
Choice Bandits
Supplementary Material

A Organization

We provide additional discussion about the related work in Appendix B. We provide the proof of our regret lower
bound (Theorem 1) in Appendix C. We prove a concentration inequality for pairwise estimates in Appendix D. We
then provide the proof of our regret upper bound (Theorem 2) in Appendix E. In Appendix F we provide additional
details about our experimental setup. In Appendix G we provide experimental results for an alternate notion of regret.
Appendix H contains some technical lemmas used in the proof of the upper bound result in Theorem 2.

B Related Work

There has been some recent interest in bandit settings where more than two arms are played at once (although no
previous work considers choice models at the level of generality we do). We review related work here and provide a
summary in Table 1.
Multi-dueling bandits: In multi-dueling bandits [1, 2, 3], the learner pulls a set St of k items; however, the feedback
received by the learner is assumed to be drawn from a pairwise comparison model (in particular, the learner observes
some subset of the

(
k
2

)
possible pairwise comparisons among items in St). In contrast, in our choice bandits setting,

the learner receives the outcome of a direct multiway choice among the items in St, generated from a multiway choice
model.
Combinatorial bandits: In combinatorial (semi) bandits [4, 5, 6, 7], each arm i is associated with an unknown
random variable (stochastic reward) Yi; the learner pulls a set St of up to k arms, and observes the realized rewards
yt(i) for all arms i in St. In contrast, we only observe the arm that is chosen from the set St that is played.
Combinatorial bandits with relative feedback: In this very recent framework [8], the learner pulls a set St of up
to k arms, and observes top-m ordered feedback drawn according to the MNL model, for some m ≤ k. In contrast,
we only observe the (top-1) choice feedback from the set St that is played. Moreover, we study a much more general
class of choice models than the MNL model studied by them.
Stochastic Click Bandits: In stochastic click bandits [9], the learner pulls an ordered set of k arms/documents, and
observes clicks on a subset of these documents, drawn according to an underlying click model which is a probabilistic
model for click generation over an ordered set. However, click models in their setting are different than choice models
in our setting, and neither can be cast as a special case of the other.
Battling Bandits: Another related setting is that of battling bandits [10], where the learner pulls a set St of exactly k
arms and receives a feedback indicating which arm was chosen. However, their setting considers a specific pairwise-
subset (PS) choice model that is defined in terms of a pairwise comparison model, whereas we consider much more
general choice models.
Preselection Bandits: There has been a recent framework called preselection bandits [11] where two settings are
considered: (1) where the learner pulls a set St of size exactly k, (2) where the learner pulls a set St of any size less
than n. In both settings the learner receives feedback drawn from the MNL model. Firstly, the two settings considered
by this paper are different than our setting where the learner plays a set of size up to k. Secondly, we study a much
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Rep. Arms Pulled Feedback in
Problem Paper in Round t Round t Goal

Dueling Bandits [19] (it, jt) ∈ [n]2 yt ∈ {it, jt} Min. regret w.r.t. best arm
Multi-dueling Bandits [3] St ∈ [n]k Yt={0, 1, ∅}k×k Min. regret w.r.t. best arm
Combinatorial Bandits [6] St ∈ S ⊆ 2[n]:|St| ≤ k yt(i) ∈ R ∀i ∈ St Min. regret w.r.t. top-k arms

Com. Ban. Relative Feed. [8] St ⊆ [n]:|St| ≤ k Ot ⊆ St, |Ot| ≤ m Min. reg. w.r.t. best arm (MNL)
Battling Bandits [10] St ∈ [n]k yt ∈ St Min. reg. w.r.t. best arm (PS)

Stochastic Click Bandits [9] Ot ⊆ [n]:|Ot| = k, yt ⊆ Ot Max. expected clicks
Dynamic Assortment [13] {0} ∪ St ⊆ [n]:|St| ≤ k yt ∈ St Max. expected revenue

Choice Bandits This paper St ⊆ [n]:|St| ≤ k yt ∈ St Min. regret w.r.t. best arm

Table 1: Overview of related work in regret minimization settings. There are several definitions of ‘best’ arm; the
reader is encouraged to refer to the relevant papers and to our problem setting for details. (Note: in multi-dueling
bandits, ∅ denotes no feedback; in stochastic click bandits, Ot denotes an ordered set; in combinatorial bandits, S
denotes a set of allowed subsets; in dynamic assortment optimization, 0 denotes the “no-purchase” option.)

more general class of choice models than the MNL model studied by them.
Dynamic assortment optimization: In dynamic assortment optimization [12, 13, 14, 15, 16], there are n products
and each product is associated with a revenue. The learner plays an assortment St of up to k products, and observes a
feedback indicating which (if any) of the products was purchased; the goal of the learner is to maximize the expected
revenue.
Best-of-k bandits (PAC setting). [17] consider a best-of-k bandits setting, where again the learner pulls a set St of k
arms; however here each arm i is associated with an unknown random variable (stochastic reward) Yi. Of the various
types of feedback that are considered, the marked bandit feedback corresponds to a setting that is similar to our choice
bandits framework, however, the analysis in [17] is in the PAC/pure exploration setting, while ours is in the regret
minimization setting.
Top-k identification under MNL model (PAC setting). Recently, there has also been work on identifying the top-k
items under an MNL model from actively selected sets St in the PAC/pure exploration setting [18].

C Proof of Lower Bound (Theorem 1)

We say that an algorithm is strongly consistent under GCC if its expected regret over T trials is o(T a) for a constant
a < 1 under any model in this class.

Theorem 1. Given a set of arms [n], choice set size bound k ≤ n, parameter ∆ ∈ (0, 1), and any strongly consistent
algorithmA under GCC, there exists a GCC choice model with ∆GCC

min = ∆ such that when choice outcomes are drawn
from this model we have

lim inf
T→∞

E [R(T )]

log T
= Ω

(
n− 1

∆

)
,

where T is the time-horizon. If the underlying model is MNL with parameters v1, v2, · · · vn ∈ R, then:

lim inf
T→∞

E [R(T )]

log T
= Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i

 ,

where ∆MNL
i∗i = evi∗−evi

evi∗+evi , for i ∈ [n] \ {i∗}.

