions, the analogue of Lemma F.3,
with fi(21) > fi(22) + Vfi(22) + $[Vfi(22)(z1 — 22)|13 does in fact hold, abeit due to a some-
what trickier argument [18, Lemma 4.3]. This enables the algorithm to use the preconditioner
Ay =M+ 22:1 V£(Vf)T. Note however that this yields a smaller pre-conditioner Ay, for which
Proposition F.8 may fail.

As a consequence, we obtain intermediate regret bound for Semi-ONS, which mirrors the standard
analysis of online Newton step (e.g. Hazan [18, Chapter 4]).

Lemma F.4 (Online Semi-Newton Step Regret). Suppose that nn > é Then,

d T )\D2 n T
2 Jile) b ) Sie) S 45 ) VATV
=1 t=1 t=1

Lastly, we recall a standard log-det potential lemma. To facillitate reuse, the lemma is stated for a
slightly more general sequence of matrices Ay:
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Lemma F.5 (Log-det potential). Suppose that A = thT:1 H/ H; + \o. Then,

T

~ T R2
> tr(HATH]) < glog (1 Ay )
=1 C )\0

Proof. Define A; = Zthl H/ H, + 2. Then, 23:1 tr(H,A; 'H) < %Zf:l tr(H A, TH]).
The result now follows from the standard log-det potential lemma (see e.g. Hazan [18, Proof of
Theorem 4.4]). O]

Proof of Proposition F.1. Begin with the unary bound:

T )\DQ n T
OCOReg := th(zt 1nf th )< ——+ 5 ;V:At_lvt-

t=1

From Lemma F.2, we have VtVT = LgﬁHtT H;. Since A; = 0, this implies that V| A, Iy, =
(ViVi, A1) < L2 (H] H;, Ay Y = L2;tr(H A, "H] ). Thus, by Lemma E.5,

T T
L2 dnL? R2
ngjA;lvt < ”Tff Y te(HAH]) < %bg (1 = ) . (E1)
t=1 t=1
O

F.2 Memory Regret for Known System

In this section, we adress movement costs, thereby proving Theorem 2.1. In what follows, we make
the simplifying assumption that z;, = z; for s < 1. We will remove this assumption at the end of
the proof. Our goal is to bound:

T
MemoryReg = Z F(zey...,20-p) — Iznelél fi(2)
t=1
T T T
=Y Ful#e, o yzen) = flm) + Y fulw) - mingt(Z)
t=1 t=1 =
(MoveDiff 1) (OcoReg )

The second term is bounded by direct application of Proposition F.1. For the first term, we begin
with the following lemma, which shows that the relevant movement cost is only along the Y;_;
directions:

Lemma F.6 (Movement Cost). Forallt > 1, we have

h
|Fy(Zt, - Ze—n) — fi(2¢)| < Let Re Z 1Ye—i(ze — 2ze—i) |2

i=1

Therefore, by the triangle inequality, rearranging summations, and the assumption zs = 1z for
s <1,

T h-1
MoveDiff7 < hLegRe Z Z 1Y s(Zstit1 — Zsi)|l2 - Ti<si<e—1-
s=1—h i=1

Next, let us develop a bound on || Y s(z¢41 — Z¢)]|2:

Lemma E.7. Adopt the convention Ay = Ay for s < 0. Further, consider s < t, witht > 1 and s
Y. (zi01—20)|l2 < nLegtr(Y AD YY) 2tr(H] A7 HY)) /2. Therefore,

T
MoveDiffr < nh’LegRa - | > tr(YiA; 1Y) - Ztr VIAT'Y) .
t=1—h
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Now, we already bounded the sum of the terms tr(V,} A; *V;) in Eq. (F.1):

—1 2 R2
Ztr ViA;7 1V, < dL%g log(1 +

A, (F2)

The main technical challenge is to reason about the sum tr(Y;A; 'Y;). We bound this quantity
using the following proposition:

Proposition F8. Suppose that k(G) > 0, and define cy,y = 1V %. Then, for any

Yi_ 1, Yo p,..., Y, the matrices H, Z GUY ,_; satisfy
ZHST : ( > Y§Y8> — 5hRY eyl
s=1

s=1—h
The above proposition is proved in Appendix H.1. Under the assumption of the theorem, we have
cpt < 1,50 BhRY ¢y < 5hRH Thus, for A = 6hR%, wehave A, > 2T + w3, , Y]Y,.
Note that this holds even for ¢ < 0, with the above convention A; = A1 for negative ¢. Thus,
Lemma F.5 and the s1mphﬁcat10ns Ry < Ry, k <1 gives

T
2d 6xT R2 2d 3R?
tr(Y A7VY,) < =1 1 Y1 < Zlog |1 g F.3
3 v v < s (14 258 ) < B (10 258). ey

We can now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Combining Lemma F.7, Eqs. (F.2) and (F.3), and finally the unary regret
bound from Proposition F.1

MoveDiffr + OCORegr

T
< OCORegy + nh?L%; R - Z tr(Y, A 1Y) - Ztr (H] A;THY).
t=1—h t=1

3TR%,
N
)

+ T'). Thus, combining with the unary regret

2
< OCORegr + \[dnhQLEHRG log(1 +
K

Finally, since A = 6hRZ%, log(1 + 3TRH) < log(1 +
bound from Proposition F.1,

/\D2
MoveDiffr + OCcoReg, < ” L2gd ( + h*Rg \/>> log(1+1T),

2 p2
To conclude, we use p = I, so that with A = 6hR%,, yields % = 3aR% D?. Moreover, noting
thG\/g > 17, we arrive at

2dh*L%; Re

1/2
Recall that the above bound follows under the assumption that z, = 21 for s < 1. Let us remove this
assumption presently. Observe that the iterates z, for s < 1 do not alter the trajector of future iterates
z, for t > 1; they only appear in the memory regret bound via the with memory loss F}(zs.;—p).
Thus, introducing z; := I(¢t > 1)z; + I(¢ < 1)z;, imposing the above assumption (z; = z; for
s < 1) comes at the expense of regret at most

MemoryReg, = MoveDiff + OcoReg, < 3aD?R%, + log(14+T). (F4)

T
Z |Fe(Ze:0—n) — F(2Z4:0—n) Z |Fe(Ze:0—n) — F(2Ze:e—n)|-
=1

With routine computations and the assumption that L > 1, each term in the above can be bounded
by Leg Z?:o GU||Y, iz, — 2/)||2 < Leg RgRy,c < L%. This contributes a total addition cost of
thﬂ, we which can be absored into the right-most term on Eq. (F.4) at the expense of replacing the
constant 2 with a factor of 3.

"Rg > 1 by Definition 2.1, and < 1 by Definition 2.2
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G Regret with Quadratic Error Sensitivity (Theorem 2.2)

This section proves Theorem 2.2 and its generalizations. It is organized as follows:

e In Appendix G.1, we two bounds which make explicit a certain negative regret term. The-
orem 2.2a gives the generaliztion of Theorem 2.2 in the €% > VT regime (and allows
for slight mis-specification of \), and Theorem G.1 proves a guarantee that degrades as
(Teg)?/? for small €. We prove Theorem 2.2a from Theorem G.1 in Appendix G.1.1.

e The remainder of the section is dedicated to the proof of Theorem G.1. This begins with
Appendix G.2, which introduces relevant preliminaries.

e Appendix G.3 provides a careful analysis of initial regret terms, and controlling the contri-
bution of errors introduced by using the f; sequence rather than f;.

e Appendix G.4 details our careful “blocking argument”, which we use to offset the errors

the terms Y, || Y+(z+ — 2,)|| from the gradients by a negative terms Y, || X¢(z: — 2.)||3
that arise in the regret analysis.

e Appendix G.5 concludes the proof of Theorem G.1, bounding first the movement cost and
then tuning relevant parameters in the analysis.

All ommitted proofs are provided in Appendix I, organized into subsections and presented in nu-
merical order.

G.1 Bounds for Unknown Systems with Negative Regret

Here, we provide bounds which explicitly account for an appropriate negative regret term, scaling
with Zthl Y +(z: — 2.)||?. Specifically, for any fixed comparator z, € C, our goal is to bound

T T
MemoryReg(v; 2,) 1= ZFt(zm,h) — fi(ze) + I/Z 1Y (2 — 2|7, (G.1)
t=1

t=1

which gives a negative regret term by re-arranging v Zthl Y4 (2 — 2,)||? to the right-hand side of
the above display. Note that we prove this bound for any fixed comparator z,, not just the “best-in-
hindsight” comparator. Moreover, proving this bound for the best-in-hinsight comparator does not
imply the bound for all z, € C, because the terms 6§, in the negative-regret term differ as a function
of z,.

