
Supplementary Material for
BAIL: Best-Action Imitation Learning for

Batch Deep Reinforcement Learning

A Proofs of Theorems

A.1 Proof of Theorem 4.1

Proof. Part (1): For any λ ≥ 0 and φ = (w, b) define

Jλ(φ) =

m∑
i=1

[Vφ(si)−Gi]2 + λ‖w‖2 (1)

Note that for any φ of the form φ = (0, b), we have V(0,b)(s) = b for all s and Jλ(0, b) =∑m
i=1(b−Gi)2 for all λ ≥ 0. Also define

G∗ := max
1≤i≤m

{Gi}

and φ̂ = (0, G∗). Note that φ̂ is feasible for the constrained optimization problem. It therefore
follows that for any λ ≥ 0:

Jλ(φλ) ≤ Jλ(φ̂) =

m∑
i=1

(G∗ −Gi)2 := H∗ (2)

We first show that lim
λ→∞

wλ = 0. To proceed with a proof by contradiction, assume that this is not true.

There then exists an ε > 0 such that for any λ ≥ 0 there exists some λ′ ≥ λ such that ‖wλ′‖2 > ε.
Choosing λ = H∗/ε, we have for some λ′:

Jλ
′
(φλ

′
) ≥ λ′‖wλ

′
‖2 > λ · ε = H∗ (3)

But this contradicts (2), establishing lim
λ→∞

wλ = 0.

Next, we show lim
λ→∞

bλ = G∗. To prove this, we will show b̄ := lim sup
λ→∞

bλ = G∗ and also

b̃ := lim inf
λ→∞

bλ = G∗. First, consider a subsequence {bλn} such that lim
n→∞

bλn = b̃. Due to the

continuity of φ→ Vφ(s) and lim
λ→∞

wλ = 0, we have

lim
n→∞

Vφλn (s) = V(0,b̃)(s) = b̃ ∀s (4)

Moreover, since φλ
n

has to satisfy the constraints, we also have

Vφλn (sj) ≥ Gj = G∗, i = 1, . . . ,m (5)

where j = arg max
i

Gi. Therefore, combining (4) and (5) yields

lim inf
λ→∞

bλ ≥ G∗ (6)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Similarly, consider another subsequence {bλk} such that lim
k→∞

bλk = b̄. Again, we have

lim
k→∞

Vφλk (s) = b̄ ∀s (7)

We have from (2) that
Jλk(φλk) ≤ H∗ (8)

Letting k →∞ gives
m∑
i=1

(b̄−Gi)2 ≤
m∑
i=1

(G∗ −Gi)2 (9)

which implies that
b̄ = lim sup

λ→∞
bλ ≤ G∗ (10)

Therefore, combining (6) and (10) together, we have finally shown that lim
λ→∞

bλ = G∗. As we have

previously shown lim
λ→∞

wλ = 0, it follows that

lim
λ→∞

Vφλ(s) = max
1≤i≤m

{Gi}, ∀s (11)

Part (2): For the case of λ = 0, notice that we have finitely many inputs si to feed into the neural
network. Therefore, this is a typical problem regarding the finite-sample expressivity of neural
networks, and the proof directly follows from the work done in [14].

A.2 Proof of Theorem 4.2

Proof. Let Jλ(φ) =
∑m
i=1[Vφ(si)−Gi]2+λ‖w‖2 be the loss function that defines the λ-regularized

upper envelope. We notice that the penalty loss function LK(φ) takes the form:

LK(φ) = Jλ(φ) + (K − 1)

m∑
i=1

(max{0, Gi − Vφ(si)})2 (12)

The theorem then directly follows from the standard convergence theorem for penalty functions
[7].

2

B Algorithmic Implementation

B.1 Pseudo-Code and Early Stopping Scheme for Upper Envelope Training

BAIL includes a regularization scheme to prevent over-fitting when generating the upper envelope.
We refer to it as an “early stopping scheme” because the key idea is to return to the parameter
values which gave the lowest validation error (see Section 7.8 of Goodfellow et al. [3]). In our
implementation, we initialize two upper envelope networks with parameters φ and φ′, where φ
is trained using the penalty loss, and φ′ records the parameters with the lowest validation error
encountered so far. The procedure is done as follows: After every epoch, we calculate the validation
loss Lφ as the penalty loss over all the data in the validation set Bv. We compare this validation
loss Lφ to Lφ′ , which is the minimum validation loss encountered so far (throughout the history of
training). If Lφ < Lφ′ , we set φ′ ← φ. If Lφ > Lφ′ , we count the number of consecutive times
this occurs. The training parameters φ are returned to φ′ once there are C consecutive times with
Lφ > Lφ′ . We use C = 4 in practice.