The above theorem states that there exists a model in the GCC class where any strongly consistent algorithm needs to
incur Ω(n log T ) regret. If the underlying model is MNL, then such an algorithm will again incur Ω(n log T ) regret,
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however, we provide a more refined instance-wise bound in this case. Also note the difference in quantifiers ‘there
exists’ for GCC and ‘for any’ for MNL.
We will prove this theorem using the following change of measure lemma of [20].

Lemma 3 ([20]). Consider two multi-armed bandit instances where A is the set of arms, and the two different collec-
tions of reward distributions are µ = {µi : ∀i ∈ A} and µ′ = {µ′i : ∀i ∈ A}, let it be the arm played at trial t by
an algorithm and Xt be the reward at time t, and let Ft = σ(i1, X1, · · · , it, Xt) be the sigma algebra upto time t.
Consider a FT measurable random variable Z ∈ [0, 1], then∑

i∈A
Eµ[Ni(T )]KL(µi, µ

′
i) ≥ d(Eµ[Z],Eµ′ [Z]) ,

where Ni(T ) denotes the number of pulls of arm i in T trials and KL is the Kullback-Leibler divergence between two
distributions, and d(p; q) is the Kullback-Leibler divergence between Bernoulli distributions with parameters p and q.

In the proof of the lower bound we first bound the number of times an arm is played using the above lemma, and then
bound the total regret due to this arm. Let us first define the regret per arm i ∈ [n] as

R(T, i) =

T∑
t=1

1[i ∈ St] · (Pi∗|St∪i∗ − Pi|St∪i∗) .

We will now provide the proof of the lower bound.

Proof of Theorem 1. Given a ∆ ∈ (0, 1), we will construct instance P of the choice bandits problem with n arms such
that the GCW arm i∗ is arm 1. Under this instance, given any set S such that i∗ ∈ S, we have Pi∗|S = 1+∆

|S|(1−∆)+2∆

and for any i ∈ S \ {i∗}, Pi|S = 1−∆
|S|(1−∆)+2∆ . Given any set S such that i∗ /∈ S, we will let an arbitrary chosen arm

i∗S ∈ S be the arm with the highest choice probability in S. We have Pi∗S |S = 1+∆
|S|(1−∆)+2∆ , and for any i ∈ S \ {i∗S},

Pi|S = 1−∆
|S|(1−∆)+2∆ . Note that i∗S will be equal to i∗ when i∗ ∈ S. For any set S with |S| ≥ 2 and i ∈ S, the instance

P also satisfies that 3
2

(
Pi∗|S∪i∗ − Pi|S∪i∗

)
≥ Pi∗S |S − Pi|S .

For i ∈ [n] \ {1}, we will now modify this instance to create a new instance P′ where the GCW arm is i. Now, in the
new instance, for any set S, we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S and for all j ∈ S \ {i∗S , i} we will
have P ′j|S := Pj|S . Clearly, the best arm in this new instance is the arm i as it has the highest choice probability in
any choice set. It is also easy to verify that both instances belong to the GCC class.
Now, given any set S, the probability distributions PS and P ′S associated with this set are categorical distributions
where the feedback is j with probability Pj|S and Pj′|S , respectively. Now, let A := {S ⊆ [n] : |S| ≤ k} be the set of
choice sets of size at most k. We can then use Lemma 3 with arms corresponding to sets in A and the reward for set S
being drawn from categorical distributions PS and P ′S . We then have the following bound–∑

S∈A
EP[NS(T )]KL(PS , P

′
S) ≥ d(EP[Z],EP′ [Z]) .

where NS(T ) is the number of times set S is played in T rounds, and Z is any FT measurable random variable. Also,
let Ai = {S ∈ A \ {i} : i ∈ S} be all sets that contain i except the singleton set {i}. Since, we have that for any
S ∈ A \Ai the KL divergence KL(PS , P

′
S) = 0, then the above bound becomes:∑

S∈Ai

EP[NS(T )]KL(PS , P
′
S) ≥ d(EP[Z],EP′ [Z]) .

Given any set S ∈ Ai we can now calculate the KL divergence between the two categorical distributions using the
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inequality KL(p, q) ≤
∑
x∈X

(p(x)−q(x))2

q(x) , where X is the support of the two distributions.

KL(PS , P
′
S) ≤

∑
j∈S

(Pj|S − P ′j|S)2

P ′j|S

=
(Pi|S − P ′i|S)2

P ′i|S
+

(Pi∗S |S − P
′
i∗S |S

)2

P ′i∗S |S

=
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

Now, similar to [8], let Z be the fraction of times out of T the singleton set {i} is played, i.e. Z = Ni(T )/T where
Ni(T ) counts the number of times set {i} is played. We will then have

d(EP[Z],EP′ [Z]) ≥
(

1− EP[Ni(T )]

T

)
ln

T

T −EP′ [Ni(T )]
− ln 2 .

Since, the algorithm is strongly consistent it can only play a suboptimal arm {i} only a sublinear number of times, i.e.
EP[Ni(T )] = o(Tα) and T −EP′ [Ni(T )] = o(Tα) for some α < 1. Hence, we have that

lim
T→∞

1

lnT
d(EP[Z],EP′ [Z]) ≥ lim

T→∞

1

lnT

(
1− o(Tα)

T

)
ln

T

o(Tα)
− ln 2 ≥ (1− α) . (C.1)

Combining this with the previous inequality, we have that

lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )]

(
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )] · (Pi|S − Pi∗S |S)

(
(Pi|S − Pi∗S |S)

Pi∗S |S
+

(Pi|S − Pi∗S |S)

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T )] · 3

2
· (Pi∗|S∪i∗ − Pi|S∪i∗)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α)

lim
T→∞

1

lnT
E[R(T, i)] · 3

2

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) ,

where the second last equation follows from the properties of the underlying instance, and the last equation follows
from the definition of regret per arm. We will now argue that(

(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
=

2∆

1 + ∆
+

2∆

1−∆
=

4∆

(1 + ∆)(1−∆)
.

