
We thank Reviewers (R) 1, 2 and 3 (who gave us marks 6, 7, and 8, respectively) for their pertinent remarks.1

R1+R2+R3. More details on monotone operators. We will provide more details on the monotone operator frame-2

work (for instance more elaboration around Eq. 6) allowing us to prove the theorems (we shall use the 9th page of3

the camera ready if our paper is accepted). We already provided some intuitions in the appendix, e.g. in Appendix4

C. Moreover, we want to recall that the definition of the space E is provided in Appendix C. We will move it to the5

beginning of Section 4.1 for better understanding.6

R1+R3. Straightforward combination of existing techniques? As R3 says, our work closes the theoretical gap7

by providing the first (and so far the only) optimal first order algorithm for smooth strongly convex decentralized8

optimization. We obtained this algorithm by “combining existing approaches”, but the combination was far from9

straightforward.10

• (Scaman et al.’17) obtained MSDA by simply applying Nesterov acceleration to the dual problem. We instead11

build upon recent results on the minimization of strongly convex functions under linear constraints (by a first order12

algorithm, without projecting on the constraints space), see (Salim et. al.’20). Surprisingly, there are only a few13

algorithms that can solve such problems at a linear rate, and they were proposed only recently.14

• APAPC is obtained by applying Nesterov acceleration to the generalized forward-backward algorithm (5) for a sum15

of operators A and B (see page 5, line 208). Although we managed to do this, this was not an easy task (to say the16

least), because Nesterov acceleration does not apply to general monotone operators. Even if it it did, a naive approach17

would lead to a sublinear rate O
(

1
k2

)
because A + B is not strongly monotone. On the contrary, we obtained an18

accelerated linear rate (complexity O
((√

χκ+ χ
)
log 1

ε

)
) in Theorem 2, which requires careful and deep theoretical19

analysis of APAPC. Finally, we had to carefully design our generalized Forward Backward algorithm by choosing the20

space E (see Appendix C), its inner product, and the matrix P as functions of the gossip matrix W .21

• In Appendix F we provided an algorithm provably optimal in "# of communication rounds", without using Chebyshev22

acceleration. The development and analysis of this method required substantial innovation, as we explain in the paper.23

Finally, we believe that the apparent simplicity of our approach is due to us spending a lot of time making sure the24

explanations are as intuitive as possible. Many of these intuitions only became clear to us after we have done the25

analysis; and we provide them for the benefit of the reader. Hence, we view the simplicity as a strength!26

R1. Experiments. The networks chosen for evaluating the decentralized method are the ones that were used in27

(Scaman et al.’17): 10× 10 grid and Erdös-Rényi random network with parameter p = 0.06. We have now added this28

detail to the paper. Regarding the wall-clock-time comparison: The design of our experiments was very similar to29

those in (Scaman et al.’17), who assumed that local gradient computation takes one unit of time and communication30

with neighbors takes time τ . It’s easy to observe that in this case [wall clock time] = [# of gradient calls] + τ ×31

[# of communication rounds]. Scaman et al. (2017) used 2 regimes in their experiments: τ � 1 (high communication32

time) and τ � 1 (low communication time), which more or less correspond to our plots "# of communication rounds"33

and "# of gradient calls". This controlled setup is sufficient to verify numerically that our theory (which expresses34

the optimality of OPAPC in terms of "# of communication rounds" and "# of gradient calls") has predictive power for35

experiments. Note that our "# of communication rounds" and "# of gradient calls" plots give understanding of how36

the algorithms will behave with any possible τ (even if we do not know it in practice). We will also produce plots37

providing "wall clock time", but these will be implementation dependent. Our focus here was not to produce highly38

performing and fine-tuned software to be benchmarked in this way.39

R3. Minor comments. We will put Table 1 in the main paper using the 9th page if the paper is accepted.40

R3. Open remark on optimality w.r.t. W . In the line of works on optimal distributed algorithms by Scaman,41

Hendrikx, Xiao, Bubeck, Bach and Massoulié, lower bounds are obtained by proving the existence of a "bad" gossip42

matrix and "bad" functions that cannot be optimized faster than the lower bounds by any decentralized algorithm. This43

includes the decentralized algorithms using the gossip matrix W . Therefore, if one pick a family of functions and a44

gossip matrix W , they could be “bad” in the above sense, and one cannot beat the lower bounds by a decentralized45

algorithm using W . However, we agree that, perhaps, the lower bounds theory for these distributed algorithms could46

be a bit improved by providing lower bounds involving intrinsic properties of the graph, as in the centralized case47

(there are indeed many gossip matrices for one graph).48

R3. Open remark w.r.t. real-life application. Since OPAPC is practical and optimal, the use of OPAPC at scale is49

definitely the next step in the study of OPAPC. Obviously, this goes beyond the scope of this paper, which contains50

algorithm development, analysis and testing, but does not and was not supposed to have a software/system development51

element. But obviously we are also very curious about its performance at scale, and plan to work on this in the future.52

We are optimistic and confident that OPAPC will outperform existing approaches on average, as indicated by our53

experiments.54