Algorithm 1 BAIL

Initialize upper envelope parameters φ, φ′, policy parameters θ. Obtain batch data B. Randomly
split data into training set Bt and validation set Bv for the upper envelope.
Compute return Gi for each data point i in B.
Obtain upper envelope by minimizing the loss LK(φ):
for j = 1, . . . , J do

Sample a mini-batch B from B.
Update φ using the gradient: ∇φ

∑
i∈B(Vφ(si)−Gi)2 {1(Vφ(si)>Gi)+K1(Vφ(si)<Gi)}+λ‖φ‖2

if time to do validation for the upper envelope then
Compute validation loss on Bv
Update φ and φ′ according to the validation loss

end if
end for
Select data point i if Gi > xVφ(si), where x is such that p% of data in B are selected. Let U be
the set of selected data points.
for l = 1, . . . , L do

Sample a mini-batch U of data from U .
Update θ using the gradient: ∇θ

∑
i∈U (πθ(si)− ai)2

end for

Algorithm 2 Progressive BAIL

Initialize upper envelope parameters φ, φ′, policy parameters θ.
Obtain batch data B. Randomly split data into training set Bt and validation set Bv for the upper
envelope.
Compute return Gi for each data point i in B.
for l = 1, . . . , L do

Sample a mini-batch of data B from the batch Bt.
Update φ using the gradient: ∇φ

∑
i∈Bt(Vφ(si) − Gi)2 {1(Vφ(si)>Gi) + K1(Vφ(si)<Gi)} +

λ‖φ‖2
if time to validate then

Compute validation loss on Bv
Update φ and φ′ according to validation loss

end if
Select data point i if Gi > xVφ(si), where x is such that p% of data in B are selected. Let U be
the set of selected data points.
Update θ using the gradient: ∇θ

∑
i∈U (πθ(si)− ai)2

end for

3

The pseudo-code for BAIL and Progressive BAIL, which include the early stopping scheme, are
presented in Algorithms 1 and 2. Note BAIL has two for loops in series, whereas Progressive BAIL
has only one for loop.

B.2 Hyper-parameters of BAIL

BAIL and Progressive BAIL use the same hyper-parameters except for the selection percentage p.
Details are provided in Table 1.

Table 1: BAIL hyper-parameters

Parameter Value
discount rate γ 0.99
horizon T 1000
training set size 0.8 · |B|
validation set size 0.2 · |B|
optimizer Adam [4]
percentage p% 30% for BAIL

25% for Progressive BAIL
upper envelope network
structure 128× 128 hidden units, ReLU activation
learning rate 3 · 10−3

penalty loss coefficient K 1000
policy network
structure 400× 300 hidden units, ReLU activation
learning rate 1 · 10−3

C Experimental Details

This paper compares BAIL (our algorithm) with four other baselines: BC, BCQ, BEAR, and
MARWIL. We use five MuJoCo environments, including Humanoid, which is the most challenging
of the MuJoCo environments, and is not attempted in most other papers on batch DRL.

C.1 Hyper-parameter consistency

When designing RL algorithms, it is desirable that they generalize over new, unforeseen environments
and tasks. Therefore, consistent with common practice for online reinforcement learning [8, 9, 10, 6,
1, 11], when evaluating any given algorithm, we use the same hyper-parameters for all environments
and all batches. The BCQ paper [2] also uses the same hyper-parameters for all experiments.

Alternatively, one could optimize the hyper-parameters for each environment separately. Not only is
this not standard practice, but to make a fair comparison across all algorithms, this would require,
for each of the five algorithms, performing a separate hyper-parameter search for each of the five
environments.

C.2 Reproduction of the Baseline Algorithms

In our submission, we went the extra mile to make a fair comparison to other batch RL algorithms. We
are therefore confident about properly using the authors’ BCQ and BEAR code, and fairly reproducing
MARWIL for the MuJocO benchmark.

