
A Image Classification

To verify the effectiveness of PABEE on Computer Vision, we follow the experimental settings in
Shallow-Deep [5], we conduct experiments on two image classification datasets, CIFAR-10 and
CIFAR-100 [55]. We use ResNet-56 [10] as the backbone and compare PABEE with BranchyNet [26]
and Shallow-Deep [5]. After every two convolutional layers, an internal classifier is added. We set
the batch size to 128 and use SGD optimizer with learning rate of 0.1.

Table 6: Experimental results (median of 5 runs) of ResNet based models on CIFAR-10 and CIFAR-
100 datasets.

Method CIFAR-10 CIFAR-100
Speed-up Acc. Speed-up Acc.

ResNet-56 [10] 1.00× 91.8 1.00× 68.6

BranchyNet [26] 1.33× 91.4 1.29× 68.2
Shallow-Deep [5] 1.35× 91.6 1.32× 68.8
PABEE (ours) 1.26× 92.0 1.22× 69.1

The experimental results in CIFAR are reported in Table 6. PABEE outperform the original ResNet
model by 0.2 and 0.5 in terms of accuracy while speed up the inference by 1.26× and 1.22× on
CIFAR-10 and CIFAR-100, respectively. Also, PABEE demonstrates a better performance and a
similar speed-up ratio compared to both baselines.

B Proof of Theorem 1

Proof B.1 Recap we are in the case of binary classification. We denote the patience of PABEE as t,
the total number of internal classifiers (IC) as n, the misclassification probability (i.e., error rate) of
all internal classifiers as q, and the misclassification probability of the final classifier and the original
classifier as p. We want to prove the PABEE mechanism improves the accuracy of conventional
inference as long as n− t < ( 1

2q )
t+1p− q.

For the examples that do not early-stopped, the misclassification probability with and without PABEE
is the same. Therefore, we only need to consider the ratio between the probability that a sample is
early-stopped and misclassified (denoted as pmisc) and that a sample is early-stopped (denoted as
pstop). We want to find the condition on n and t which makes pmisc

pstop
< p.

First, considering only the probability mass of the model consecutively output the same label from the
first position, we have

pstop > qt+1 + (1− q)t+1 (7)

which is the lower bound of pstop that only considering the probability of a sample is early-stopped
by consecutively predicted to be the same label from the first internal classifier. We then take its
derivative and find it obtains its minimum when q = 0.5. This corresponds to the case where the
classification is performing random guessing (i.e. classification probability for class 0 and 1 equal to
0.5). Intuitively, in the random guessing case the internal classification results are most instable so
the probability that a sample is early-stopped is the smallest.

Therefore, we have pstop > ( 12 )
t.

Then for pmisc , we have

pmisc < qt+1 + (n− t− 1)(1− q)qt+1 (8)

where qt+1 is the probability that the example is consecutively misclassified for t+1 times from
the first IC. The term (n − t − 1)(1 − q)qt+1 is the summation of probability that the example is
consecutively misclassified for t+1 times from the 2, ..., n − t th IC but correctly classified at the
previous IC, without considering the cases that the the inference may already finished (whether
correctly or not) before that IC. The summation of these two terms is an upper bound of pmisc.
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So we need to have

(n− t)qt+1 − (n−m− 1)qt+2 < (
1

2
)tp (9)

which equals to

(n− t)(qt − qt+1) < (
1

2
)t(
p

q
)− qt+1 (10)

which equals to

n− t <
( 1
2q )

t(pq )− q
1− q

< (
1

2q
)t(
p

q
)− q (11)

�

Specially, when q = p, the condition becomes n− t < ( 1
2p )

t − p

C Monte Carlo Simulation

To verify the theoretical feasibility of Patience-based Early Exit, we conduct Monte Carlo simulation.
We simplify the task to be a binary classification with a 12-layer model which has classifiers
C1 . . . C12 that all have the same probability to correctly predict.
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(a) Accuracy lower bound of each single PABEE
classifier to achieve the original accuracy. The
translucent black plain denotes inference without
PABEE.
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(b) Accuracy requirement reduction effect of
PABEE classifiers.

Figure 5: Monte Carlo simulation of per PABEE classifier’s accuracy vs. the original inference
accuracy under different patience settings.

Shown in Figure 5a, we illustrate the accuracy lower bound of each single Ci needed for PABEE
to reach the same accuracy as the original accuracy without PABEE. We run the simulation 10,000
times with random Bernoulli Distribution sampling for every 0.01 of the original accuracy between
0.5 and 1.0 with patience t ∈ [1, 11]. The result shows that Patience-based Early Exit can effectively
reduce the needed accuracy for each classifier. Additionally, we illustrate the accuracy requirement
reduction in Figure 5b. We can see a valley along the patience axis which matches our observation in
Section 4.5. However, the best patience in favor of accuracy in our simulation is around 3 while in our
experiments on real models and data suggest a patience setting of 6. To analyze, in the simulation we
assume all classifiers have the same accuracy while in reality the accuracy is monotonically increasing
with more layers involved in the calculation.
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