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Abstract

Partial observability is a common challenge in many reinforcement learning ap-
plications, which requires an agent to maintain memory, infer latent states, and
integrate this past information into exploration. This challenge leads to a number of
computational and statistical hardness results for learning general Partially Observ-
able Markov Decision Processes (POMDPs). This work shows that these hardness
barriers do not preclude efficient reinforcement learning for rich and interesting
subclasses of POMDPs. In particular, we present a sample-efficient algorithm,
OOM-UCB, for episodic finite undercomplete POMDPs, where the number of
observations is larger than the number of latent states and where exploration is
essential for learning, thus distinguishing our results from prior works. OOM-UCB
achieves an optimal sample complexity of Õ(1/ε2) for finding an ε-optimal policy,
along with being polynomial in all other relevant quantities. As an interesting
special case, we also provide a computationally and statistically efficient algorithm
for POMDPs with deterministic state transitions.

1 Introduction

In many sequential decision making settings, the agent lacks complete information about the underly-
ing state of the system, a phenomenon known as partial observability. Partial observability signif-
icantly complicates the tasks of reinforcement learning and planning, because the non-Markovian
nature of the observations forces the agent to maintain memory and reason about beliefs of the system
state, all while exploring to collect information about the environment. For example, a robot may
not be able to perceive all objects in the environment due to occlusions, and it must reason about
how these objects may move to avoid collisions [10]. Similar reasoning problems arise in imperfect
information games [8], medical diagnosis [13], and elsewhere [25]. Furthermore, from a theoretical
perspective, well-known complexity-theoretic results show that learning and planning in partially
observable environments is statistically and computationally intractable in general [23, 22, 30, 21].

The standard formulation for reinforcement learning with partial observability is the Partially Ob-
servable Markov Decision Process (POMDP), in which an agent operating on noisy observations
makes decisions that influence the evolution of a latent state. The complexity barriers apply for this
model, but they are of a worst case nature, and they do not preclude efficient algorithms for interesting
sub-classes of POMDPs. Thus we ask:

Can we develop efficient algorithms for reinforcement learning in large classes of POMDPs?
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This question has been studied in recent works [3, 12], which incorporate a decision making
component into a long line of work on “spectral methods” for estimation in latent variable mod-
els [14, 29, 2, 1], including the Hidden Markov Model. Briefly, these estimation results are based
on the method of moments, showing that under certain assumptions the model parameters can be
computed by a decomposition of a low-degree moment tensor. The works of Azizzadenesheli et al. [3]
and Guo et al. [12] use tensor decompositions in the POMDP setting and obtain sample efficiency
guarantees. Neither result considers a setting where strategic exploration is essential for information
acquisition, and they do not address one of the central challenges in more general reinforcement
learning problems.

Our contributions. In this work, we provide new sample-efficient algorithms for reinforcement
learning in finite POMDPs in the undercomplete regime, where the number of observations is larger
than the number of latent states. This assumption is quite standard in the literature on estimation
in latent variable models [1]. Our main algorithm OOM-UCB uses the principle of optimism for
exploration and uses the information gathered to estimate the Observable Operators induced by the
environment. Our main result proves that OOM-UCB finds a near optimal policy for the POMDP
using a number of samples that scales polynomially with all relevant parameters and additionally
with the minimum singular value of the emission matrix. Notably, OOM-UCB finds an ε-optimal
policy at the optimal rate of Õ(1/ε2).

While OOM-UCB is statistically efficient for this subclass of POMDPs, we should not expect it to
be computationally efficient in general, as this would violate computational barriers for POMDPs.
However, in our second contribution, we consider a further restricted subclass of POMDPs in which
the latent dynamics are deterministic and where we provide both a computationally and statistically
efficient algorithm. Notably, deterministic dynamics are still an interesting subclass due to that, while
it avoids computational barriers, it still does not mitigate the need for strategic exploration. We prove
that our second algorithm has sample complexity scaling with all the relevant parameters as well as
the minimum `2 distance between emission distributions. This latter quantity replaces the minimum
singular value in the guarantee for OOM-UCB and is a more favorable dependency.