BCQ We use the authors’ code and recommended hyper-parameters. In the BCQ paper, the “final
buffer” batches are where the BCQ algorithm shines the most; therefore, included in our training
batches are batches for which we used exactly the same “final buffer” experimental set-up. In our
terminology, this corresponds to DDPG training batches with sigma = 0.5. Looking at the BCQ
final-buffer results in Figure 2 and Table 1, we see that they are consistent with the results in Figure
2a in the BCQ paper.

4

BEAR To ensure that we are running the BEAR code properly, we obtained a dataset directly from
the BEAR authors and ran the BEAR algorithm with a specific set of hyper-parameters among their
recommendations. Specifically, we used their version "0” with “use ensemble variance” set to False
and employ Laplacian kernel. The dataset provided by the authors was for Hopper-v2 with mediocre
performance. The performance we obtained is shown in Figure 1, which fully matches the Hopper-v2
case in Figure 3 in [5]. Also, we observed that for some of our batches, we obtained very similar
results to what is shown in the BEAR paper.

Figure 1: Our results when we apply BEAR to the authors’ dataset. This figure matches Figure 3 in
Kumar et al. [5].

However, the results shown in Tables 1 and 2 show that BEAR can sometimes have poor performance,
much worse than what is shown in [5, 13]. This is because in [5, 13], hyper-parameters are optimized
separately for each of the MuJoCo environments. In this paper, as discussed above, for each algorithm
we use one set of hyper-parameters. In the case of BEAR, we use one of their recommended hyper-
parameter settings for all environments and batches, namely, their version "0” with “use ensemble
variance” set to False and employ the Laplacian kernel.

MARWIL The authors of MARWIL do not provide an open-source implementation of their algorithm.
Furthermore, experiments in [12] are carried out on environments like HFO and TORCS which are
considerably different from MuJoCo. We replicate all implementation details discussed in MARWIL,
except that we use the same network architectures used for BCQ, BEAR and BAIL to ensure a fair
comparison. We use the same augmentation heuristic for the returns as we use in BAIL. We use the
recommended hyper-parameters given by the MARWIL authors.

C.3 Common Hyper-parameters across all batch RL algorithms

Network size A common feature among all the batch DRL algorithms is that they have a policy
neural network. BCQ and BEAR both have an architecture consisting of 400 × 300 hidden units
with ReLU activation units. We use exactly the same network architecture for the policy network
for BAIL and Progressive BAIL. For the IL-based algorithms, we also use this same policy network
architecture.

Learning rate All algorithms considered in our experiments use the same learning rate of 1 · 10−3

for the policy network, which is also the default in BCQ and BEAR.

C.4 Evaluation methodology employed for all batch RL algorithms

To evaluate the performance of the current policy during training, we run ten episodes of test runs
with the current policy and record the average of the returns. This is done with the same frequency
for each algorithm considered in our experiments.

For a test episode, we sometimes encounter an error signal from the MuJoCo environment, and
thus are not able to continue the episode. In these cases, we assign a zero value to the return for
the terminated episode. In Tables 1 and 2 of the paper, there are a few entries with zero mean and
zero standard deviation. These zeros are due to repeatedly encountering this error signal for the test
runs using different seeds, with each test run getting a zero value for the return. This happens for
BEAR in several batches, which is likely because we are not using different hyper-parameters for
each environment.

5

D Ablation studies for BAIL

D.1 Augmented return versus oracle performance

To validate our heuristic for the augmented returns, we compute oracle returns by letting episodes run
up to 2000 time steps. In this manner, every return is calculated with at least 1000 actual rewards, and
is therefore essentially exact due to discounting. Figure 2 compares the performance of BAIL using
our augmentation heuristic and BAIL using the oracle for Hopper-v2 for seven diverse batches. The
results show that our augmentation heuristic typically achieves oracle-level performance. We conclude
that our augmentation heuristic is a satisfactory method for addressing continual environments such
as MuJoCo, which is also confirmed with its good performance shown in Table 2 .