To state our bound on MemoryReg, we recall the relevant parameter bounds:

Definition 2.1 (Bounds on Relevant Parameters). We assume C contains the origin. Further, we

define the diameter D := max{||z — 2/| : 2,2/ € C}, Y-radius Ry := max; ||Y|op, and
Ry ¢ := max; max,ec || Y¢2||; In the exact setting, we define the radii R, := max; max{||v¢||2}
and Rg := max{L,||G|l¢, 0p}. In the approximate setting, R, := max, max{||v|2, [|[V¢||2}

Re = max{1,||G|¢, op: ||(/§||41_,0p}; For settings, we define the H-radius Ry = RgRy, and
define the effective Lipschitz constant Leg := L max{1, R, + RgRyc}.

Our main result in this section is as follows. We also allow A to be slightly under-specified. This
show’s relative insensitivity to the selection of A, and is also useful when porting the bound over to
the control setting:

Theorem 2.2a. Consider the setting of Theorem 2.2, but where instead \ € (cy,1] - (T'e% + hRZ)
for cx € (0,1]. Equivalently, consider the setting of Theorem G.1 below, but with the additional

conditions eg > \/Tandﬂ = L. Then for any z, € C,
_ T C
exMemoryRegr (v 24) S log(l+ —) (1 + C’g) (Teg + hW*(RE + Ry)),

ey’ \ak'/?

where C1 := (1 + Ry)Rg(h+ d)L%;, Co := (L*¢2/a+ aD?), and v, = 48(%%.

Theorem 2.2 is an immediate conseugqnece of Theorem 2.2a. We prove the above guarantee from a
more statement, which allows for €2G < /T as well.
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Granular Guarantee for Semi-ONS with errors To state our generic guarantee, we specify the
following constants:

Definition G.1 (Constants for Unknown G Regret Analysis). We define the constants We begin by
establishing a slight generalization of Theorem 2.2a, accomodating arbitrarily small. To start, define
the constants

Comia = (14 £3)(1 + Ry)hL% + B*\/kc2 + a*\/kD? (G2)
Chi := (1 + Ry)Leg R% Ry c(h + d) + aD? (G.3)
Clow := (1 + Ry)*Rgh® - dLZ;. (G.4)
v, = 48(?4—\/ERY) min {4(1 + Ry )(Tek)\/3, 1} (G.5)
Finally, we define a logarithmic factor
£:=log(1+ R%4T/N\), with € <log(1+T)for A\ > R%. (G.6)

Our more granular result is the following:

Theorem G.1 (Granular Regret Guarantee for Semi-ONS on an unknown system). Consider run-
ning Semi-ONS on the empirical loss sequence ( fy, H;). Suppose that

o The losses {; are L-subquadratic and a-strongly convex for L > 1V a (Assumption 1), and
are 3 smooth (V20; = SI)

e Suppose that |G — Glley,op < € Gl = 0 fori > h, and max;>1 [|[ve — Viell2 < cpeq
for some constant c,, > 0.

e The step size is 1) = 3/, and X lies in X € [cx, 1] (TeZ + (Tec)”® + hRZ,) for some
cx € (0, 1].

e All relevant quantities are bounded as in Definition 2.1
Then, the memory regret on the true loss sequence ( f;, Hy) is bounded by

C'midT’62G C110w£
av/k av/k

Observe that, when 626 > /T, the dominating term is TezG. However, for ¢ < /T, the term
(Teq)?/? dominates.

exMemoryRegy (vy; 22) < Chi(Teq)?2L + + ahR%D?.

G.1.1 Proof of Theorem 2.2a from from Theorem G.1

Theorem 2.2a follows from the granular Theorem G.1 as a consequence of the following tedious
simplifications. Recall that Theorem 2.2 adds the assumptions that €%, > VT, and 8 = L. This

enables the following simplifications. First, since (T'e,)!/? > 1we can take v, = 48(%\/1%%)’ which

is precisely the value of  used in the theorem. Second, we have (T'ec)?/3 /Te2, = 1/(Tet)'/3 < 1.
This means that the choice of A = ¢y (T'€% + hR%) is valid for Theorem G.1, up to rescaling c) by
a factor of 2. Thus, we have

Cmid (TEQG) CVlowﬂf

hR%D?
av/k + av/k oG

((Te2)(Criav/k + Cmia) + Clow + a°/KhRED?) .

cxMemoryRegp (48(%\/;‘/); 2) < Cui(Teq)?38 +

< £
~ avk
First, let us simplify Chiay/k+ Cnia. Using the simplifying condition 5 = L, and using Rg Ry ¢ <
Leg (again, L > 1), we have
Chiav/k + Cmia S (1 + Ry )(hLZg + Lea RE Ry (h + d)) + L*V/kcj + o /kD?
< (14 Ry)Rg(h+d) L2 + L*Vkc? + o*/rD?.
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Hence,
(Criav/k + Cmia)Tez + Clow + a?*/KhRED?
S (14 Ry)Rg(h+d)L2;(Teg + (1 + Ry)h?) + (L*Vrc2 + o*/uD?)(TeZ + hRE)
S OU(Tés + (1 + Ry)h?) 4+ a/kCo(Te + hRE)
< (C1av/ECy)(Tet, + (1 + Ry )h? + hRZ,)
< (Crav/kCy)(Te2 4+ h* Ry h? + RZ)
)

for C; := (1 + Ry )Rg(h + d)L2; and Cy := (L?*a~ ¢ + aD?). Thus we conclude that

«@ K — C
MemoryReg (W‘/};y); z) Seytlog(1+1) <0m11/2 + Cz) (Teg, + B*(RE + Ry)) ,
as needed.

G.2 Preliminaries for Proof of Theorem G.1

Notation:  Let us begin by introducing relevant notation. Set V; = V ft(zt) to denote the gradi-

ents of the true counterfactual stationary counterfactual costs f;, and let Vt = Vft(zt) denote the
gradient of their approximations. Analogously, define the matrices

T T
Ay=M+Y H/H, A=X+)> HH,
t=1 t=1
For t < 1, we will use the conventions A; = A; and Kt = /Ah. Throughout, we fix an arbitrary
comparator z, € C, and further introduce the notation
0 =2, — z,, err;—= @t -V
to denote the difference of z; from the comparator, and difference between gradients, respectively.

We recall that A, n are the algorithm parameters dictating the magnitude of the regularizer in A,
and step size, respectively. We will also introduce a “blocking parameter” 7, whose purposes is
described at length in Appendix G.4. For simplicity, most of the proof will focuses on the unary
regret analogue of MemoryReg -, defined as follows:

T
OCOReg(v; 24) : th z) — fi(ze) + VZ ||Yt5t||2, O = 2y — 2y, (G.7)
t=1

We extend to memory regret in Appendix G.5. denote a logarithmic factor that will appear through-
out.

Reduction z; = z; for s < 1: As in the proof of Theorem 2.1 in Appendix F.2, we can assume
that zs = z1, at the expense of an additional factor of h L% in the regret. This term is dominated by
the factor of Clow £ in Theorem G.1, and can thus be disregarded in the following argument.

G.3 Bounding Regret in Terms of Error

We begin with the following basic regret bound, controls the excess regret of using inexact gradients
compared to standard bounds from online Newton.