We provide further motivation for our assumptions with two lower bounds: the first shows that the
overcomplete setting is statistically intractable without additional assumptions, while the second
necessitates the dependence on the minimum singular value of the emission matrix. In particular,
under our assumptions, the agent must engage in strategic exploration for sample-efficiency. As such,
the main conceptual advance in our line of inquiry over prior works is that our algorithms address
exploration and partial observability in a provably efficient manner.

1.1 Related work

A number of computational barriers for POMDPs are known. If the parameters are known, it is
PSPACE-complete to compute the optimal policy, and, furthermore, it is NP-hard to compute the
optimal memoryless policy [23, 30]. With regards to learning, Mossel and Roch [21] provided an
average case computationally complexity result, showing that parameter estimation for a subclass of
Hidden Markov Models (HMMs) is at least as hard as learning parity with noise. This directly implies
the same hardness result for parameter estimation in POMDP models, due to that an HMM is just a
POMDP with a fixed action sequence. On the other hand, for reinforcement learning in POMDPs
(in particular, finding a near optimal policy), one may not need to estimate the model, so this lower
bound need not directly imply that the RL problem is computational intractable. In this work, we
do provide a lower bound showing that reinforcement learning in POMDPs is both statistically and
computationally intractable (Propositions 1 and 2).

On the positive side, there is a long history of work on learning POMDPs. [11] studied POMDPs
without resets, where the proposed algorithm has sample complexity scaling exponentially with a
certain horizon time, which is not possible to relax without further restrictions. [26, 24] proposed to
learn POMDPs using Bayesian methods; PAC or regret bounds are not known for these approaches.
[18] studied policy gradient methods for learning POMDPs while they considered only Markovian
policies and did not address exploration.

Closest to our work are POMDP algorithms based on spectral methods [12, 3], which were originally
developed for learning latent variable models [14, 2, 1, 29, 28]. These works give PAC and regret
bounds (respectively) for tractable subclasses of POMDPs, but, in contrast with our work, they make
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additional assumptions to mitigate the exploration challenge. In [12], it is assumed that all latent
states can be reached with nontrivial probability with a constant number of random actions. This
allows for estimating the entire model without sophisticated exploration. [3] consider a special class
of memoryless policies in a setting where all of these policies visit every state and take every action
with non-trivial probability. As with [12], this restriction guarantees that the entire model can be
estimated regardless of the policy executed, so sophisticated exploration is not required. We also
mention that [12, 3] assume that both the transition and observation matrices are full rank, which is
stronger than our assumptions. We do not make any assumptions on the transition matrix.

Finally, the idea of representing the probability of a sequence as products of operators dates back to
multiplicity automata [27, 9] and reappeared in the Observable Operator Model (OOMs) [16] and
Predictive State Representations (PSRs) [20]. While spectral methods have been applied to PSRs [7],
we are not aware of results with provable guarantees using this approach. It is also worth mentioning
that any POMDP can be modeled as an Input-Output OOM [15].

2 Preliminaries

In this section, we define the partially observable Markov decision process, the observable operator
model [16], and discuss their relationship.

Notation. For any natural number n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We use bold
upper-case letters B to denote matrices and bold lower-case letters b to denote vectors. Bij means
the (i, j)th entry of matrix B and (B)i represents its ith column. For vectors we use ‖·‖p to denote
the `p-norm, and for matrices we use ‖·‖, ‖·‖1 and ‖·‖F to denote the spectral norm, entrywise
`1-norm and Frobenius norm respectively. We denote by ‖B‖p→q = max‖v‖p≤1 ‖Bv‖q the p-to-q
norm of B. For any matrix B ∈ Rm×n, we use σmin(B) to denote its smallest singular value, and
B† ∈ Rn×m to denote its Moore-Penrose inverse. For vector v ∈ Rn, we denote diag(v) ∈ Rn×n
as a diagonal matrix where [diag(v)]ii = vi for all i ∈ [n]. Finally, we use standard big-O and
big-Omega notation O(·),Ω(·) to hide only absolute constants which do not depend on any problem
parameters, and notation Õ(·), Ω̃(·) to hide only absolute constants and logarithmic factors.