Using this we will have that

lim
T→∞

1

lnT
E[R(T, i)] · 3

2

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T, i)] · 4∆

(1 + ∆)(1−∆)
≥ (1− α) · 2

3

=⇒ lim
T→∞

1

lnT
E[R(T, i)] ≥ (1− α) · (1 + ∆)(1−∆)

4∆
· 2

3
.
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We also have that (1+∆)(1−∆)
4∆ = Ω( 1

∆ ) for any ∆ bounded away from 1. Since, we have that R(T ) =
∑
i∈[n]R(T, i)

we get that

lim
T→∞

1

lnT
E[R(T )] = Ω

(
n− 1

∆

)
,

which concludes the proof of the lower bound for the general GCC class.
Now, given any MNL instance, we also derive a regret lower bound which gives the minimum instance-wise regret
any strongly-consistent algorithm for the GCC class needs to incur under this MNL instance.
Consider an instance P with an underlying MNL model with weights v1, · · · , vn. We will assume that all these
weights are distinct for simplicity, otherwise we can add a small perturbation to these weights to break ties. We will
re-parameterize this instance, and let wi := log vi for any i ∈ [n]. Given any set S, let wS =

∑
j∈[n] wj . We

have that Pi|S = wi/wS for any i ∈ S. Given S, we will again let i∗S to be the arm that has the highest choice
probability in S, i.e. i∗S = argmaxi∈S wi. We will denote by κ the ratio of the maximum weight to minimum weight,
i.e. κ = maxi wi/minj wj .
For i ∈ [n] \ {1}, we will now modify this instance to create a new instance P′ where the GCW arm is i. In the new
instance, for any set S, we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S and for all j ∈ S \ {i∗S , i} we will have
P ′j|S := Pj|S . Clearly, the best arm in this new instance is the arm i as it has the highest choice probability in any
choice set. It is also easy to verify that this new instance P′ belongs to the GCC class. Note that P′ might not belong
to the MNL class. Under the instance P we have that (1 + κ)(Pi∗|S∪i∗ − Pi|S∪i∗) ≥ (Pi∗S |S − Pi|S).
Given these two instances, we can follow steps analogous to the proof of the GCC case, to derive the following bound

lim
T→∞

1

lnT
E[R(T, i)] · (1 + κ)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) .

We now have that(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
=
wi∗S − wi

wi
+
wi∗S − wi
wi∗S

=
wi∗S − wi
wi∗S + wi

(
wi∗S + wi

wi
+
wi∗S + wi

wi∗S

)
≤ wi∗ − wi
wi∗ + wi

(3 + κ) = ∆MNL
i∗i (3 + κ)

Using the same steps as above we have that

lim
T→∞

1

lnT
E[R(T, i)] ≥ (1− α) · 1

∆MNL
i∗i

· 1

(3 + κ)(1 + κ)
.

Since, we have that R(T ) =
∑
i∈[n]R(T, i) we get that

lim
T→∞

1

lnT
E[R(T )] = Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i

 ,

which concludes the proof of the lower bound for the MNL case.

Note that the lower bound for the MNL model also implies a lower bound for the general GCC class. However,
we chose to construct an instance outside MNL for the GCC lower bound in order to show that such a lower bound
also holds beyond the MNL. Also, note that the lower bound in [8] for MNL under MNL consistent algorithms is
worst-case while our lower bound for MNL under GCC consistent algorithms applies to all MNL instances.
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D A Concentration Inequality for Pairwise Estimates

In this section we will prove our concentration inequality that would be needed to bound the deviation in the pairwise
preference estimates extracted from multiway comparisons.

Lemma 2. Consider a GCC choice model with GCW i∗. Fix i ∈ [n]. Let S1, · · · , ST be a sequence of subsets of
[n] and y1, · · · , yT be a sequence of choices according to this model, let Ft = {S1, y1, · · · , St, yt} be a filtration
containing the history of execution of the algorithm such that St+1 is a measurable function of Ft. Let P̂i∗i(t) be the
empirical probability estimate of i∗ beating i calculated according to Equation 4.1, then for any given t ∈ [T ] we have
that

Pr
(
P̂i∗i(t) ≤ PGCC

i∗i − ε and Ni∗i(t) ≥ m
)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )·m (D.1)

where

PGCC
i∗i = min

S:|S|≤k,{i∗,i}⊆S

Pi∗|S

Pi∗|S + Pi|S
, (D.2)

and d(·, ·) is the KL-divergence between two Bernoulli distributions, and Ni∗i(t) :=
∑t
t′=1 1(at′ = i, {i∗, i} ⊆

St′ , yt′ ∈ {i∗, i}). The above bound implies the following bound

Pr

(
P̂i∗i(t) ≤

1

2
;Ni∗i(t) ≥ m

)
≤ e−d( 1

2 ,P
GCC
i∗i )m (D.3)

We also have the following bound–

Pr
(
P̂ii∗(t) ≥ PGCC

ii∗ + ε;Ni∗i(t) ≥ m
)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )·m (D.4)

where PGCC
ii∗ = 1− PGCC

i∗i .