Lemma G.1. Let A\ > 1. Then regret on measured on the f} red sequence is bounded by

T

T T
1 ~ —
tZ:;ft(Zt) — fiz) < err/ 8, + m > (IH8: |1 — nal|[He8:[?) + Regy,

t=1 t=1

5 dL2 £ 2. . ..
where Regr = "TF“ + % arises from the regret bound in Proposition F.1, and we recall

£ :=log(e + TR%).
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Next, let us turn to bounding the mismatch arising from the terms ZtT 1(||IA{t6t 12 — nal|Hd: ||?):
Lemma G.2. Forn > 2, we have |[H 8|2 — no||Hydy |2 < —||H.8|2 + S8R5 c€g. Hence, we
have the regret bound:

T

T T
th(zt — fi(ze) < Z rrtTét Z |82 + TR2 ceG + RegT
=1 =

G.3.1 Controlling the error contributions

Next, we turn to bounding the contribution of the error in estimating the gradient:
9 < Legr and ||ga,t|| < Bec(cy + 2Ry ) such

that
err; = (H, — Ht)Tgl,t + H;r g2,t-

By leveraring the specific structure of err;, we obtain:
Lemma G.4. Forn > % the following regret bound holds for all z, € C and all v > 0:

T h
1 v _—
fo 20) = fulz) £ 33 <h+ S - |Ht6t2> +Te - ERR(v) + Regy.,
t=1 1=0

(G.9)
where ERR (1) := (7“’“) ot +nB2(cy + 2Ryc)? + 413;/’0).
As a consequence, we have
B v 1 L v h
: SN2 2 2 =
GcoRegy (477, ) < <u||Yt6t i Y | ) T Te ERR(v) + Regy,
(G.9)

G.4 The ‘blocking argument’

A this stage of the proof, the main challenge is to show that for some small constant v, the terms
['Y:—:6:]|2 in Eq. (G.9) are offset by ||H,&,||> on aggregate. We do this by dividing times into
“blocks” of size T = @(\/T ), centering at the terms &, at times ¢ = k; + 1, for indices k; defined
below. We define juax := |T/7] as the number of blocks. We then argue that, within any block

h
1 ~
oo IEEFZY S D SlYid] +O() (G.10)

t in block j 4=0 t in block j

for appropriate v and block size 7. The reason we should expect an inequality of the above form to
holds is that, from adapting Proposition F.§, we have the inequality that

> HH'Z ) Y)Y/ -00)-I, (G.11)
t in block j t in block j

However, Eq. (G.11) does not directly imply a bound of the form Eq. (G.10), beacuse the vectors d;
differ for each ¢. Instead, we ‘re-center’ the d; terms in the sum §; = Jy; 41, and at argue

h
1
Z [H O, 11 [|* =~ Z Z ;HYt—ilsijHQ -0(). (G.12)

t in block j =0 ¢ in block j

The above bound can be established from an estimate of the form Eq. (G.11). Summing this up
across all jiax blocks, we see that the negative regret from the terms ||H; 0y, 1 ||? cancels the regret

from the terms ||Y;—;8x, 11 |>. Accounting for all jyax = ©(T'/7) blocksgives

Jmax Jmax h

Y Y sl Y Ve deal’ 0T G13)

j=1 t in block j j=1 i=0 t in block j
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incurring an additive factor of T'/7, favoring larger block sizes 7.

But, we must also argue that not too much is lost by approximating the statement Eq. (G.10) with
the centered analogue Eq. (G.13). The cost of recentering will ultimatels as O(7), so trading off 7

with the bound of yields /7 regret in the final bound.
Interestingly, the cost of recentering is intimately tied to bounding the movement of the iterates
z;. Thus, we find that the same properties that allow Semi-ONS to attain logarithmic regret for

the known system case are also indispensible in achieving low sensitivity to error in the unknown
system case.

G.4.1 Formalizing the blocking argument

Formally, the cost of the above re-centering argument is captured by the following lemma:

Lemma G.5 (Blocking Argument). Given parameter 7 € N, and introduce the kj = 7(j — 1), and
Jmax := |T/7]. Then, with the understanding that zs; = 0 for s < 1, the following holds for all
i€ [hl],

]max T T 7—1
Z ||Yt zatHQ < 47'RYC + Z Z ||Yk 45— zék +1||2 +4RYCZZ ||Yt i Zt s T Lt—s— 1)”2
= j=1 s=1 t=1 s=0
Jmax T T 7—1
Z ||Hi—h5t||§ 2 Z Z ||ij+55kj+1||§ —4RycRg Z Z |He(ze—s — Zt—s-1) |2
t=1 j=1 s=1 t=1 s=0

Notice that, while the left-hand side depends on §;, the right hand side is ‘centered’ at 6kj+1 for
J € [jmax], at the expense of movement penalties on z;_ s — z;—s—1. Let us re-write the above bound
to give a useful regret decomposition. We introduce bounding terms Regy ;;,ove ; and Reg g 1,ove fOr
the movement costs above associated with the centering argument, and Reg,,, .. associated with
the offsetting argument described above. Formally,

T 7—1

Rng,move,i = Z Z ||Yt*i(zt*5 - Zt*8*1>||2'
t=1 s=0
T 71

RegH,move = Z Z ||:[_]:15(foS - Zt*Sfl)HQ

t=1 s=0

Jmax T
1
Regcancel - Z Z (Z ( ( +Hz 0> ||ij+s—i6kj+1||§> - |ij+86kj+1||g> .
=0

j=1 s=1

Then, from Lemma G.5, the upper bound on OCOReg in Eq. (G.9) can be expressed as
. 1 _
OcoReg (Z, z*> < ZRegbIOCk + TeZ ERR(v) + Regy, (G.14)
Ui Ui

where we define and bound

T
Regyiocr = Z <V||Yt5t|

t=1

h
14
T S Y eid® - ||Ht5t||2>
=0

< 8- VRY,C + 8VRY,C (max Rng move 2) + 4RY,CRG : RegH,move + Regcancel’
(G.15)

Thus, we shall conclude our argument by developing bounds on Regy ;ove.is Re8p move and
1:{egcancel'

Movement Costs Via Eq. (G.15) and the definitions of Regy ,,ove,; and Regy 1ove, the cost of
the re-centering argument is given by a movement costs, which we bound presently. Since the

43



movement of the algorithm are small in the norms induced by the preconditioning matrices A, our
main argument invokes steps of the form

~ _ 2
”H;rAtflsletH?)p + ||(Zt_s Zt_s_l)”//it_s—i
2 2 ’

much like the regret analysis in the known system case. Moreover, the contribuitons of the
(zi—s — zt,s,1)||% can be bounded via an application of the log-det potential argument,
t—s—1

IHi(zi—s — Ze—s—1)|]2 <

as in Proposition F.1.
However, we observe that the conditioning of the relevant movement costs is in terms of the A
matrix. To bound terms ||[H[ A; !, 1Ht (|2, we will need to relate the matrices A;__1, constructed

based on the estimated sequence (H,), and with delays up to (s 4+ 1) = 7, to the matrixes A,, based
on (H;) and current time ¢. This is accomplished by the following lemma:

Lemma G.6. Forcy € (0,1], set cp(7) := 2(1+ Ry) + 20;\%Ry\/ %. Then, for A > c\TeZ,
we have that for all t € [T,

At S CA( )QA;la
where we adopt the convention KS = JA\l and Ay = Aq for s < 1.

For our scalings of 7 and A, cy will be roughly constant in magnitude. With the above lemma in
hand, we show that the movement terms from the blocking argument scale proportionally to 7.

Lemma G.7. Recall the logarithmic factor £ := log(e + TR%). If X is chosen such that X >
=3 TeG + cAhRG, then the movement terms admit the following bounds forie{0,...,h}:

T 7—1
2(1+ 10R3
Rng,move,i = Z ||Yt 4 Zt s T Lt—s— 1)”2 < TCAC/\ dLeff %’S
t=1 s=0

._.

T—

T
1
Regy move = Z \Ht(zt,s —2Z—s—1)||2 < Teac,? - dLeg L

Cancellation within blocks Next, let us argue that the term Reg,, . 1s small, which leverages
cancellation within blocks. As per the proof sketch at the beginning of the section, we show that the
terms || Y, +5—i0k, 413 offset the terms |[Hy, 158, +1]|3 up to a O(1) factor for each j, incuring
an error scaling as jmax =~ T/7 (thereby inducing a trade-off on the parameter 7):

Lemma G.8. Forv < %, we have
20T
Regcancol < T : VhRéRg’,C + 5T6%¥ : KR%/,C
G.4.2 Summarizing the blocking argument

Grouping all the terms that have emerged thus far, we summarize the current state of our argument
in the following lemma:

Lemma G.9. Assuming Log > 1, v <
all z, € C,

W‘/ERy), and \ > cA(%TezG + hR2G + 7), we have that for

2
Teg,

thff 2 —
o + B%(c2 +Ryc+Ryc) + Regy.