2.1 Partially observable Markov decision processes

We consider an episodic tabular Partially Observable Markov Decision Process (POMDP), which can
by specified as POMDP(H,S ,A ,O,T,O, r, µ1). Here H is the number of steps in each episode,
S is the set of states with |S | = S, A is the set of actions with |A | = A, O is the set of observations
with |O| = O, T = {Th}Hh=1 specify the transition dynamics such that Th(·|s, a) is the distribution
over states if action a is taken from state s at step h ∈ [H], O = {Oh}Hh=1 are emissions such that
Oh(·|s) is the distribution over observations for state s at step h ∈ [H], r = {rh : O → [0, 1]}Hh=1

are the known deterministic reward functions1, and µ1(·) is the initial distribution over states. Note
that we consider nonstationary dynamics, observations, and rewards.

In a POMDP, states are hidden and unobserved to the learning agent. Instead, the agent is only able
to see the observations and its own actions. At the beginning of each episode, an initial hidden state
s1 is sampled from initial distribution µ1. At each step h ∈ [H], the agent first observes oh ∈ O
which is generated from the hidden state sh ∈ S according to Oh(·|sh), and receives the reward
rh(oh), which can be computed from the observation oh. Then, the agent picks an action ah ∈ A ,
which causes the environment to transition to hidden state sh+1, that is drawn from the distribution
Th(·|sh, ah). The episode ends when oH is observed.

A policy π is a collection of H functions
{
πh : Th → A

}
h∈[H]

, where Th = (O ×A )h−1 × O is
the set of all possible histories of length h. We use V π ∈ R to denote the value of policy π, so that
V π gives the expected cumulative reward received under policy π:

V π := Eπ
[∑H

h=1 rh(oh)
]
.

1Since rewards are observable in most applications, it is natural to assume the reward is a known function of
the observation. While we study deterministic reward functions for notational simplicity, our results generalize
to randomized reward functions. Also, we assume the reward is in [0, 1] without loss of generality.
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Since the state, action, observation spaces, and the horizon, are all finite, there always exists an
optimal policy π? which gives the optimal value V ? = supπ V

π. We remark that, in general, the
optimal policy of a POMDP will select actions based the entire history, rather than just the recent
observations and actions. This is one of the major differences between POMDPs and standard Markov
Decision Processes (MDPs), where the optimal policies are functions of the most recently observed
state. This difference makes POMDPs significantly more challenging to solve.

The POMDP learning objective. Our objective in this paper is to learn an ε-optimal policy π̂ in
the sense that V π̂ ≥ V ? − ε, using a polynomial number of samples.

2.2 The observable operator model

We have described the POMDP model via the transition and observation distributions T,O and
the initial distribution µ1. While this parametrization is natural for describing the dynamics of the
system, POMDPs can also be fully specified via a different set of parameters: a set of operators
{Bh(a, o) ∈ RO×O}h∈[H−1],a∈A ,o∈O , and a vector b0 ∈ RO.

In the undercomplete setting where S ≤ O and where observation probability matrices {Oh ∈
RO×S}h∈[H] are all full column-rank, the operators {Bh(a, o)}h,a,o and vector b0 can be expressed
in terms of (T,O, µ1) as follows:

Bh(a, o) = Oh+1Th(a)diag(Oh(o|·))O†h, b0 = O1µ1. (1)

where we use the matrix and vector notation for Oh ∈ RO×S and µ1 ∈ RS here, such that [Oh]o,s =
Oh(o|s) and [µ1]s = µ1(s). Th(a) ∈ RS×S denotes the transition matrix given action a ∈ A where
[Th(a)]s′,s = Th(s′|s, a), and Oh(o|·) ∈ RS denotes the o-th row in matrix Oh with [Oh(o|·)]s =
Oh(o|s). Note that the matices defined in (1) have rank at most S. Using these matrices Bh, it can
be shown that (Appendix E.1), for any sequence of (oH , . . . , a1, o1) ∈ O × (A ×O)H−1, we have:

P(oH , . . . , o1|aH−1, . . . , a1) = e>oH ·BH−1(aH−1, oH−1) · · ·B1(a1, o1) · b0. (2)

Describing these conditional probabilities for every sequence is sufficient to fully specify the entire
dynamical system. Therefore, as an alternative to directly learning T,O and µ1, it is also sufficient
to learn operators {Bh(a, o)}h,a,o and vector b0 in order to learn the optimal policy. The latter
approach enjoys the advantage that (2) does not explicitly involve latent variables. It refers only to
observable quantities—actions and observations.