Proof. We will first prove inequality D.1. Let Z1, Z2, · · · be a sequence of i.i.d. Bernoulli random variables with
probability of success PGCC

i∗i . We will initialize a counter C to 0. Let us consider an alternate process for generating
multiway choices y′t from sets St. In this process, given any t and a set St such that i∗, i ∈ St with at = i, we first
generate a Bernoulli random variable Xt with probability Pi∗|S + Pi|S . If Xt = 0 we sample a multinomial random
variable Yt such that Yt = j with probability Pj|S

1−Pi∗|S−Pi|S
, for j ∈ S \ {i, i∗}, and let y′t = Yt. If Xt = 1, then

we increase the counter C by 1, and sample the Bernoulli random variable ZC with probability PGCC
i∗i . If ZC = 1 we

declare i∗ as the choice, i.e. y′t = i∗, otherwise if ZC = 0 we declare i to be the choice. Let Pi∗i|S = Pi∗|S/(Pi∗|S +
Pi|S). Now, we couple the process generating y′t and the process generating yt as follows: if y′t ∈ St \ {i} then we let
yt = y′t, otherwise if y′t = i then we let yt = i∗ with probability (Pi∗i|St

− PGCC
i∗i )/(1 − PGCC

i∗i ) and let yt = i with
probability (1− Pi∗i|St

)/(1− PGCC
i∗i ). The first thing to check is that yt is drawn from the correct probabilities Pyt|St

according to the underlying choice model. We have, for any j ∈ St \ {i∗, i}

Pr{yt = j|St} = Pr{Xt = 0, Yt = j|St}
= Pr{Xt = 0|St}Pr{Yt = j|Xt = 0, St}

=
(
1− Pi∗|St

− Pi|St

)
·

Pj|St

1− Pi∗|St
− Pi|St

= Pj|St

6



We also have that

Pr{yt = i∗|St} = Pr{Xt = 1, Yt = i∗|St}+
Pi∗i|St

− PGCC
i∗i

1− PGCC
i∗i

· Pr{Xt = 1, Yt = i|St}

=
(
Pi∗|St

+ Pi|St

)
·

(
PGCC
i∗i + (1− PGCC

∗i ) ·
Pi∗i|St

− PGCC
i∗i

1− PGCC
i∗i

)
=
(
Pi∗|St

+ Pi|St

)
·
(
Pi∗i|St

)
= Pi∗|St

where the last inequality follows from definition of Pi∗i|S . The fact that Pr{yt = i|St} = Pi|S follows from the fact
that the choice probabilities sum to 1.
Let Wi∗i(t) =

∑t
t′=1 1(at′ = i, {i∗, i} ⊆ St′ , yt′ = i∗) and W ′i∗i(t) =

∑t
t′=1 1(at′ = i, {i∗, i} ⊆ St′ , y

′
t′ = i∗).

Due to the above coupling, we immediately have that Pr(Wi∗i(t)) ≥ Pr(W ′i∗i(t)) for any t ∈ [T ]. Then

Pr(Wi∗i(t) ≤ r) ≤ Pr(W ′i∗i(t) ≤ r)

for any r ≥ 0, and any t ∈ [T ]. Using this, we have that

Pr
(
P̂i∗i(t) ≤ PGCC

i∗i − ε;Ni∗i(t) ≥ m
)

= Pr
(
Wi∗i(t) ≤ Ni∗i(t) · (PGCC

i∗i − ε);Ni∗i(t) ≥ m
)

≤ Pr
(
W ′i∗i(t) ≤ Ni∗i(t) · (PGCC

i∗i − ε);Ni∗i(t) ≥ m
)

Now, using techniques similar to [21], we have the following bound

Pr

(
W ′i∗i(t)

Ni∗i(t)
≤ PGCC

i∗i − ε;Ni∗i(t) ≥ m
)

= Pr

(∑Ni∗i(t)
s=1 Zs
Ni∗i(t)

≤ PGCC
i∗i − ε;Ni∗i(t) ≥ m

)

=

t∑
r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε;Ni∗i(t) = r

)

=

t∑
r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
Pr(Ni∗i(t) = r)

where the last equality holds because of the fact that Z1, Z2, · · · is an independent sequence of random variables that
do not lie in the sigma algebra of S1, · · · , St, X1, · · · , Xt. Using the KL-divergence based concentration inequality
from [22] we have that

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )r .

We then have that

t∑
r=m

Pr

(∑r
s=1 Zs
r

≤ PGCC
i∗i − ε

)
Pr(Ni∗i(t) = r) ≤

t∑
r=m

ed(PGCC
i∗i −ε,P

GCC
i∗i )r Pr(Ni∗i(t) = r) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i )m

The proof of reverse direction follows from a similar coupling argument followed by the above concentration inequal-
ity.

Note that the above coupling technique has similarity to the coupling used in [21] in order to show concentration of
pairwise estimates under the MNL model. However, this argument relies on the IIA property of MNL, which does not
hold under general GCC models.
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E Proof of Regret Bound for WBA

In this section we will prove the regret bound for our WBA algorithm. The following theorem presents the bound.

Theorem 2. Let n be the number of arms, k ≤ n be the choice set size parameter, and i∗ be the GCW arm . If the
multiway choices are drawn according to a GCC choice model with ∆GCC

min and ∆GCC
max defined in Equation 3.1, then for

any C ≥ 1/(∆GCC
min )4, the expected regret incurred by WBA is upper bounded by

E [R(T )] ≤O
(
n2 log n

(∆GCC
min )2

)
+O

(
n log(TC) · ∆GCC

max

(∆GCC
min )2

)
,

where T is the (unknown) time-horizon. If the underlying model is MNL with weights v1, · · · , vn ∈ R, then for any
C ≥ 1/(∆MNL

min )4, we have

E [R(T )] ≤O
(
n2 log n

(∆MNL
min )2

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆MNL
i∗i

 ,

where ∆MNL
i∗i = evi∗−evi

evi∗+evi and ∆MNL
min := mini 6=i∗ ∆MNL

i∗i .

The proof of the above theorem hinges on three main lemmas given below. Before stating these lemmas, we would
like to remind the reader that the execution of our algorithm is divided in rounds and each round contain up to n trials.
The first lemma bounds the number of rounds arm i∗ is not in the active set.

Lemma 4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}. The expected number of
rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
≤ 2 .

We will define ar to be the arm that empirically beats all other arms at the end of round r − 1 if such an arm exists,
i.e.
∑
j∈[n] 1[P̂jar (t) ≤ 1

2 ] = n− 1, where t is the last trial in round r− 1. If there is no arm that empirically beats all
other arms then we will let ar = 0. If there are multiple such arms, then we will choose one arbitrarily. The following
lemma will now bound the number of rounds arm i∗ does not empirically beat every other arm.