¢cAOCORegy <4V77;Z*> <
T
+ = (ahRERY ) + 7+ (a(l+ By)RycRY - L)

Let us take stock of what we have so far. The bound OCOReg(v/4n; z,) has four components:

e Reg,, which accounts for the regret on the f; sequence.
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e A term scaling with 7'eZ,, which accounts for the sensitivity to error. This term also involves
the offset v.

e Aterm scaling as Z%, yielding a penalty for the number of blocks in the blocking argument.
e A term scaling as llnearly in 7, arising from the movement costs from the recentering
argument.

The final regret bound will follow from carefully trading off the parameters v and 7 in the analysis,
and from setting A appropriately. Before continuing, we first adress with “with-memory” portion of
the bound, passing from unary regret to memory regret.

G.5 Concluding the Bound

Before concluding the bound, we need to bound the movment cost that appears:

Lemma G.10 (Movement Cost: Unknown System). Under the conditions of Lemma G.9,

T
MoveDiffr := > Fy(zu—n) — fi(z:) < 92 (1 + Ry )*Rgh? - dL%; £

t=1
We are now ready to prove our main theorem:

Proof of Theorem G.1. Let us begin by unpacking
dL? &  A\D?
nNaleg~ + 22

Regy + MoveDiffy < 99k 2 (1 + Ry )2Rgh? - dL%: £ + ; 7

1
< a\ru + Ry)?Rgh? - AL £ + a\D?,

where we use 1) = % Thus, from Lemma G.9, the term MemoryReg defined in Eq. (G.1) satisfies
the following for any z, € C, provided that the conditions of Lemma G.9 hold:

caxMemoryRegr <4U77 > < ¢ OCcOoRegr (:77 *> + MoveDiff

Te2, ([ hL>
566’-( EH+62(C +Ryc+Ryc))+

(0%

1
——(1+ Ry)?Rgh® - dL2; £ + aAD?
a\/ﬁ( + Ry)”Rg al+a

Tv
+—- (ahRERS ) + 7+ (a(1 4 Ry )Ry, cRE - dLeg L)
where above we use ¢y < 1. Let us now specialize parameters. As per our theorem, we take

A =cy (Teé + c(Teq)?® + hRQG) . 7= (Teq)??, ¢y e(0,1)

which we verify satisfies the condition on A placed by Lemma G.9. For this choice of parameters,
we have

MemoryRegp <£7, z*) < (1+ Ry)?Rgh? - dL?3£ + ahR%4D

1
av/k
Te%v

Q

+ - (B*(c2 4+ Ry, + Ry¢) + o°D?)

+ a(Teq)?? - (D* + (1 + Ry)Ry,cR% - dLes L)
N Te}, hL% TV
« 1% T

- (ahRERY ) -

Next, let’s tune v. Define vy := AL(T‘/ER‘/) to denote the upper bound on v imposed by Lemma G.9.
Moreover, let 17 denote the value of v that minimizes the upper bound above, namely

T 2 1/2 T 71/2
v = ( ;G .hL§ﬁ> : (T -ahRéR;C) .
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We set 7 = min{vy, 1 }. For this value, we have that

Teé thH Ty 9 19 Teév hL? Te2, hL? Ty,
= el - . hRR < . eff G. eff it hR2R2
« v + T (a G Y’C) T« 1) + o 121 + (a ¢ Y’C)
T€2 hL2 T262 h2L2 R2 R2
< G . eff +9 G eff "G VY,.C .
e 12 T
Te2, hL?
<—¢. 4 2(Teq)*VhLer R Ry.c
< Teg, 2 2/3
S . (1 + RY)hLCH + (TEG) hL.gRgRyc.

av/K
Combining with the above,
T62G

N 7
MemoryRegT(B;z*) S o

(14 Ry)hLZ; + B*VE(c2 + Ryc + Ry ¢) + o*VkD?) .
=Clia

+ (Teg)*3€ - (hLeg RaRy,c + aD? + a(l + Ry)Ry,cR% - dLeg)

—C
'_Chi

£
= _ (14 Ry)?Rgh®-dL? AD?
+oz\/E( + Ry)“R¢ g ta

where we use C};, C1 ., as intermediate constants that we simplify as follows. Recalling the
tia = (1+ Ry)hL2; + B°Vi(ck + Ryc + Ry ) + o V/kD?
< (14 £)(1 4 Ry )hL% + B2Vi + o> /iD? := Cha
Chi = hLegRgRy,c + aD? + a1l + Ry)Ry,cRZ, - dLegs
< (14 Ry)LegRERyc(h+ d) + aD? := Cy;

Note that the constant Cl;, Clow, Cinia coincided with those in Definition G.1. Thus, writing our
regret bound compactly, we have

1) Cmi T 2 Cow»g
MemoryRegT(ﬁ;z*) < Cni(Teq)?38 + ;\(/;G) + al\/ﬁ + aAD?.

Finally, let us expose . Recall we set 7 = min{vp, 1 }, with vy =

:=Clow

W\/éy), and

T2 1/2 T —1/2
(;G : thﬂ) : (T : ahRéR?c) .

_ Leegy/T _ Lea(Teg)'/?

OZRGRY,C OéRgRY,c

V1

finally yielding

vV = min

{Leff(T€4G)1/3 VE }
CkRgRY,c ’ 4(1 + Ry) ’

To conclude, we paramaterize 0’ = %. Since n = 3

7= ok min 4(1+ Ry)Len(Teg)'V? 1
48(1+ Ry) avERcRy ¢
4\1/3
> av/k in 41+ Ry )Le(Tes,) 1
48(1+ Ry) ReRyc
S VR
~ 48(1+ Ry)

where in the last line we use L > 1 to bound Leg > Rg Ry c. Thus, taking v, to be the above lower
bound on 7’ concludes. O

we take

min {4(1 + Ry )(Tet)3, 1} =,
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H Ommited Proofs from Appendix F

H.1 Proof of Proposition F.8

Proof of Proposition E8. Let v € R, with ||v|| = 1, and let us = Yv fors € {1 — h,2 —
h,...,t}, and set us = 0 for s < t — h and s > t. From Fact .2, which shows that ||v + w||2 >
2||v||2 |wl|?, we have

t 2

TZHT sV —ZHHSUHQ—Z
s=1

t

-2

h
> 6.
=0

2

A 2
Z Glily,_;

2

t+h 2
>y ZGMuS il —2hRELR%.
s=1—h 2
t+h || oo 2 t+h || co 2
(FachI.Z) % ZGmUsfi Z Z G[i]u57i _ ZhR%;R%
s=1—h ||i=0 2 s=1-hlli>h 9
t+h || oo 2 t+h
2, > Zalu“ > va(h+1)°RY — 2hRE Ry,
s=1—h s=1—h
t+h [e%s}
=3 Z ZG us—i| — (tva(h+1)* + 4hR%) RY
s=1-—h 2

=Ytk
where we use Y (h + 1) < 1g(0) = RZ in the last line. Moreover, setting s = s,

2 2

t+h oo t+2h ||
SR Gu| =YD G,
s=1—h |li=0 o s=1|li=0 9
o0 S 2
QZ S Gl
s=1|[7=0 2
oo
> ko > |13
s=1

[eS)
= ko Y llus—nll3
s=1

where (i) uses that we have @t = 0 for s < 0 and for s > ¢ 4 2h, and (é¢) invokes Definition 2.2.
Combining the two displays, we have

t
UTZHIHSU ey Z [Jus— h||2 Yi;h
s=1
K t+h
0
2 B} Z 1Y s—nvll3 - Vt;h
s=1

t
K
= ’UT <20 Z YZYS — ’Yt;hl> v

s=1—h

where the last line uses ||v|| = 1. Finally, defining ¢y, := max{1, %} we have v, =

R% (tg(h+1)2+4hR%) < R3 (hcyt RE +4hR%) < 5hR% ¢y, yielding the desired bound. [
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H.2 Proof of Lemma F.4

Let z, € argmin, . 23:1 f+(2). Following the standard analysis of Online Newton Step (e.g.
Hazan [18, Chapter 4] with v <— 1/7), one has

T T T
1 1
N Vilz - z) < g ; VA, + o S (@~ 2) T (A~ M)z — 2) + 2 (- 2) Ao(z1 — 2,)

t=1

The last term is at most 5 D2 Moreover, since Ay — Ay = H/H,

T
1 n _
(2t — 24) — —277\\Ht(zt — z*)Hg < AD? + § E: 1Vt.