We remark that the operator model introduced in this section (which is parameterized by
{Bh(a, o)}h,a,o and b0) bears significant similarity to Jaeger’s Input-Output Observable Operator
Model (IO-OOM) [16], except a few minor technical differences.2 With some abuse of terminology,
we also refer to our model as Observable Operator Model (OOM) in this paper. It is worth noting
that Jaeger’s IO-OOMs are strictly more general than POMDPs [16] and also includes overcomplete
POMDPs via a relation different from (1). Since our focus is on undercomplete POMDPs, we refer
the reader to [16] for more details.

3 Main Results

We first state our main assumptions, which we motivate with corresponding hardness results in their
absence. We then present our main algorithm, OOM-UCB, along with its sample efficiency guarantee.

3.1 Assumptions

In this paper, we make the following assumptions.
Assumption 1. We assume the POMDP is undercomplete, i.e. S ≤ O. We also assume the minimum
singular value of the observation probability matrices σmin(Oh) ≥ α > 0 for all h ∈ [H].

Both assumptions are standard in the literature on learning Hidden Markov Models (HMMs)—an
uncontrolled version of POMDP [see e.g., 2]. The second assumption that σmin(Oh) is lower-bounded

2Jaeger’s IO-OOM further requires the column-sums of operators to be 1.
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Algorithm 1 Observable Operator Model with Upper Confidence Bound (OOM-UCB)

1: Initialize: set all entries in a vector of counts n ∈ NO, and in matrices of counts Nh(a, ã) ∈
NO×O, Mh(o, a, ã) ∈ NO×O to be zero for all (o, a, ã) ∈ O ×A 2

2: set confidence set Θ1 ← ∩h∈[H]{θ̂ | σmin(Ôh) ≥ α}.
3: for k = 1, 2, . . . ,K do
4: compute the optimistic policy πk ← argmaxπ maxθ̂∈Θk

V π(θ̂).
5: observe o1, and set n← n + eo1
6: b← (∩h∈[H]{θ̂ | σmin(Ôh) ≥ α}) ∩ {θ̂ | ‖k · b0(θ̂)− n‖2 ≤ βk}.
7: for (h, a, ã) ∈ [H − 1]×A 2 do
8: execute policy πk from step 1 to step h− 2.
9: take action ã at step h− 1, and action a at step h respectively.

10: observe (oh−1, oh, oh+1), and set Nh(a, ã)← Nh(a, ã) + eohe
>
oh−1

.
11: set Mh(oh, a, ã)←Mh(oh, a, ã) + eoh+1

e>oh−1
.

12: Bh(a, ã)← ∩o∈O{θ̂ | ‖Bh(a, o; θ̂)Nh(a, ã)−Mh(o, a, ã)‖F ≤ γk}.
13: construct the confidence set Θk+1 ← [∩(h,a,ã)∈[H−1]×A 2Bh(a, ã)] ∩ b.
14: Output: πk where k is sampled uniformly from [K].

is a robust version of the assumption that Oh ∈ RO×S is full column-rank, which is equivalent to
σmin(Oh) > 0. Together, these assumption ensure that the observations will contain a reasonable
amount of information about the latent states.

We do not assume that the initial distribution µ1 has full support, nor do we assume the transition
probability matrices Th are full rank. In fact, Assumption 1 is not sufficient for identification of the
system, i.e. recovering parameters T,O, µ1 in total-variance distance. Exploration is crucial to find a
near-optimal policy in our setting.

We motivate both assumptions above by showing that, with absence of either one, learning a POMDP
is statistically intractable. That is, it would require an exponential number of samples for any
algorithm to learn a near-optimal policy with constant probability.
Proposition 1. For any algorithm A, there exists an overcomplete POMDP (S > O) with S and O
being small constants, which satisfies σmin(Oh) = 1 for all h ∈ [H], such that algorithm A requires
at least Ω(AH−1) samples to ensure learning a (1/4)-optimal policy with probability at least 1/2.