Lemma 5 (Time when i∗ is not the empirically best arm). The total number of rounds when the best arm i∗ will not
be the empirically best arm, even when it is in the active set, is upper bounded as

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
≤

∑
i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

,

where PGCC
i∗i is defined in Equation D.2.

Note that if ar = i∗ then the anchor arm in all the trials in that round becomes i∗. Let us define the regret per arm
i ∈ [n] for a set S as

r(S, i) = 1[i ∈ S] · (Pi∗|S∪i∗ − Pi|S∪i∗) .
The following lemma now bounds the regret incurred due to each suboptimal arm when played against the anchor i∗.

Lemma 6 (Regret due to a bad arm). Given an arm i ∈ [n] \ {i∗} the expected regret incurred due to arm i when arm
i∗ is the anchor is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)
,

where δ > 0 is some constant, and ∆GCC
i∗i = maxS:|S|≤k ∆i∗i|S .
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We will now prove the above theorem using the three lemmas above.

Proof of Theorem 2. The execution of the algorithm can roughly be divided into three intermittent phases– (1) when
the GCW arm i∗ is not in the active set, (2) when i∗ is in the active set but does not beat all other arms empirically, i.e.
ar 6= i∗, (3) when i∗ is in the active set and also beats all other arms empirically. The three lemmas above bound the
number of rounds spent in these three phases.
However, in order to prove a regret upper bound we will also have to bound the total regret incurred due to a single
round. The first thing to observe is that each arm is played at most once in each round except a few arms that might
be played multiple times due to step 6 of the algorithm. Hence, the regret for all steps except step 6 is upper bounded
by n as the regret for each arm is at most 1. Now, in order to bound the regret for step 6, we need to observe that the
number of times the anchor arm is changed in a single round can be at most log n. This is due to the fact that Ar \Q
reduces by a factor of at least 2 each time a new anchor arm is selected by the algorithm. Now, we can bound the
regret incurred due to step 6 of the algorithm by k log n ≤ n log n as the regret for each arm is upper bounded by 1
and there can be at most k arms added in step 6 per anchor arm.
Hence, we now have that

E[R(T )] ≤ n log n ·

(
E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
+ E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

])
+

∑
i∈[n]\{i∗}

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]

≤ n log n ·

2 +
∑

i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

+
∑

i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)

≤ O
(
n2 log n

(∆GCC
min )2

)
+ n ·∆GCC

max ·
2e

e− 1
· 1

Ω(δ2)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
· (1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

= O

(
n2 log n

(∆GCC
min )2

)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

2e

e− 1
· (1 + δ) log(TC)

d(PGCC
i∗i ,

1
2 )

where the third inequality follows from the well-known Pinsker’s inequality d(P,Q) ≥ 2(P − Q)2 and the last
inequality holds for any constant δ. Now again using the Pinsker’s inequality we have that d(PGCC

i∗i ,
1
2 ) ≥ (∆GCC

min )2/2.
For a general GCC model, we then have that

E[R(T )] ≤ O
(
n2 log n

(∆GCC
min )2

)
+

∑
i∈[n]\{i∗}

∆GCC
i∗i ·

4e

e− 1
· (1 + δ) log(TC)

∆GCC
min

≤ O
(
n2 log n

(∆GCC
min )2

)
+ n ·∆GCC

max ·
4e

e− 1
· (1 + δ) log(TC)

(∆GCC
min )2

which gives the desired bound under any GCC model.
Now, if the underlying GCC model is MNL, then we have d(PGCC

i∗i ,
1
2 ) ≥ (∆MNL

i∗i )2/2 and ∆GCC
i∗i = ∆MNL

i∗i . We then
have that

E[R(T )] ≤ O
(
n2 log n

(∆MNL
min )2

)
+

∑
i∈[n]\{i∗}

∆MNL
i∗i ·

4e

e− 1
· (1 + δ) log(TC)

(∆MNL
i∗i )2

= O

(
n2 log n

(∆MNL
min )2

)
+

∑
i∈[n]\{i∗}

4e

e− 1
· (1 + δ) log(TC)

∆MNL
i∗i

.
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E.1 Proof of Lemma 4

The following lemma calculates the expected number of rounds arm i∗ will not be played.

Lemma 4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}. The expected number of
rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]

]
≤ 2 .

Proof. We have that

E

[
T∑
r=1

1[i∗ /∈ Ar]

]
= E

[
T∑
r=2

1[i∗ /∈ Ar]

]
≤ E

[
T∑
t=2

1[¬Ji∗(t, C)]

]
.

The first equality above follows due to the fact that A1 will always include i∗. Using the union bound we have the
following inequality-

1[¬Ji∗(t, C)] ≤
∑

S⊆[n]\{i∗}

∑∑
· · ·
∑

{na}∈[T ]S

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}] .

Fix some set S ⊆ [n]\{i∗}. Also, let s := |S|. Fix some na ∈ [T ] for all a ∈ S. Let P̂na
i∗a be the empirical probability

of i∗ beating a after being pulled together na times. We will analyze the number of rounds that i∗ is excluded from
the active set due to the above configuration of S, {na}. The conditions Ji∗(t, C) will hold when

∑
a∈S

nad(P̂na
i∗a,

1

2
) ≤ log(t) + s log(nC) =⇒ t ≥ exp

(∑
a∈S

nad(P̂na
i∗a,

1

2
)− s log(nC)

)
.

Hence, we have that

∞∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}]

≤ exp

(∑
a∈S

nad(P̂na
i∗a,

1

2
)− s log(nC)

)
.