(a) DDPG training batch
with σ = 0.5

(b) DDPG training batch
with σ = 0.1

(c) SAC mediocre
execution

batch with σ = 0

(d) SAC mediocre
execution

batch with σ = σ(s)

(e) SAC optimal execution
batch with σ = 0

(f) SAC optimal execution
batch with σ = σ(s)

(g) SAC training batch

Figure 2: Augmented Returns versus Oracle Performance. All learning curves are for the Hopper-v2
environment. The x-axis ranges from 50 to 100 epochs since this comparison involves only BAIL.
The results show that the augmentation heuristic typically achieves oracle-level performance.

6

D.2 Ablation study for data selection

BAIL uses an upper envelope to select the “best” data points for training a policy network with
imitation learning. It is natural to ask how BAIL would perform when using the more naive approach
of selecting the best actions by simply selecting the same percentage of data points with the highest
Gi values. Figure 3 compares BAIL with the algorithm that simply chooses the state-action pairs
with the highest returns (without using an upper envelope). The learning curves show that the upper
envelope is a critical component of BAIL.

(a) Hopper σ = 0.5 1st (b) Hopper σ = 0.5 2nd (c) Hopper σ = 0.1 1st (d) Hopper σ = 0.1 2nd

(e) Walker2d σ = 0.5 1st (f) Walker2d σ = 0.5 2nd (g) Walker2d σ = 0.1 1st (h) Walker2d σ = 0.1 2nd

(i) HalfCheetah σ = 0.5
1st

(j) HalfCheetah σ = 0.5
2nd

(k) HalfCheetah σ = 0.1
1st

(l) HalfCheetah σ = 0.1
2nd

Figure 3: Ablation study for data selection. The figure compares BAIL with the algorithm that
simply chooses the state-action pairs with the highest returns (without using an upper envelope). The
learning curves show that the upper envelope is critical components of BAIL.

7

D.3 Ablation study using standard regression instead of an upper envelope

Figure 4 compares BAIL with the more naive scheme of using standard regression in place of an
upper envelope. The learning curves show that the upper envelope is a critical component of BAIL.

(a) Training SAC,
Hopper

(b) Training SAC,
Walker2d

(c) Training SAC,
Ant

(d) Training SAC,
Humanoid

(e) Training DDPG
σ = 0.5, Hopper

(f) Training DDPG
σ = 0.5, Walker2d

(g) Training DDPG
σ = 0.1, Hopper

(h) Training DDPG
σ = 0.1, Walker2d

Figure 4: Ablation study using standard regression instead of an upper envelope. The figure compares
BAIL with the more naive scheme of using standard regression in place of an upper envelope. The
learning curves show that the upper envelope is a critical component of BAIL.

E Performance for execution batches

As discussed in the main body of the paper, we also performed experiments for execution batches.
Once again, for a given algorithm, we use the same hyper-parameters for all environments and batches
(training ane execution). We see from Table 2 that BC, MARWIL, BAIL, and BCQ have similar
overall performance, with BC and MARWIL having the highest number of wins and also being
slightly stronger in terms of average performance. MARWIL has one more win compared to BC,
but slightly lower average performance. Comparing BAIL and BCQ, BAIL has a slightly stronger
average performance score, and BCQ has a few more wins.

8

Table 2: Performance of Five Batch DRL Algorithms for 40 different execution datasets.