Proposition 2. For any algorithm A, there exists an undercomplete POMDP (S ≤ O) with S and O
being small constants, such that algorithm A requires at least Ω(AH−1) samples to ensure learning
a (1/4)-optimal policy with probability at least 1/2.

Proposition 1 and 2 are both proved by constructing hard instances, which are modifications of
classical combinatorial locks for MDPs [19]. We refer readers to Appendix B for more details.

3.2 Algorithm

We are now ready to describe our algorithm. Assumption 1 enables the representation of the POMDP
using OOM with relation specified as in Equation (1). Our algorithm, Observable Operator Model
with Upper Confidence Bound (OOM-UCB, algorithm 1), is an optimistic algorithm which heavily
exploits the OOM representation to obtain valid uncertainty estimates of the parameters of the
underlying model.

To condense notation in Algorithm 1, we denote the parameters of a POMDP as θ = (T,O, µ1). We
denote V π(θ) as the value of policy π if the underlying POMDP has parameter θ. We also write the
parameters of the OOM (b0(θ),Bh(a, o; θ)) as a function of parameter θ, where the dependency is
specified as in (1). We adopt the convention that at the 0-th step, the observation o0 and state s0 are
always set to be some fixed dummy observation and state, and, starting from s0, the environment
transitions to s1 with distribution µ1 regardless of what action a0 is taken.

At a high level, Algorithm 1 is an iterative algorithm that, in each iteration, (a) computes an optimistic
policy and model by maximizing the value (Line 4) subject to a given confidence set constraint, (b)
collects data using the optimistic policy, and (c) incorporates the data into an updated confidence
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set for the OOM parameters (Line 5-13). The first two parts are straightforward, so we focus the
discussion on computing the confidence set. We remark that in general the optimization in Line 4 may
not be solved in polynomial time (see discussions of the computational complexity after Theorem 3).

First, since b0 in (1) is simply the probability over observations at the first step, our confidence set
for b0 in Line 6 is simply based on counting the number of times each observation appears in the
first step and Hoeffding’s concentration inequality.

Our construction of the confidence sets for the operators {Bh(a, o)}h,a,o is inspired by the method-
of-moments estimator in HMM literature [14]. Consider two fixed actions a, ã, and an arbitrary
distribution over sh−1. Let Ph(a, ã),Qh(o, a, ã) ∈ RO×O be the probability matrices such that

[Ph(a, ã)]o′,o′′ =P(oh = o′, oh−1 = o′′|ah = a, ah−1 = ã),

[Qh(o, a, ã)]o′,o′′ =P(oh+1 = o′, oh = o, oh−1 = o′′|ah = a, ah−1 = ã). (3)

It can be verified that Bh(a, o)Ph(a, ã) = Qh(o, a, ã) (Fact 17 in the appendix). Our confidence
set construction (Line 12 in Algorithm 1) is based on this fact: we replace the probability matrices
P,Q by empirical estimates N,M, and we use concentration inequalities to determine the width of
the confidence set. Finally, our overall confidence set for the parameters θ is simply the intersection
of the confidence sets for all induced operators and b0, additionally incorporating the constraint on
σmin(Oh) from Assumption 1.

3.3 Theoretical guarantees

Our OOM-UCB algorithm enjoys the following sample complexity guarantee.
Theorem 3. For any ε ∈ (0, H], there exists Kmax = poly(H,S,A,O, α−1)/ε2 and an absolute
constant c1, such that for any POMDP that satisfies Assumption 1, if we set hyperparameters
βk = c1

√
k log(KAOH), γk =

√
Sβk/α, and K ≥ Kmax, then the output policy π̂ of Algorithm 1

will be ε-optimal with probability at least 2/3.