Now, we will use the method similar to the one used in Lemma 5 of [23], to bound the expectation of the above
quantity. Fix xa ∈ [0, log 2] for all a ∈ S. Let Pa(xa) = Pr

(
P̂na
i∗a ≤ 1

2 , d
+(P̂na

i∗a,
1
2 ) ≥ xa

)
, where d+(P,Q) =

10



1[P ≤ Q] · d(P,Q). We then have

E

[
T∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥ 1

2
} ∩ {¬Ji∗(t, C)}]

]

≤
∫
{xa}∈[0,log(2)]|S|

exp

(∑
a∈S

naxa − s log(nC)

)∏
a∈S

d(−Pa(xa))

= exp (−s log(nC)) ·
∏
a∈S

∫
xa∈[0,log(2)]

exp (naxa) d(−Pa(xa))

(due to the independence of comparisons with respect to different anchors)

= exp (−s log(nC)) ·
∏
a∈S

(
[− exp(naxa)Pa(xa)]

log(2)
0 +

∫
xa∈[0,log(2)]

na exp (naxa)Pa(xa)dxa

)
(integration by parts)

≤ exp (−s log(nC)) ·
∏
a∈S

(
Pa(0) +

∫
xa∈[0,log(2)]

na exp (naxa) exp

{
−na(xa + C1(PGCC

i∗a ,
1

2
))

}
dxa

)
(Using concentration inequality (Lemma 2) and Fact 10 in [23], with C1(p, q) = (p− q)2/2p(1− q))

= exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+

∫
xa∈[0,log(2)]

na exp

{
−naC1(PGCC

i∗a ,
1

2
)

}
dxa

)

= exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})
.

We will now take a union bound over {na}. We have that∑∑
· · ·
∑

{na}∈[T ]S

exp (−s log(nC)) ·
∏
a∈S

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})

= exp (−s log(nC)) ·
∏
a∈S

∑
na

(
exp

{
−nad(

1

2
, PGCC

i∗a )

}
+ log(2)na exp

{
−naC1(PGCC

i∗a ,
1

2
)

})

≤ exp{−s log(nC)} ·
∏
a∈S

(
1

exp
{
d( 1

2 , P
GCC
i∗a )

}
− 1

+
exp{C1(PGCC

i∗a ,
1
2 )}

(exp{C1(PGCC
i∗a ,

1
2 )} − 1)2

)
≤ exp{−s log(nC) + s log(C ′)} ,

where the constant C ′ is defined as

C ′ := max
a∈[n]\i∗

(
1

exp
{
d( 1

2 , P
GCC
i∗a )

}
− 1

+
exp{C1(PGCC

i∗a ,
1
2 )}

(exp{C1(PGCC
i∗a ,

1
2 )} − 1)2

)
≤ 1

(∆GCC
min )4

.

We will now apply the union bound over all subsets S ⊆ [n] \ i∗. Now, if the parameter C is larger than C ′, then we
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have

∑
S⊆[n]\{i∗}

exp{−|S| log(nC) + |S| log(C ′)} =

n−1∑
s=1

∑
S⊆[n]\{i∗},|S|=s

exp{−s log(nC) + s log(C ′)}

≤
n−1∑
s=1

(en
s

)s
exp{−s log(nC) + s log(C ′)}

=

n−1∑
s=1

exp{−s log(nC) + s log(C ′) + s log(n) + s− s log(s)}

≤
n−1∑
s=1

exp{s− s log(s)} ≤ 2 .

E.2 Proof of Lemma 5

The following lemma will now bound the number of times arm i∗ will not be the empirically best arm.

Lemma 5 (Time when i∗ is not the anchor). The total number of rounds when the best arm i∗ will not be the empirically
best arm, even when it is in the active set, is upper bounded as

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
≤

∑
i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

,

where PGCC
i∗i is defined in Equation D.2.

Proof. In the following we overload notation slightly and for a round r define Nii∗(r) and P̂ii∗(r) to be the equal to
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Nii∗(t) and P̂ii∗(t), where t is the last trial in round r. We have the following set of inequalities:

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]

]
= E

[
T∑
r=1

1[∃i 6= i∗, i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]

]

≤ E

 T∑
r=1

∑
i∈[n]\{i∗}

1[i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]


≤ E

 T∑
r=1

∑
i∈[n]\{i∗}

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


= E

 ∑
i∈[n]\{i∗}

T∑
r=1

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


≤ E

 ∑
i∈[n]\{i∗}

T∑
ni=0

1[P̂ni
i∗i ≤

1

2
]


=

∑
i∈[n]\{i∗}

T∑
ni=0

E

[
1[P̂ni

i∗i ≤
1

2
]

]

=
∑

i∈[n]\{i∗}

T∑
ni=0

exp
{
−nid(1/2, PGCC

i∗i )
}

(using concentration Lemma 2)

=
∑

i∈[n]\{i∗}

1

exp
{
d(1/2, PGCC

i∗i )
}
− 1

E.3 Proof of Lemma 6

In the next lemma we will bound the regret for the number of times an arm other than the best arm will be played.

Lemma 6 (Regre due to a bad arm). Given an arm i ∈ [n] \ {i∗} the expected regret incurred due to arm i when arm
i∗ is the anchor is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)
,

where δ > 0 is some constant, and ∆GCC
i∗i = maxS:|S|≤k ∆i∗i|S .

Proof. Fix a value ni ∈ {0, · · · , T}. We will first upper bound the following quantity

E

[
T∑
t′=1

r(St′ , i) · 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni]

]
. (E.1)

This quantity bounds the total regret until the time Nii∗ remains equal to ni. Now, Nii∗ is incremented in trial t′ if
either i∗ or i. Hence, Nii∗ is incremented in trial t′ with probability Pi|St′

+ Pi∗|St′
. The total regret incurred due to

the playing i in trial t′ is given by Pi∗|St′
− Pi|St′

. Let us define ct′ := Pi|St′
+ Pi∗|St′

, and pt′ := Pi∗|St′
− Pi|St′

.
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The quantity in Equation E.1 is upper bounded by the cost of an experiment described in Fact 1 where the probability
of success of coin t′ is given by pt′ and its cost is given by ct′ . Using Fact 1 we have that

E

[
T∑
t′=1

r(St′ , i) · 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni]

]
≤ ∆GCC

i∗i ·
2e

e− 1
.