HMH

Finally, for n > é, we recognize that V; (z; — 2.) — o [|He(2¢ — 24) 13 > Vi(2ze — 24) — § | Hi (2 —
23 > fi(z¢) — fi(2,) by Lemma F.3. Thus,

T
th z) — fi(z) < AD? + gz VA,

as needed. O

H.3 Proof of Lemma F.6

We have Fy(z¢, ..., 2i—n)— ft(2¢) = Fi(2z¢,...,2.—p) — Fi(24, . . . z;). Therefore Taylor’s theorem,
there exists some u € [0, 1] such that, for z;_; = pzi—; + (1 — )z,

Fy(ze, ..., 2-p) — fi(ze) = (VE(Zt, ... Ze—n)) (0,241 — B4, 22 — Zg, ..., Ze—pp — Z4).

By the Chain Rule, we then have

h h
\Fe(zes .o 2e—n) — [e(2e)| = |VE(ve + Z Gth—ﬁt)T <Z G[i]Yt—i(zt—i - Zt)) |

1=0 1=1
h .
< |IVe(ve + Y GYY,_7)||2 - Ra - e max, 1Y 1—i(ze—i — 2)||2-
i=0 o

Analogous to the Lemma F.2, we have ||V/(v; + Z?:O GUY, 7;)||2 < Leg, concluding the first
part of the proof. For the second display, we have

T
ZFt(Zt7~-~,Zt—h) f(z¢) <LeﬂRGZ max ||Yt i(ze — 2¢—i) |2

.....

< LegRa Z Z Y :—i(ze — ze—i)]2

t=1 i=1

T h i—1
< LegRa Y Y > I Yioi(z—jir — ze—j)ll2
t=1i=1 j=1
T h 1—1
_LeffRG Z ZZHYS Zst+i—j5+1 Zstg j)H2
s=1—hi=1 j=1
T h-1
< hLegRg Z Z 1Yo (Zsrit1 — Zsi)||2 - Dopir<e-
s=1—h i=1
Finally, since z; — z,—1 = 0 for ¢ < 1, the above indicator I;4;+1<; can be replaced with
Io<stivi<t = li<syi<i—1, completing the proof. O
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H.4 Proof of Lemma F.7
Fort <0, ||Ys(zt+1 — 2¢)||2 = 0. Otherwise, we have
1Yozt = 212 = VA2 P (2 — 20)2
< YA o - 1A 2 (21— 20)2

(i) —1/2 1/2 /~

SN A [lop - 1AL @ — 20)|2
—1/2 1/2 _

= YA opllAL? - ATV |2

— I 22, A 29, (H.1)

where (i) follows from the Pythagorean theorem, using that z;; is projected in the A;-norm. Fi-
nally, we can crudely bound || Y A; ' Ylop < tr(Y A, 'Y,). Since we consider indices ¢ > s, we
have tr(Y,A; 1Y) < tr(Y A;1Y,), where we have the understanding that A, = A, for s < 0.
Thus, we see that for ¢t > 0,

1Yo (Zer1 — 20) |2 < (Y ATTY ) 2 te(V] A W) Y2

Thus, from Lemma F.6 and by Cauchy Schwartz,

h—1 T
MoveDiffr < hL.gRc Z Z 1Y s(Zstit1 — Zsti)|leli<sti<t—1
i=1 s=1—h
h—1 T T
< nhLegRq - Z Z Ti<orici—1 - tr(YAS1Y) Z Di<sti<i—1 'tr(V;r+iA;+1iVs+i)
i=1 s=1-—h s=1—h
T T
<nh’LegRa - | Y (YA Y ), D) (VAW
s=1-—h s=1
as needed. O

I Ommited Proofs from Appendix G

I.1 Useful Facts for Analysis

We begin by listing some useful elementary facts:

Fact I.1. Forallt > 1 and all z € C, we have | H; — I/-\I,5||op < egRy and ||(H; — fIQzHOP <
eaRyc

H h i Ai h 7 Ai
Proof. [|H; —Hylop = | S0 (GY = GiNY |lop < [[Ryllop 31 [GY — G lop < ecRy. The
second bound is similar. O

Fact 1.2. Given two vectors v,w € R™,

v+ wlff > gvf* = [lw]|*.

Proof. |lvt+w|3 = [[v][*+[lwl® +2(v,w) > [o]* + [w]|* = 2lv[[[w]] > [v]* + lw]|* - 5[] -

2llw? = L — ||w|[2, as needed. O

Fact L3. [la* < [|b]]* + ([lal| + [6])[1b — all

Proof. ||al|3 = {(a,a) = (b—a,a) + (b,a) = (b—a,a+ (b,a — b) + ||b]|>. The bound now follows
form Cauchy-Schwartz O
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1.2 Proof of Lemma G.1

Let 2z, € C be an arbitrary comparator point. Analogus to the proof of Lemma F.4,
T T
~ o~
—2,) — =||Hy(z¢ — z) || L1
;ft(zt) g (e — 20) = 5 [ He(ze — 2)lI2 (L.1)

One the other hand, the standard inequality obtained from applying Semi-ONS to the (ﬁ)-sequence
(see, for analogy, page 58 of [18]), we obtain

AT N, e 2 2
V(2 — 2) < SIVIG- + EHZt —zdlz, - HHZtH — 2% -

Summing up over ¢ and telescoping

n
Z (2~ 2) < 3 Z \|V||2_1+Z—||zt all & + th a2
t=1 t h+1
n AN AD?
—5;HVHK;1+ leHt 2= )P4 55 1.2)

where we use Kt — Kt_l = ITItTITIt and Ko = M. Thus, introducing err; := Vft(z) — Vf(z¢) and
combining (I.1) and (1.2),
T

T T

1
E fe(ze) — fi(z) < E err; ( E (1B (2 — 2)]|* — nolHe(z, — 2)|?)
t=1 t=1 t*l

+1 Z 1712 + A

Plugging in §; = z; — z, concludes the proof, and re-1terating the proof of Proposition F.1 concludes
the proof.

2

1.3 Proof of Lemma G.2
First, we can bound ||H,d, |2 < 2||H,é,|? + 2||(H, — H,)8, |2, and

I(Hy — H)dl| < || (H — Ho)ze| + [|(H — Hy)z || < 2Ry ceq
by Fact I.1. Taking ) > 2, we find then that

1,6, 1* — 7704||Ht5t||2 < 2|[H,8[|* + 8RS el — 3| Hed||? = —[[H.d, ||* + 8RY. cet:.
The second statement of the lemma follows by substitution into Lemma G.1. O

1.4 Proof of Lemma G.3
We have the bound
err, := Vfy(2) = Vf(z)
=H/] V0, (¥, + Hyz,) — H, Ve (vi + H,z,)
= (H, — H,) V4, (%, + H;z,) + H, (wt(vt +Hyz,) - Vo (Vi + tht)) .
Defining
g1 = VU (Ve + ﬁtzt)
gt,2 = (Vft(ﬂ + ﬁtzt) — VU (vi + tht))

We have that ||g;1]|2 < Les by analogy to Lemma F.2. Moreover, since 3-smoothness implies that
the gradients are 3-Lipschitz, and by invoking Fact 1.1, we have

(V&(Gt + ﬁtzt) — Vﬁt(v: + HtZt)) S 6H(Gt + I/‘\ItZt) — (V: =+ tht)H S B(CveG =+ QGGRY,C).
O
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I.5 Proof of Lemma G.4

Recall that from Lemma G.2, we have the bound

T T
Z — fe(z) SZ err; § ZHHtétHQ—i— ~TR3 ceG—l—RegT @3)

Let us now bound the sum Z?:l err; §; via Lemma G.3. The lemma ensures err; = (ﬁt —
H;) " g1+ +H, go. where ||g1.¢||2 < Leg and ||g2.¢|| < Bec(cy + 2Ry ¢). The contribution of the
term including g ; is easily adressed:

1
(H/ g2.0)"6: < |lga.tll2|H:b¢ |2 < Beg(co + 2Ry ¢)||[Hdi |2 < nB%eL(co + 2Ry c)? + E”tht”%

by the AM-GM inequality. Next, we handle the term (ﬁt —H)T g1,¢- First we bound
((Fy —Hy) "g1.4) " 8¢ < |l guell| (e — Hp)y|| < Legel| (L — H)o .
Plugging into Eq. (I.3) gives