ENVIRONMENT BAIL BCQ BEAR BC MARWIL

M σ = 0 HOPPER B1 1026± 0 901± 132 4± 1 1026± 0 1026± 0
M σ = 0 HOPPER B2 696± 233 805± 312 19± 23 977± 0 977± 1
M σ = 0 WALKER B1 437± 20 525± 45 380± 194 444± 16 439± 17
M σ = 0 WALKER B2 500± 12 554± 29 546± 28 489± 15 504± 4
M σ = 0 HC B1 4057± 69 4255± 150 4470± 96 4032± 72 4073± 55
M σ = 0 HC B2 4013± 12 4438± 25 4395± 31 3998± 4 3999± 6
M σ = 0 ANT B1 753± 9 996± 52 734± 43 730± 7 732± 11
M σ = 0 ANT B2 738± 4 994± 12 988± 30 708± 11 725± 7
M σ = 0 HUMANOID B1 4313± 139 3108± 510 0± 0 4507± 481 4521± 156
M σ = 0 HUMANOID B2 4053± 252 2906± 226 0± 0 3994± 530 3940± 165
M σ = σ(s) HOPPER B1 375± 52 881± 155 0± 0 1026± 0 1026± 0
M σ = σ(s) HOPPER B2 254± 102 961± 25 3± 7 977± 0 977± 0
M σ = σ(s) WALKER B1 384± 21 399± 21 507± 7 369± 10 359± 15
M σ = σ(s) WALKER B2 512± 24 517± 19 515± 30 527± 12 532± 5
M σ = σ(s) HC B1 4744± 19 5500± 12 5443± 21 4415± 25 4439± 59
M σ = σ(s) HC B2 4123± 19 4712± 40 4824± 51 3928± 18 3936± 18
M σ = σ(s) ANT B1 790± 9 1068± 12 1161± 32 775± 7 774± 15
M σ = σ(s) ANT B2 781± 6 1089± 29 1150± 18 768± 5 761± 6
M σ = σ(s) HUMANOID B1 1375± 387 489± 87 0± 0 1947± 901 1963± 264
M σ = σ(s) HUMANOID B2 1309± 372 816± 177 0± 0 3021± 1042 2976± 241
O σ = 0 HOPPER B1 2602± 5 1976± 383 1904± 321 2594± 8 2603± 4
O σ = 0 HOPPER B2 3046± 34 3014± 47 2202± 410 3071± 10 3050± 22
O σ = 0 WALKER B1 2735± 26 2409± 235 877± 1077 2646± 133 2691± 121
O σ = 0 WALKER B2 3019± 6 3019± 45 0± 0 3014± 5 3013± 5
O σ = 0 HC B1 11265± 243 10405± 275 1755± 1142 11674± 90 11661± 49
O σ = 0 HC B2 11360± 265 10792± 209 1139± 960 11797± 29 11691± 96
O σ = 0 ANT B1 4901± 65 4646± 179 1756± 2151 4881± 74 4933± 74
O σ = 0 ANT B2 4975± 108 4734± 100 0± 0 5041± 29 4974± 52
O σ = 0 HUMANOID B1 4872± 895 4884± 641 0± 0 5462± 124 5503± 1
O σ = 0 HUMANOID B2 5320± 125 5362± 54 0± 0 5413± 64 5413± 29
O σ = σ(s) HOPPER B1 2359± 153 2650± 99 1962± 300 1952± 85 2012± 101
O σ = σ(s) HOPPER B2 2035± 217 1678± 113 1461± 75 2063± 95 2092± 100
O σ = σ(s) WALKER B1 2834± 120 3386± 196 3278± 128 2024± 131 1987± 114
O σ = σ(s) WALKER B2 3200± 16 3375± 12 2100± 1715 3091± 15 3090± 10
O σ = σ(s) HC B1 10258± 1255 10928± 215 694± 651 11659± 75 11663± 44
O σ = σ(s) HC B2 10882± 634 11755± 97 1470± 1211 11871± 57 11819± 78
O σ = σ(s) ANT B1 4981± 91 4878± 117 3462± 1740 5000± 79 4992± 86
O σ = σ(s) ANT B2 5067± 83 5054± 157 0± 0 5079± 55 5124± 47
O σ = σ(s) HUMANOID B1 2129± 381 1715± 637 0± 0 3514± 1195 3180± 503
O σ = σ(s) HUMANOID B2 4328± 569 1970± 512 0± 0 4875± 885 4772± 272

9

F Learning Curves for all 62 Batches

F.1 DDPG training batches

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2

Figure 5: Performance of batch DRL algorithms on DDPG training batches with σ = 0.5. The policy
networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs
after training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2

Figure 6: Performance of batch DRL algorithms on DDPG training batches with σ = 0.1. The policy
networks for all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs
after training the upper envelope for 50 epochs.

10

F.2 SAC training batches

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure 7: Performance of batch DRL algorithms on SAC training batches. The policy networks for
all algorithms are trained for 100 epochs except BAIL, which is trained for 50 epochs after training
the upper envelope for 50 epochs.

11

F.3 SAC mediocre execution batches

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure 8: Performance of batch DRL algorithms on SAC mediocre execution batches with σ = 0.
The policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for
50 epochs after training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure 9: Performance of batch DRL algorithms on SAC mediocre execution batches with σ = σ(s).
The policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for
50 epochs after training the upper envelope for 50 epochs.