Also, let nsuf
i = (1+δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

. We can now upper bound the regret due to arm i as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]

]
= E

[
T∑

ni=0

T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

≤
nsuf
i∑

ni=0

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

+

T∑
ni=nsuf

i +1

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

≤ nsuf
i ·∆GCC

i∗i ·
2e

e− 1

+

T∑
ni=nsuf

i +1

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

We will now bound the second quantity in the above equation. Fix ni ∈ {0, 1, · · · , T}. Let t′ ∈ [T ] be such that the
event 1[at′ = i∗, i ∈ St′ , Nii∗(t′ − 1) = ni − 1, Nii∗(t

′) = ni] holds if such a t′ exists, otherwise let t′ = T + 1. We
have

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

= E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni, ni · d(P̂ii∗(t− 1),
1

2
) ≤ log(t− 1) + log(nC)]

]

= E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni, ni · d(P̂ii∗(t− 1),
1

2
) ≤ log(t− 1) + log(nC)]

]

= E

[
1[∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)] ·

T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]

]

= Pr

[
∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]
·E

[
T∑

t=t′+1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]
∣∣∣∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]

We will bound the quantities in the above equation one by one. Using a similar argument as above and Fact 1 we have
that

E

[
T∑

t=t′+1

r(St, i) · 1[at = i∗, i ∈ St, Nii∗(t− 1) = ni]
∣∣∣∃t′ ∈ [T ] : Nii∗(t

′) = ni, ni · d(P̂ni
ii∗ ,

1

2
) ≤ log(t′nC)

]
≤ ∆GCC

i∗i ·
2e

e− 1
.
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This holds because of the fact that conditioning does not effect that events that happen after trial t′ + 1. We finally
have

Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, nid(P̂ii∗(t),

1

2
) ≤ log(tnC)

)
≤ Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, nid(P̂ii∗(t),

1

2
) ≤ log(TnC)

)
(ni ≥ (1+δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

)

≤ Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, d(P̂ii∗(t),

1

2
) ≤

d(PGCC
i∗i ,

1
2 )

1 + δ

)
.

We will let P ∈ ( 1
2 , P

GCC
i∗i ) to be a real number such that d(P, 1

2 ) =
d(PGCC

i∗i ,
1
2 )

1+δ , and use the concentration bound proved
in Lemma 2, so that the above inequality can be written

Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, d(P̂ii∗(t),

1

2
) ≤ d(P,

1

2
)

)
= Pr

(
∃t ∈ [T ] : Nii∗(t) = ni, P̂ii∗(t) ≥ 1− P

)
≤ exp

(
−d(P, PGCC

i∗,i ) · ni
)
.

Hence, we will have that

T∑
ni=nsuf

i +1

E

[
T∑
t=1

r(St, i)1[at = i,Nii∗(t− 1) = ni, i
∗ ∈ St]

]
≤

∑
ni=nsuf

i +1

∆GCC
i∗i ·

2e

e− 1
· exp

(
−d(P, PGCC

i∗,i ) · ni
)

≤ ∆GCC
i∗i ·

2e

e− 1
· 1

exp
(
d(P, PGCC

i∗i )
)
− 1

≤ ∆GCC
i∗i ·

2e

e− 1
· 1

Ω(δ2)
.

Hence, we have proved an upper bound as

T∑
ni=0

E

[
T∑
t=1

1[at = i,Nii∗(t) = ni, i
∗ ∈ At]

]
≤ ∆GCC

i∗i ·
2e

e− 1
·
(

(1 + δ) log(TnC)

d(PGCC
i∗i ,

1
2 )

+
1

Ω(δ2)

)

F Additional Information About Experimental Setup

F.1 Synthetic Datasets

In this section we provide additional information about our synthetic datasets.

• MNL-Exp: A MNL model was generated by drawing random weights from the exponential distribution with
parameter λ = 3.5, i.e. for arm i ∈ [n], log vi was sampled i.i.d. from Exp(λ = 3.5).

• MNL-Geom: A MNL model was generated with weights v1 = e, v2 = e
1
2 , . . ., vn = e1/2n−1

.

• GCC-One: For this choice model, we selected arm 1 to be the GCW, and for each set S containing arm 1, we set
p1|S = 0.51 and pi|S = 0.49

|S|−1 ∀i ∈ S\{1}; for sets S not containing the GCW 1, we selected the smallest-index
arm in S to be the highest-probability arm i∗S in S, and set pi∗S |S = 0.51 and pi|S = 0.49

|S|−1 ∀i ∈ S \ {i
∗
S}).

• GCC-Two: For this choice model, we selected arm 1 to be the GCW, and for each set S we defined ∆S =
min{ |S|−1

10 , 0.99}. If i∗ /∈ S we selected the smallest-index arm in S to be the highest-probability arm i∗S in S,
otherwise we let i∗S := i∗. We defined Pi∗S |S = 1+∆S

|S|(1−∆S)+2∆S
and for any i ∈ S\{i∗S}, Pi|S = 1−∆S

|S|(1−∆S)+2∆S
.
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• GCC-Three: For this choice model, we selected arm 1 to be the GCW, and for each set S we defined ∆S =
max{ 11−|S|

11 , 0.01}. Given this definition of ∆S , the choice probabilities we defined in a similar manner as
GCC-Two.

Note that the above GCC choice models are similar to the instance constructed in the proof of the lower bound, except
that the ∆ term now depends on the size of the set.

F.2 Real-World Datasets

In this section we provide additional information for our real-world datasets.
Estimation of choice models from real-world datasets. We estimate choice probabilities from several real-world
preference datasets, which contain multiple partial preference orders over items. The choice probability Pi|S of an
item i over S, was taken to be the fraction of times in these partial order item i was the top ranked items in S. More
formally, let there be m partial orders, P1, · · · ,Pm, over n items. For any subset S ⊆ [n], and i ∈ [n], let Ni|S be
defined as:

Ni|S :=
∑
j∈[m]

1[∀i′ ∈ S \ {i} : i �Pj
i′] .

