
We are grateful for the useful and constructive comments from all anonymous reviewers. (Large dataset) As suggested1

by reviewers, we report the result of LazyGCN on Amazon dataset (1.5m nodes) in Table A1.

Table A1: Comparison of the test F1 score and time (addition to Table 2)
NodeWise +LG LayerWise +LG SubGraph +LG

Amazon Testing F1 77.29% 76.99% 77.23% 77.10% 77.25% 77.12%
Time (s) 5092.8 463.9 571.4 206.8 385.2 198.4

2

Reviewer 1 (Train vs inference) We thank the reviewer for the thoughtful comments. In this paper, we aim to reduce3

training time for sampling-based GCN, which has been widely used to scale GCN training on extremely large graphs.4

Upon carefully reading of the suggested paper by reviewer, we note that although this paper also proposes a new method5

to accelerate GCN training and inference, it requires a specially designed GCN structure, while our method can be6

jointly used with any sampling-based GCN models, such as GraphSAGE, FastGCN, and GAT. (Sample / transfer) We7

appreciate bringing up this matter. It is worth mentioning that sampling time increases significantly as the graph size8

grows, while the transfer and computation time on GPUs remain the same, given the limited GPU capacity. In fact,9

there are a few key factors that can degrade the performance of sampling for GCN: (a) Unlike GPU that only process a10

fraction of data, CPUs need to work on the entire graph, which imposes significant overheads for both computation11

(random memory accesses for traversing the large data structure) and storage (limited main memory); (b) When the12

size of the graph is large, the graph may not be fully loaded into the main memory (e.g., RAM), and it must be stored13

in secondary storage (disk). Doing so will incur extra time to transfer data from secondary storage to main memory.14

Besides, as shown in Figure 1, the GPU is stalled after mini-batch 2 due to the sampling process of a mini-batch15

3. Although in this case, the GPU idle time seems negligible compared to the overhead of transfer, when sampling16

time increases (for a fixed number of CPUs), the idle time will further slow down the training. We will make sure to17

highlight this overhead in the revision. (Related work) To the best of our knowledge, we are the first paper working on18

accelerating the GCN training by reducing the sampling and transfer time. Besides, similar problems faced in other19

fields are discussed in lines 75-78.20

Reviewer 2 (Why ρ > 1) The intuition comes from exploration and exploiting trade-off in standard convex and21

non-convex optimization analysis. At the beginning of training, our solution θt is far away from stationary point22

θ? and the gradient ‖∇F (θt)‖ is large. At this point in time, more recycling on a sampled mini-batch might23

cause an overfit on that mini-batch, while more fresh samples (less recycling) enable us to find the right direction24

toward optimal solution (exploring). As the optimization proceed, the gradient vanishes and ‖∇F (θt)‖ becomes25

small. As a result, the possibility of overfitting is much smaller, which allows for more recycling (exploiting).26

50 100 150 200
Epochs

0.5

0.6

0.7

0.8

V
al

id
at

io
n

F
1

ρ = 0.5

ρ = 2

Besides, as suggested by reviewer, we demonstrate the effect of different ρ on27

the convergence of LayerWise method in the figure on the right hand side. It28

can be seen that smaller ρ requires more time to recover from overfitted model.29

(Multi-level version) We thank reviewer for the careful reading. Indeed, the vari-30

ance at the `th layer will affect the variance of {` + 1, . . . , L} layers, where L is31

the number of layers. We will provide the analysis for the multi-level case in the32

subsequent version. However, we want to point out that the single layer GCN can33

be formulated as a two level optimization problem (L-layer GCN can be formulated34

as L+ 1 level optimization problem) where the variance at the 1st level already35

influence the variance at the 2nd level. (Effect of ρ on upper bound) We note that the total number of iterations is36

constant, hence larger ρ leads to smaller K and does not affect the bound. (Epoch size) Note that the size of the37

kth epoch is ρkR iterations in Algorithm 1, which is increasing during training, while the epoch size is fixed in38

vanilla GCN. We illustrate the validation scores for every 10 iterations for both settings to make the figure readable.39

(Figure 2(c) clarification) In this figure we want to show LazyGCN can increase the fraction of time on computing40

during training. The figure is normalized (divided) by total wall-clock time to show the proportion of each phase41

and the total wall-clock time are reported in Table 2. (Notation B) Eq.7 shows the stochastic gradient computed on42

mini-batch B in LazyGCN is close to the stochastic gradient of GCN without node sampling. Therefore, the subscript B43

shouldn’t be ignored. (Related works) We thank reviewer for the advise. Our goal is to develop a general yet effective44

framework that can be integrated with any sampling strategy to substantially improve the training time. Our experiments45

are conducted under the same setups (e.g., GCN architecture and hyper-parameters) as the backbone method. Notice46

that both [A] and [B] can be regarded as an incremental method of GraphSAGE with a similar sampling strategy and we47

would surely love to include the discussions on them in the subsequent version.48

Reviewer 3 and 4 We thank both reviewers for the suggestions. Please refer to the additional result on the Amazon49

dataset at the top of this page (Large dataset). We would also like to further evaluate LAZYGCN on newly released50

datasets (OGB) and other settings in the subsequent version.51