12

F.4 SAC optimal execution batches

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure 10: Performance of batch DRL algorithms on SAC optimal execution batches with σ = 0.
The policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for
50 epochs after training the upper envelope for 50 epochs.

(a) Hopper, batch 1 (b) Hopper, batch 2 (c) Walker2d, batch 1 (d) Walker2d, batch 2

(e) HalfCheetah, batch 1 (f) HalfCheetah, batch 2 (g) Ant, batch 1 (h) Ant, batch 2

Figure 11: Performance of batch DRL algorithms on SAC optimal execution batches with σ = σ(s).
The policy networks for all algorithms are trained for 100 epochs except BAIL, which is trained for
50 epochs after training the upper envelope for 50 epochs.

13

F.5 Learning curves for Humanoid

(a) training data, batch 1 (b) training data, batch 2

(c) mediocre σ = σ(s),
batch 1

(d) mediocre σ = σ(s),
batch 2

(e) mediocre σ = 0, batch
1

(f) mediocre σ = 0, batch
2

(g) optimal σ = σ(s),
batch 1

(h) optimal σ = σ(s),
batch 2 (i) optimal σ = 0, batch 1 (j) optimal σ = 0, batch 2

Figure 12: Performance of batch DRL algorithms with the Humanoid-v2 environment. All batches
are obtained with SAC.

14

G Visualization of the Upper Envelopes

(a) Hopper σ = 0.5 1st (b) Hopper σ = 0.5 2nd (c) Walker2d σ = 0.5 1st (d) Walker2d σ = 0.5 2nd

(e) HalfCheetah σ = 0.5
1st

(f) HalfCheetah σ = 0.5
2nd (g) Hopper σ = 0.1 1st (h) Hopper σ = 0.1 2nd

(i) Walker2d σ = 0.1 1st (j) Walker2d σ = 0.1 2nd (k) HalfCheetah σ = 0.1
1st

(l) HalfCheetah σ = 0.1
2nd

Figure 13: Typical Upper Envelopes for BAIL. For each figure, states are ordered from lowest V (si)
upper envelope value to highest. Thus the upper envelope curve is monotonically increasing. Each
curve is trained with one million returns, shown with the orange dots. Note that the upper envelope
lies above most data points but not all data points.

H Computing Infrastructure

Experiments are run on Intel Xeon Gold 6248 CPU nodes, each job runs on a single CPU with base
frequency of 2.50GHZ.

15

References
[1] Scott Fujimoto, Herke van Hoof, and Dave Meger. Addressing function approximation error in

actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[2] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. arXiv preprint arXiv:1812.02900, 2019. URL http://arxiv.org/abs/
1812.02900.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter Regularization
for Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. arXiv preprint arXiv:1906.00949, 2019. URL http://
arxiv.org/abs/1906.00949.

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[7] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming, chapter Penalty and
Barrier Methods. Springer, 2008.

[8] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[10] Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforce-
ment learning. arXiv preprint arXiv:1805.11706, 2018.

[11] Che Wang, Yanqiu Wu, Quan Vuong, and Keith Ross. Towards simplicity in deep reinforcement
learning: Streamlined off-policy learning. ICML, 2020.

[12] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted
imitation learning for batched historical data. In Advances in Neural Information Processing
Systems, pages 6288–6297, 2018.

[13] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[14] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

16

http://arxiv.org/abs/1812.02900
http://arxiv.org/abs/1812.02900
http://www.deeplearningbook.org
http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1906.00949

	Proofs of Theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Algorithmic Implementation
	Pseudo-Code and Early Stopping Scheme for Upper Envelope Training
	Hyper-parameters of BAIL

	Experimental Details
	Hyper-parameter consistency
	Reproduction of the Baseline Algorithms
	Common Hyper-parameters across all batch RL algorithms
	Evaluation methodology employed for all batch RL algorithms

	Ablation studies for BAIL
	Augmented return versus oracle performance
	Ablation study for data selection
	Ablation study using standard regression instead of an upper envelope

	Performance for execution batches
	Learning Curves for all 62 Batches
	DDPG training batches
	SAC training batches
	SAC mediocre execution batches
	SAC optimal execution batches
	Learning curves for Humanoid

	Visualization of the Upper Envelopes
	Computing Infrastructure