T T
Z e sz Leg||( Hffo>5t|f—Z||Hf6t||2
t=1 t=1 t 1

4R? _
T (nﬁ2(cv +2eqRyc)® + n“) €2 + Regp. (L4)

For arbitrary sequences Hy, IA{t, there is no obvious way to cancel the terms Lo || (ﬁt —H,;)d;|| and
—|IH:6:|* to achieve a O(T'eZ)-error dependence. However, there is additional structure we can
leverage. We can observe that

I~ H)&i13 = |3 (GF = G)IY it < eq max [Yi-i6i])”

Hence, by AMG-GM, we have that for any v > 0,

Leg||(H, — H)&, || < v (h + 1)nLged + x (Y%

_ Y
4(h+ 1) zEOh]

Together with Eq. (1.4), the above display implies

T T h
1 v _—
tz:;ft(zt — fi(zy) Z z:: (h +1 ; 1Y;—:6:))° — |Ht5t|2> + Teg, - ERR(v) + Regy,

where ERR(v) := (M +18%(c, + 2RYC) 4R;,c>. O
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1.6 Proof of Lemma G.5

Fix a block length 7 € N, and recall the index k; = (j — 1)7, and jmax as the largest j such that
JmaxT < T. We bound

T
D Y eidel3
t=1

Jmax T T
= Z Z 1Yk +5—i0k; 1513 + Z 1Y nd:l3
j=1 s=1 5:1+T(jmax_1)
Jmax T
<4tRyc+ > D Y pamibh 13
j=1 s=1
() Jmax T
SATRyc+ D > Yk rsmiOk, 13+ 1Yk 4amiGhy1ll2 + Yk i, 4sll2) [V hys-i Bk, 46 — Ok, 41) |2
j=1 s=1
(“) Jmax T Jmax T
< 4TRye+ Y Y I YkremiGhrals +4Rvie D [ Yiyrsi(Bhyts — 8k, 41)[2, (LS)
Jj=1 s=1 j=1 s=1

Where (i) uses the inequality ||al|?> < ||b]|> + (||a]| + ||b]|)||b — a]| from Fact 1.3, and where (i4) uses
the [[Ys(80)[| < [[Yszull + [[Ysze]| < 2Ry c.

Next, recalling d; := z; — z4, we develop

Jmax T Jmax T
Z z 1Yk, 1s—i(On; 46 — O, 1)l = Z Z 1Yk, +s—i(Zn;+s — 2Zn;41) |2
j=1 s=1 j=1 s=2

Jmax T §—2

Z Z Z ||Yk +s—1i Zk +s—s’ — Zk —s'— 1)”2

j=1 5=25'=0
=1
Z |‘ij+s—i(zk:j+s—s’ - ij—s’—l)HQ
=0

<.
8

a

]

IA
EM*

<.
Il
-

9
|
—

[M]=

1Y i(Zt—s — 2t —1)l|2,

~
I

1s’

I
=}

where above we use the convention z; = 0 for ¢ < 1, and that the induces k; 4 s range over a subset
of t € [T]. Relabeling s’ with s, and combining with Eq. (I.5) this finally yields

Jmax T T 7—1

ZHYt i0ell3 > 4TRyc + ) 0 Yk amibi, 13 +4Ryie D D Y imi(zims — 2e—o1) 2.

j=1 s=1 t=1 s=0

Following similar steps (but using Fact I.1 to bound ||H;z|| < Rg Ry c), we obtain

T Jmax T T 7—1
DOIHGE > Iy l3 — 4RvieRe Y Y I Hi(zi—s — ze—s1)ll2,
t=1 j=1 s=1 t=1 s=0
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1.7 Proof of Lemma G.6

Recall our convention Ay = A; and A, = A; for s < 1. For any u € (0, 1], we have the bound

t—T1 t—T1
Air =M+ HIH, =M+, H/H,

s=1 s=1

t
= (A= prRI)I+py H]H,
s=1

t
= (>\ - ,UTRQH)I + Z %H;FHS‘ - PJ(I/:IS - HS)T(I/_\IG - Hs)7
s=1
where the last step follows from Fact 1.2. We can crudely bound(ITIs —~H,)" (ﬁs —H;) < ||ﬁs —
H,||?I < R} €1 via Fact L1, giving

¢
Ay = (A — puTRY — pR3te) + % ZHSTHS
s=1

A

Bounding ¢ < T, and taking 4 = min{1, ST TR ST

}, we obtain

At—T

)
w\y

t
NZ T K
5_H3H5t§At

Thus, for any upper bound cp > \/%
-1 2, 241
At—T j pAf j CAAI‘, . (16)

Finally, we can bound

2 2 2
¢3_v%wwgﬁmﬁj@%ﬂ}

TRZ + 2T

= \/maX{Z, 4R%f}

@ 2
> \/max{2, 4e,'R3 (1 + TJiG)

TR%
A

_1
2(1—|—Ry)+26>\2Ry = CA,

where we use that A > ¢)\T'eZ in (7). This verifies that c, in the lemma is an upper bound on /2/p,
and the lemma now follows from Eq. (1.6). O

1.8 Proof of Lemma G.7

Let 7 € N denote our blocking parameter. Again, adopt the convention /A\S = /A\l and A, = A, for
s <0, and let ¢y be such from Lemma G.5, which ensures that, for all ¢,

AL =AM (L7)
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Then, any for s € {0,...,7 — 1} such that s < ¢ — 1 any p > 0, we have

-

1Yi—i(Zt—s — 2t—s—1)ll2 < [[YeiA 2 1||0p|| t—
<[ YA i z||0p||At s— 1(Zt—s — Ze—s-1)][2

< YR llopll Aoy Vsl (Projection Step)

< \/tr(Yt A7 Y N2

~1
A7 1(ths _thsfl)H2

ol

t—s—1

< \/tr(YHKt_zYta el Ba.7)

Note that the above expression does not depend on 7. Thus, since z; s —z;_s_1 =0fors >t — 1
(recall here we assume z; = z; for ¢ < 1), an application of Cauchy Schwartz yields

3

t=1 s=0

1
T 2 T 2
IYi—i(zi—s — Ze—s—1)|l2 < Tea ( Z tr(YtiAt_lthi)> < Z ”Vts%tS)

t=s+1 t=s+1

T Yo 3
< rea (Z tr(YHAt}iYu)> (Z ||Vt|%t>
t=1

t=1

T T %
< Tep ( > (YA 1Y) ) <Z V|2 ) (1.8)
t

=1-h

T—1

Arguing as in the proof of Proposition F.1, and using A > hRZ, > 1,

T

. TR?
A <L2ﬁZtr(HtA Ht)) < dL%slog(1+ 1) <dLi-L. (19)
=1

We now develop a simple claim, which is a consequence of Proposition F.8:

Claim L4. Recall ¢y = max{1, %} and set ;19 = min{1, m} We have
T
2d
> otr(YA'Y) < —8.

K
t=1—h Ho

Proof of Claim 1.4. From Proposition F.§, we have the bound

t t
S HTH, - g > YTY, - 5hRY eyl

s=1 s=1—h

Thus, for any 119 = min{1, (10hR%cy.7) "'} < 1,

t t
Ay=A+Y HH >\ +p> HH/

s=1 s=1
koo A Lok !
_ 0 T
= M + po (2 > Y.Y/] - 5hRycy, T) =S+ > Y.y
s=1—h s=1—h
Hence, from the log-det potential bound of Lemma F.5, the bounds g, x < 1 and Ry = RgRy

T
2d T R2 2d TR2 2d

(YTATY) < 2D jog(1 4 1Y)« 2oy Ty _ 20 g
oK A oK A ok

s=1—h
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To apply the above, let us simplify our expression for uo. Recall that

' A Tyg(h+1)° 2 /1 12
Homln{l,lohRW}7 Cop;T = rnax{l,hﬂ% S(]‘+T€G/hRG)7

where we note that e = |G — Gllevop = 3 i 1Gop > ¥ (h + 1), since Gl = 0fori > h.
Using the bounds Ry /Rg = Ry and X > ¢\ (TeZ + hR%) for ¢y € (0,1],

2
. IOhR){{cw;T
o1 4 JORRY (14T /1)
= A
10R% (hR%, + R2T€Z /h)
A

<1+cy'10Ry.

