
Reviewer #11

Re. statement of lower bound (Theorem 1): The theorem statement should say "there exists a GCC choice model2

with ∆GCC
min = ∆ such that...". We will correct this in the final version if accepted.3

Re. structured bandits lower bound: Thanks for pointing us to this reference (which we will certainly include).4

Although our choice bandits problem can be cast as a structured bandit problem, this existing lower bound is in terms of5

the solution of an LP, and it is not clear how this solution relates to the gaps in the underlying choice model instance.6

The main novelty in our lower bound is to construct a distribution over hard instances which allows us to identify a7

fundamental gap parameter quantifying the regret any algorithm must incur.8

Re. choice of parameter C in our algorithm (and Theorem 2): The parameter C can indeed be chosen in a problem-9

independent manner. In particular, setting C = T 4 suffices for Theorem 2 to hold, giving a regret upper bound of10

O(log(TC)) = O(log(T 5)) = O(log(T )). (If T is not known, we can use the doubling trick.) To see why the choice11

C = T 4 suffices, note that in the proof of Theorem 2, we mention it is sufficient for C to be larger than a term C ′12

(defined at the end of page 11 in the supplementary material). While the term C ′ is problem-dependent, we do not13

actually need to know its exact value to set C larger than it. In particular, note that C ′ is upper bounded by
(
1/∆GCC

min

)4
;14

moreover, in order to obtain any non-trivial upper bound for our algorithm, ∆GCC
min has to be larger than 1/T . Hence,15

either C ′ is upper bounded by T 4, or the instance is too hard to allow any non-trivial upper bound. Therefore, setting16

C = T 4 suffices to ensure C ≥ C ′ whenever the instance is not already too hard. We actually believe setting C = T 417

may be somewhat pessimistic (it arises from taking a union bound over all possible states of the algorithm in Lemma 2) –18

indeed, in our experiments, we set C = 1 for all datasets, and our algorithm still demonstrates sublinear regret with this19

choice – but it certainly suffices, and the regret bound with C = T 4 is at most a constant factor 5 times what one might20

get with C = 1 if the regret bound holds in that case. We will add a discussion on this in the final version if accepted.21

Reviewer #222

Thanks for the suggestions for making the paper more self-contained, and also for the reference on dynamic learning in23

the MNL model. We will incorporate all these suggestions and include this reference in the final version if accepted.24

Re. high-level goal (and notion of regret): The goal is to identify the ‘best’ arm while also playing good/competitive25

assortments during the exploration phase. This is similar to dueling bandit settings where the goal is to identify the26

best arm while also playing good/competitive pairs during the exploration phase; we are not working in the pure27

exploration setting, where all assortments/pairs in the exploration phase incur uniform cost. Accordingly, our notion of28

regret penalizes an algorithm for playing assortments that are not ‘competitive’. (E.g. in the case of the MNL model, if29

vi ≈ 0 for some arm i, then an algorithm incurs a lot of regret for playing i.) We will certainly clarify this.30

Re. real-world applications: Essentially, we are interested in applications where the goal is to identify the ‘best’31

item/product (or more generally, in future work, a collection of ‘good’ items/products), while also serving well the users32

with whom the learning system interacts during the exploration phase in order to identify such items. Applications33

could include online advertising, recommender systems, and online ranker evaluation for information retrieval. The34

latter can be viewed as a generalization of the ranker evaluation application considered by Yue and Joachims (ICML35

2009), in which the goal was to identify the better of two ranking systems by interleaving their results and using a36

dueling bandit formulation; our setting would allow extending this to the identification of the best among k ≥ 2 ranking37

systems by ‘multi-leaving’ their results, all while still presenting acceptable/good results to the users who are using the38

system during the exploration phase. We will be happy to add some comments on this as well.39

Reviewer #340

Re. lower bound (Theorem 1): Yes, your intuition is correct. Please also see our response to Reviewer #1 above.41

Re. upper bound (Theorem 2): You are right; the O(n2 log n) term suppresses some problem dependent terms. The42

only reason for this was to simplify the exposition and to emphasize our algorithm is asymptotically order optimal43

as this term does not increase with T . The precise value of this term is given by O(n log n ×
∑

i 6=i∗
1

d(1/2,PGCC
i∗i

)
),44

where d(·, ·) is the KL-divergence. We have seen a similar approach to writing regret upper bounds in other papers (e.g.45

RMED paper), but we agree it would be good to be more precise upfront; we will certainly add a note on this.46

Re. parameter C: This can be chosen in a problem-independent manner. Please see our response to Reviewer #1.47

Re. discussion after Theorem 2: Our intention was to highlight that the bound is not directly a function of k, but48

rather has a more subtle dependence through the problem parameters. When k increases, we consider larger sets and49

a broader problem instance, and hence, the terms ∆GCC
max and ∆GCC

min change. There is indeed a gap in the upper and50

lower bounds in the general GCC case, but even in this case, the dependence on other parameters such as n and T is51

asymptotically order-optimal. We will clarify these points in the final version if accepted.52


