
Thank you (R1, R2, R3, R4) for your insightful comments. We will release the code and fix the minor issues.1

Cost of Task Similarity Detection (R1,R2). Yes, it incurs additional computation, but it is reasonable. MTCL’s2

training time (h) ranges from 0.03 to 0.15, while HAT ranges from 0.0035 to 0.0039. MTCL’s number of parameters3

(M) ranges from 43.4 to 50.4, while HAT ranges from 7 to 10.5. See Sec. 2.3 in Appendix for more details. As MTCL4

makes large gains compared to strong baselines (at least 3%, up to 30%), we believe the performance gain is worth the5

additional computation. Also importantly, the proposed problem is more general and has not been attempted before.6

Use of Validation Set (R1). Validation set (part of the training set) has been used in many continual learning techniques,7

e.g., HAT, EWC and ProgressiveNet, for parameter tuning. In our case, we also use it for similarity detection.8

Necessity of Similarity Detection (R1). It may be possible to design an algorithm without explicit similarity detection.9

In our current model, it is needed; otherwise, we cannot generate TSV (Task Similarity Vector). Ablation study (Table10

3) shows that MTCL degrades severely without TSV (-TSV) as TSV allows only the units of similar tasks to be updated;11

otherwise, severe forgetting occurs. HAT does not detect task similarity. It only detects which units are associated with12

which tasks and block them when learning future tasks.13

Regression v.s. Classification (R1). We regard task similarity detection as a binary classification problem. The14

detection results (TSV) are used to determine what parameters to update (i.e. only those units associated with similar15

tasks can be updated). It is also interesting to consider this as a regression problem. We can study that in the future.16

Overall NCL ONE HAT MTCL
M(CIFAR100-10,F-CelebA) 0.6155 0.6764 0.6178 0.6831
M(CIFAR100-20,F-CelebA) 0.6931 0.7428 0.6946 0.7468

Table 1

Simple Architecture - does CNN work for CIFAR and CelebA?17

(R2). As we want to make our experiments uniform, we adopt the18

same backbone MLP architecture for experiments. Replacing MLP19

with CNN is straightforward for MTCL. We did that (see CNN’s overall20

results in Table 1, better than the MLP results) - MTCL again outperforms21

the baselines. ONE is one-task learning, learning each task independently.22

Overall PathNet RPSNet MTCL
M(EMNIST-10,F-EMNIST) 0.5901 0.7044 0.7710
M(CIFAR100-10,F-CelebA) 0.5504 0.4801 0.6194
M(EMNIST-20,F-EMNIST) 0.7049 0.7620 0.8439
M(CIFAR100-20,F-CelebA) 0.6169 0.5410 0.6843

Table 2Additional Baselines, Dataset Choice and How Similar Tasks Different23

from Existing Systems’ Setting (R3). Our work is different from existing systems: (1) We consider a mixed sequence24

of tasks. Forgetting mainly affects learning dissimilar tasks. For similar tasks, forgetting is not a major issue (see lines25

274-277). Knowledge transfer is important. Regarding dissimilar tasks, we adopt datasets CIFAR100 and EMNIST26

as they are commonly used benchmarks. They form dissimilar tasks as their classes have little knowledge sharing.27

For similar tasks, we adopt the datasets in federated learning (see lines 4-14 in Appendix). Federated learning is to28

train through model aggregation rather than the normal data aggregation and keep local data on the local device. These29

datasets naturally consist of similar tasks. How to leverage the shared knowledge is important for similar tasks, (2)30

Existing models mainly focus on addressing forgetting because they don’t consider mixed datasets, but only dissimilar31

datasets/tasks. Although some models do limited forward transfer, they still mainly deal with forgetting. They cannot32

improve the results of similar tasks as we do. For example RPSNet (Rajasegaran et al., 2019) and PathNet (Fernando et33

al., 2017) detect which path to reuse but do not allow the used parameters to be updated. These are insufficient because34

similar tasks’ parameters should be allowed to update for both forward and backward knowledge transfer. We believe35

this is an important contribution of ours. LwF and GEM also use the previous model in learning the new task, but it is36

also for dealing with forgetting only and it cannot improve similar task performance through forward and backward37

transfer. Additional comments: (1) We have conducted new experiments on the two suggested baselines: PathNet and38

RPSNet. Table 2 shows their overall accuracy results (average over 5 random sequences). Detailed results will be added39

to the paper. MTCL outperforms PathNet and RPSNet considerably. (2) About motivation of our work, please refer to40

lines 15-36. We will explain more in the revised paper. (3) Our dataset choice: (a) datasets in federated learning give us41

similar tasks, and (b) the similar datasets should be paired with our dissimilar datasets EMNIST and CIFAR in terms of42

the image size to copmose the mixed task sequences. Other public datasets (Caldas et al., 2018) in federated learning43

are either text or with different image/input sizes, which are unsuitable for the data pairing.44

Other Comments (R1,R2,R3,R4). (1) How to make the output of the sigmoid function binary. It is binaried by adding45

the hyper-parameter s in Eq. 1. s is annealed (see lines 139-144). When s is very large (s → ∞), the output of sigmoid46

m
(T )
l → {0, 1}, approximating to a unit step function. (2) Are the readout functions trained after applying the masks?47

Yes. We first use the saved mask {m(k)
l } to get the representation/features for x(t) produced by the task k model in48

the KB and then train the readout function. (3) The annealing strategy is somewhat similar to controller proposed in49

iTAML. Yes, but one notable difference is that the controller in iTAML is to balance between plasticity and stability,50

while ours is to train a binary mask. We will cite and compare with iTAML in the revised paper. (4) Task ID has to be51

known. Task ID is used in all task-based continual learning algorithms. This is so because the tasks can be completely52

different or overlapping and thus need separate sub-models in the neural network. For example, one task is to classify53

fish and non-fish, and another task is to classify different kinds of fishes. Without knowing the user’s specific task at54

hand, the system will not know which is the right answer.55