Together with Claim 1.4, we obtain

T
2d 2d(1 + 10R?

tr(YA7VY,) < —g < 2d(1 +10Ry)
Mok K

L. (1.10)
t=1—h

Thus, putting together Equations (1.8), (1.9), and (1.10),

T 7—1

1 2(1+ 10R?
P> IYii(zems — zems)ll2 < Teac,? - Lend %s
t=1 s=0

which is the first inequality of the lemma. For the second inequality, we establish the following
analogue of Eq. (1.8):

T 7-1 T % T %
ZZ [ Hy(2o—s — Ze—s_1)|]2 < Tp - (Ztr(HtAtlHt)> (Z ||©t||%t> :
=1 s—0 t=1

t=1

Again, we bound Zf:l |V ||% < dL%; - £ as in Eq. (1.9). Moreover, from Eq. (F.2), we can bound
S tr(H A7 H,) < dg. Thus,

T
_1
SN IHu(Ze—s — zi—o—1)l2 < TdLegicy L,

t=1 s=0

which is precisely the second inequality of the lemma.

1.9 Proof of Lemma G.8

We state a slighlty sharper variant of Proposition F.8, which considers directions limited to § € C—C:

tYa (h+1

Claim L5. Set ¢, := max{1, e

}.olet § = z — 2 for some 2,7’ € C. Then,

T T
57 <Z Hth> 5> géT ( 3 Hth> 8 — 20hR ¢ R: oy

s=1 =1-h

Proof. The proof is analogous to Proposition F.8, but instead, the remainder term need only account
for directiong z — 2’ for z, 2’ € C. This replaces the factor of Ry one would obtain with a factor of
max;  |[Y;8y| < 2Ry, yielding a remainder temr of 20h R,  Rg ¢y instead of 5h RS RE ¢yt
in the original proposition.
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Let us now turn to the proof of our lemma. From Claim .5, we have

= 7 (ST o

s=1 s=1

P T
> 55,;“ ( > Y,Ij+sij+s> 81, +1 — 20hey,, RERY ¢
s=1—h

Moreover, for any i € [h], we have

T h
Z Z Hij+s—i6kj+1H§ - 6]—@:-&-1 (Z Y]Ij—&-s—iij-‘rS—i) 6k7j+1
s=1

s=11i=0
.
T T
<O | DD YL Y] kg
s=1—h

3

Thus, for v < %, we have

T h T
SO v + Tico) Yk, 4s—ibi, |15 < 208, ( Y Yl +3ij+8> Sk,

s=1 i=0 s=1—h

K
3 oy, ( Z Y/ s Y, +s> Oy,

s=1—h

IN

< |[EL, 81, |3 + 20k RERY ¢
s=1

Hence, rearranging, we have

Jmax T h
Regcancel Z Z <Z 1 + th 0 HYk +s— z‘sk ” ) - Hij"l‘Sékj ||§)

j=1s=1 \i=0
< jmaxQOhcw;TRGRY)C

T
< —20hcy. RERY ..
- :

Finally, let us simplify the dependence on c,,,. We have

Copsr _1 Ya(h+1)° Cypsm 1 € 1 G
- = max{7" ", TR } < - = max{7 ’hRé}Si R
Together with v < 7, this gives
20vh 20vh
Reg, o < —0 ——Tey Ry RY ¢ < "2 TRLR2 . + 20T % R2 ¢

20T

| /\

VhRGR C+5T€G /‘LR

1.10 Proof of Lemma G.9

From Eq. (G.15), we bound
_ 1 —
OcoReg (V; z*> < —Regp o + TeZ ERR(V) + Regy,
4n 4n
where from Eq. (G.14) we have

Regblock < 8T - VRY,C + SVRY,C (Hé?}f]( Rng,movc,i) + 4RY,CR71'0 : RegH,movc + Regcanccl'
i
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Let us develop the above bound on Regy .- From Lemma G.7, we have

2(1 + 10R2 1
Regy move,i < TCAC)\ - dLegr 21+ 10Ry) £, and Regpy o0 < Teac,® - dLegl,
o :
and from Lemma G.8, we have Reg ., ,.o; < @ ~1/hRéR§C +5T€2 - mR%,ﬁC.. Thus, using followed

by
Regblock S 87 - VRch + SVRY-,C (m?ﬁ]( Rng move z) + 4RY7CR7TO : RegH move + Regcanccl
ic , ) ,

(@)

_1 20T
< 8tcpcy’ Rye (1/ + vdLeg

2(1+ 10RZ%.)
KR

(i1 o(1 + 10R2
< 8reacy? Rycheﬂ;:( 21+ 10Ry)

20T
+ 2RG> VhREL R ¢ + 5T€g - kRY ¢

K
1 2(1+ R} T
< 7eacy? Ry cdLeg £ <u % + RG> + — VhRERY ¢ + Teg; - iRy c,

where (i) uses the above bounds together with cAc>\2 > 1 (see Lemma G.6) , and (i) uses v <
1 < Leg and dRg L > 1, and where the last line disposes of constants. Using Rg > 1, and the

assumption v < the above is at most

_VE

4(1+Ry )’
<. .3 T 2 p2 2 2

Regblock TCA CARY,CRGdLeﬁ'£ —+ ; . VhRGRY,C + TGG . KJRY,C’

Next, using A > ¢, 7, we have from Lemma G.6,

2

cx = 2(1+ Ry) + 2Ry < ;2(1+ Ry)Re.

Thus, we obtain
-1 2 T 2 P2 2 2
Regblock 5 Cy T(]. + RY) . RY,CRG . dLeﬁ‘£ + ; . VhRGRY,C + TEG . HRY,C?

Combining with n = =, we have
[ v
OcoR — 5 2
o)
1 —
< %Regblock + Teg; ERR(v) + Regy

T —
Sont(a(l+ Ry)RycRE - dLeg€) + — (awhRG Ry ¢) + Teg; (anRy.c + ERR(v)) + Regr.

Finally, let us substitute in

h+1)L2 4R
ERR(v) := ntht+Dlce ” e +nB%(cy + 2Ry c)” + 7;’6
hL
S 62( o+ RBye) +aRye.

2
Since @ < 3 by necessitiy and k < 1, we have o < ﬁ— , so that

hL2 2
eﬁ + E(CT) + RYC + Ryc)

Altogether, combined with the bound ¢y < 1, thls yields

ERR(v) + akRy ¢ S

(0% v

T
+—V(ahR2 R3¢) +7- (a(l4 Ry)RycR% - dLegf),

v Te2, (hL? _
cAOCORegT(%;z*) << ( ff + 82(c2 + Ryc + Ryc)> + Regy.
as needed.
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I.11 Proof of Lemma G.10

Consider MoveDiff 7 := Zthl Fy(2+.+—n) — f+(z¢). The decomposition Lemma F.6 holds verbatim,

and by appropriately modifying Lemma F.7 to use the fact that the iterates are based on ﬁt, /A&t, we
arive at.

T
MoveDiff; < nh?L2;Rg - Z tr(Yt/A\t_lYt) . Ztr(ﬁtTAt_lﬁt).
t=1—h t=1

As in Eq. (F.2), we bound

T T R2
> tr(H/A;'Hy) < dlog(1 + AH) <dg,
t=1

where we take A > 1 and use £ = log(1+TR%,/ )\) from Eq. (G.6). Moreover, applying Lemma G.6
with 7 = 0, we have that A; ' < 4(1 + Ry)?A; !, giving

22d(1 +10R3)
K

T T
> wr(YiAT'Y,) <41+ Ry)? > tr(YiA7'Y,) < 4(1+ Ry) £
—1— =1—

t h t h

where the last inequality uses Eq. (I.10). Thus,

MoveDiffr < 9n(1 + Ry)h*dL2;LRe - \/(1+ R%) /K
< 9nk"3(1+ Ry)*Rgh?® - dL%: 2

J Lower and Upper Bounds on Euclidean Movement

J.1 Proof of Theorem 2.3

Our construction is loosely based of of [5, Theorem 13].