The choice probability Pi|S is then estimated as:

Pi|S :=
Ni|S∑
i′∈S Ni′|S

.

We conducted experiments on three real-world datasets.

• Sushi: This is a dataset from [24] which contains 5000 partial preference orders given by humans over 100
different types of sushis. Similar to [25], we selected a subset of 16 sushi types, such that there exists a GCW
among them.

• IrishMeath: This is a dataset downloaded from preflib.org and contains data about elections held in Dublin,
Ireland. The dataset contains 64, 081 partial preference orders given by humans over 14 candidates. We selected
a subset of 12 candidates, such that there exists a GCW among them.

• IrishDublin: This dataset was also downloaded from preflib.org and also contains data about elections held in
Dublin, Ireland. The dataset contains 29, 988 partial preference orders given by humans over 9 candidates. We
again selected a subset of 8 candidates, such that there exists a GCW among them.

F.3 Runtime and Space Complexity of WBA

The space complexity of our algorithm is O(n2) as it only stores the pairwise statistics extracted from multiway
choices. Each trial of our algorithm runs in time polynomial in n. The most non-trivial step is computing Ji(t, C)
for each arm. This step requires polynomial time because we can compute the quantity argmaxS⊆[n] Ii(t, S) − |S| ·
log(nC) and check if it is greater than log(t). We compute argmaxS⊆[n] Ii(t, S)− |S| · log(nC) by first sorting arms
j in the order of values 1[P̂ij(t) ≤ 1

2 ] · Nij(t) · d(P̂ij(t),
1
2 ). We then start with S ← ∅ and add one arm at a time

from this sorted ordering to S. We stop adding arms to the set S once the value 1[P̂ij(t) ≤ 1
2 ] ·Nij(t) · d(P̂ij(t),

1
2 )

of the current arm j is less than log(nC). It is easy to see that computing Ii(t, S)− |S| · log(nC) for this set S gives
the value of argmaxS⊆[n] Ii(t, S)− |S| · log(nC).

F.4 Hardware Specifications

We ran all our experiments on a 32 core machine with Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz processor cores.
No GPUs were used in the experiments.
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Figure 1: Dueling Bandit Regret (RDB) defined in Appendix G v/s trials for our algorithm WBA (for k = 2) against dueling bandit
algorithms (DTS, BTM, RUCB and RMED1) (the shaded region corresponds to std. deviation). As can be observed, our algorithm
is competitive against these algorithms.
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Figure 2: Dueling Bandit Regret (RDB) defined in Appendix G v/s trials for our algorithm WBA against the MaxMinUCB (MMU)
algorithm for k = 2 and k = 5 (the shaded region corresponds to std. deviation). We observe that our algorithm is better than
MaxMinUCB on all datasets for both values of k. We further observe that under several datasets the regret achieved by our algorithm
for k > 2 is better than the regret of our algorithm for k = 2.
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G Results for Additional Notion of Regret

In the section we define a simple generalization of dueling bandit regret. All our results can be be extended to this
notion of regret. Under this notion the regret for an arm is measured as the shortfall in the preference probability in a
direct pairwise comparison to the best arm i∗.

Definition 1. For a set S ⊆ [n], we define the regret rDB(S) to be

rDB(S) =
∑
i∈S

(
Pi∗|{i,i∗} − Pi|{i,i∗}

)
. (G.1)

This notion of regret allows for a more direct comparison between the regret of a choice bandits algorithm and a
dueling bandits algorithm, as the regret for pulling an arm i does not depend on the other arms pulled together with i.
Using the definition of GCW i∗, it is easy to observe that rDB({i∗}) = 0, and 0 ≤ rDB(S) ≤ |S| for any set S ⊆ [n].
We present additional experimental results for this notion of regret. Figure 1 contains plots for comparisons with the
dueling bandit algorithms, and Figure 2 contains plots for the comparisons of our algorithm with the MaxMinUCB
algorithm. The experimental setup was the same as the one described in Section 6 and Appendix F. The overall
conclusion with these experiments match the conclusions drawn from the experiments given in Section 6.

H Technical Fact

Fact 1. Consider the following experiment: we repeatedly toss (independent) coins from a finite set S of coins with
different biases until we get a heads. Let the probability of heads for the i-th coin toss be given by pi ≥ 0, and the cost
be given by ci. The expected cost of this experiment is upper bounded as

E

 |S|∑
i=1

1[no heads till i− 1] · ci

 ≤ 2c

p
· e

e− 1
,

where c
p := maxi∈S

ci
pi

Proof. We will group the sequence of coin tosses such that each group has a total probability mass of at least 1.
Formally, group G1 will consist of the first l1 coins such that

∑l1
i=1 pi ≥ 1 and l1 is minimized, group G2 will consist

of the next l2 coins such that
∑l2
i=l1+1 pi ≥ 1 and l2 is minimized, and so on. The probability that we do not see a

head in the first group G1 is upper bounded as
l1∏
i=1

(1− pi) ≤
l1∏
i=1

e−pi = e−
∑l1

i=1 pi ≤ e−1 .

A similar calculation works for each group, showing that we will see a success in a particular group with probability
at least 1− 1/e.
Now, the amount of cost required for each group cG :=

∑
i∈G ci is upper bounded by 2 maxi∈S

c
p . This is due to the

fact that each group contains a probability mass of at most 2; and the fact that the maximum cost per a probability
mass of p is at most c, hence, the maximum cost per a probability mass of 2 can be at most 2c/p.

E

[ ∞∑
i=1

1[no heads till i− 1] · ci

]
= E

 ∞∑
j=1

1[no heads in group Gj−1] · cGj


≤ 2c

p
· (1− 1

e
) +

4c

p
· 1

e
· (1− 1

e
) +

6c

p
· 1

e2
· (1− 1

e
) · · ·

≤ 2c

p
· e

e− 1
.
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