Recall the lower bound set up C = [—1, 1], f;(2) = (v; —€2)?, and € < 1. Let E be an epoch length
to be selected, and suppose for simplicity that k = T/E is an integer. LetT; := 1+ E - (i — 1)
denote the start of each epoch for 7 > 1. Let us define the distribution D over vy, ..., vy via:

o R onif({-1,1)) t=T
Y vn te{l;+1,....,Tia — 1}

i

Lastly, recall the definition:

T T T
p-Regr =Y filz) — ;Ielf(;z fo2)+ Y|z — 2l
t=1 t=1 t=1

Our key technical ingredient is the following lemma, which shows that if the regularizer is large
enough, the optimal strategy is essentially to select z; = z, within any given epoch 4:

Lemma J.1. For > 4Fk,

Tip1—1

> filz) + plze — 2| > (E = 1) fu(vr, —2r,).

t=T;+1
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Proof. We can write

Tit1—1 Tip1—1

S film) +plze =zl = D fri(m) + plae — 2]

t=T;+1 t=T;+1
E-1
= SLAE -
> 1fT7,(Zt)+u t:TiJr{I,lﬁ?%iﬂiJle zZ
o=

v

E—-1 1
; fTi(Zt) + T 1|ZTi - Zt|7

=9g(z¢)

where the first inequality uses the triangle inequality, and the second replaces the maximum by the
average. Define 119 = 57y, and set g(2) = fr, (2¢) + 512, — 2| = (v, —e2)? +2ep0|z7, —
z¢|. Then,

0g(z) = 2¢ (ez — v, + poo(2))

where 0(z) = 1ifzp, > 2z, —1if z;, < z, and is in interval [—1, 1] if z = z7,. Now, if po > 2,
then, |ez — vr,| < po, so that the first order optimality conditions are met by selecting z* = zg,.
This yields

9(2*) = (VTi - esz‘)2'

The bound follows. O

By summing within different epochs, the above lemma implies a simple lower bound on p-Reg:

k Ti—a+1
pRegr =Y > filz) = fi2) + pllze — 2o
i=1 =T,
) k Ti—1+1
= fren) = Efn(2) + pllen, —zrall+ | Y fulm) + pllze — 2|
i =T,

—~

Vs
=

M- L

fTi(ZTi) - Ele(Z) +MHZT1 - ZTi—1H + (E - ]‘)fTi(ZTi)
1

qu‘, (ZTi) - EfT7(Z) + (E - ]‘)fTi(ZTi)

(A\V2
™M=

I
-

K2

K
=supF <Z Ir.(z1,) — fTL(Z>> )

zeC
where (7) uses that f; = fr, in epoch ¢ and (i4) uses Lemma J.1. Crucially, the above quantity

is scaled up by a factor of F/, and the learner is forced to commit to a single iterate per epoch.
Continuing with fr,(2) = (v, — €2)?,

k
M'RegT > SupE (Z(VT-; - 6zTi)2 - (VTi - EZ)2>

z€C i—1
k
— 2,2 2. 2
=sup b —2evr,zr, + €27, +2€2vy, —€ - 2
¢\ i= e <1
k
>sup F E —2evyzr, + 2ezvy, | — ke? | .
zeC i—1
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Taking an expectation, and noting that E[vr,zr,] = 0 by construction, we have that
k
sup z Z vil — k€2>

z€eC =1
= 2¢k <IE

k
;Vz’ — SE)

226E(c kk;>,

where ¢ < 1 is a universal constant. 8 Let us now tune the above bound. Select

o k= |(8Te/p)P
e ¢ = u/4FE.

E[pu-Regr] > E <2€E

We first check that these parameters are valid:
Claim J.2. For a universal constant cy, it holds that if p < 1T, then k > 1 and e < 1.

Proof. For pp < 8cT', k > 1. Moreover,

H pk 2/3 M 2/3
=—="— < (8T — =4 T).
€= 15 = qp S BTe/w™ 5 =4 (w/T)

Hence, for ;1 < T'/4c?/3, the above is at most 1. Setting ¢; = min{8¢, 1/4¢?/3} concludes. O

For the above choices, we have
k
E[u-Regy] > 2¢E (c k- ;)
2 3/2
O R LT P
2 8T 4 8Tc/u

o oVhuo_ epl(8Te/p)*? )2
=71 = 4
> cu(T/p)'? = ea(u*T)V?,

for some universal constant co. Moreover, suppose that that E[OCOReg;] < R. Then, for > 1T

co(p?T)'/3 < E[u-Regy] < R + pE[EucCosty).
Rearranging, we have that if c2(u?T)'/% > 2R, E[EucCosty] > 2(T/p)'/3. For this to hold, we
take u = /(2R /c2)3 /T, yielding

E[EucCostr] > 0—22(T~ (T/(2R/c2)®)/3 = %(CQTﬂR)W > ¢51/T/R. (.1

Finally, we need to ensure that 1 < ¢ 7', which hold for (2R/c2)3 /T < ¢3T?, i.e. for R < ¢4T for
a universal cq4.

J.2 Matching Tradeoff via ONS

We now show that ONS mathces the tradeoff in Theorem 2.3 up to logarithmic factors, problem
constants and dimension. To show this, we first check that OCOAM losses satisfy the general ONS
regularity conditions. We say f is 7-exp concave if V2f >= 7 - Vf(Vf) [18]. The following is a
direct consequence of Lemma F.2

Lemma J.3. Let f; be an OCOAM loss with parameters bounded as in Definition 2.1, where {
satisfies Assumption 1. Then f is ;5—-exp concave, and Ry Leg-Lipschitz on C.
eff

8Note the folklore results that the expectation average of k Rademacher random variables scales as vk
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We now show that ONS matches the optimal (;27")'/3 scaling up to dimension and logarithmic
factors:

Theorem J.1. Consider ONS on a sequence family of G-Lipschitz, T-exp concave functions on a
convex set C of diameter D. Let define Ry = (GD+71~1)-dlogT be the standard upper bound (up-
to-constants) on the regret of ONS [18]. Then, for any p € R, there exists a choice of regularization
parameter A such that ONS with n = 2max{4GD, 1/7} has:

p-Regy < (RoD? - Tp?)Y? + Ry.

For the special case of OCOAM, the above guarantee can also be satisfied for by Semi-ONS(albeit
with modififed dependence on problem parameters ).

Consider the ONS algorithm, with updates
t—1
Zi1 =2 — AV, zeg = argmln |Zes1 — z||At, Ay =M+ ZVtVtT, Vi := Vfi(z)
s=1
J.2)

Set = 2max{4GD,1/7}, A\ > G?. From Hazan [18, Section 4.3], with the notation change
N4 1/v, 7+ a Ay < A, and A < ¢, ONS has unary regret bouned by

T 2 2

7 _ D\ dn D>\

< = - < — N
OcCORegy < 2;:1 ViA; Vi + 5 =9 log(1+T)+ 2

Moreover, we can bound

T
'l
EucCostT—ZHzt—zt il < — ZHAU2 (zt — ze—1)||
=1

t=1

(i) T 1 T

QL AV (7, —z = A2y,

< fgn ¢ —zt) ﬁ;n A

i) T (i) g

< TS VIATYY, < L\ /Tdlog(1+T),
= Z t ey Ve = N5 g( )

t=1

where (i) uses Ay = A, (i) uses the Pythagorean theorem, (iii) uses Cauchy-Schwartz, and (iv)
applies the log-determinant lemma as in Hazan [18, Section 4.3] with A\ > G?. Hence,

dn D2\
j-Regp < ?log(l +T)+ 5+ % Tdlog(1 + T).
Set Ag to satisfy D ’\“ = \;i Tdlog(1l+ T). Then,
D? /\0 D2\
v B Tdlog(1+T) =
o 7\0 (1+17)
D? /3
= <D2u\/leog 1+T)
n
D2 /opt 1/3
o (Dn4,u2Td log(1 + T))

= (2D - )T - ydlog(1+ T))""* .
Setting A = G? V )\ yields
G*D? dn D2\,

+ - log(1+T) +
om 2 g(1+17) 2 \/)\o
1/3

d
p-Regp < ?77 log(1+T) + Tdlog(1+T)

d G*D?
< ?77 log(1+T) +

+ (2D? - T - ndlog(1 + 1))

Subsititing in 7 = 2max{4G D, 1/7}, and defining Ry = max{GD,1/7}-dlog(1+ T') gives that
the above is at most

p-Regy < (RoD? - Tp?)Y? + Ry.
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