Theorem 3 claims that in polynomially many iterations of the outer loop, Algorithm 1 learns a
near-optimal policy for any undercomplete POMDP that satisfies Assumption 1. Since our algorithm
only uses O(H2A2) samples per iteration of the outer loop, this implies that the sample complexity is
also poly(H,S,A,O, α−1)/ε2. We remark that the 1/ε2 dependence is optimal, which follows from
standard concentration arguments. To the best of our knowledge, this is the first sample efficiency
result for learning a class of POMDPs where exploration is essential. 3

While Theorem 3 does guarantee sample efficiency, Algorithm 1 is not computationally efficient
due to that the computation of the optimistic policy (Line 4) may not admit a polynomial time
implementation, which should be expected given the aforementioned computational complexity
results. We now turn to a further restricted (and interesting) subclass of POMDPs where we can
address both the computational and statistical challenges.

4 Results for POMDPs with Deterministic Transition

In this section, we complement our main result by investigating the class of POMDPs with deter-
ministic transitions, where both computational and statistical efficiency can be achieved. We say a
POMDP is of deterministic transition if both its transition and initial distribution are deterministic, i.e,
if the entries of matrices {Th}h and vector µ1 are either 0 or 1. We remark that while deterministic
dynamics avoids computational barriers, it does not mitigate the need for exploration.

Instead of Assumption 1, for the deterministic transition case, we require that the columns of the
observation matrices Oh are well-separated.
Assumption 2. For any h ∈ [H], mins 6=s′ ‖Oh(·|s)−Oh(·|s′)‖ ≥ ξ.

Assumption 2 guarantees that observation distributions for different states are sufficiently differ-
ent, by at least ξ in Euclidean norm. It does not require that the POMDP is undercomplete,
and, in fact, is strictly weaker than Assumption 1. In particular, for undercomplete models,

3See Appendix C.4 for the explicit polynomial dependence of sample complexity; here, the success probability
is a constant, but one can make it arbitrarily close to 1 by a standard boosting trick (see Appendix E.3 ).
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mins 6=s′ ‖Oh(·|s)−Oh(·|s′)‖ ≥
√

2σmin(Oh), and so Assumption 1 implies Assumption 2 for
ξ =
√

2α.

Leveraging deterministic transitions, we can design a specialized algorithm (Algorithm 2 in the
appendix) that learns an ε-optimal policy using polynomially many samples and in polynomial time.
We present the formal theorem here, and refer readers to Appendix D for more details.

Theorem 4. For any p ∈ (0, 1], there exists an algorithm such that for any deterministic transition

POMDP satisfying Assumption 2, within O
(
H2SA log(HSA/p)/(min{ε/(

√
OH), ξ})2

)
samples

and computations, the output policy of the algorithm is ε-optimal with probability at least 1− p.

5 Analysis Overview

In this section, we provide an overview of the proof of our main result—Theorem 3. Please refer to
Appendix C for the full proof.

We start our analysis by noticing that the output policy π̂ of Algorithm 1 is uniformly sampled from
{πk}Kk=1 computed in the algorithm. If we can show that

(1/K)
∑K
k=1 V

? − V πk ≤ ε/10, (4)

then at least a 2/3 fraction of the policies in {πk}Kk=1 must be ε-optimal, and uniform sampling
would find such a policy with probability at least 2/3. Therefore, our proof focuses on achieving (4).

We begin by conditioning on the event that for each iteration k, our constructed confidence set Θk in
fact contains the true parameters θ? = (T,O, µ1) of the POMDP. This holds with high probability
and is achieved by setting the widths βk and γk appropriately (see Lemma 14 in the appendix).

5.1 Bounding suboptimality in value by error in density estimation

Line 4 of Algorithm 1 computes the greedy policy πk ← argmaxπ maxθ̂∈Θk
V π(θ̂) with respect to

the current confidence set Θk. Let θk denote the maximizing model parameters in the k-th iteration.
As (πk, θk) are optimistic, we have V ? ≡ V ?(θ?) ≤ V πk(θk) for all k ∈ [K]. Thus, for any k ∈ [K]:

V ? − V πk ≤ V πk(θk)− V πk(θ?) ≤ H
∑

oH ,...,o1

|Pπk

θk
(oH , . . . , o1)− Pπk

θ? (oH , . . . , o1)|, (5)

where Pπθ denotes the probability measure over observations under policy π for POMDP with
parameters θ. The second inequality holds because the cumulative reward is a function of observations
(oH , . . . , o1) and is upper bounded by H . This upper bounds the suboptimality in value by the total
variation distance between the H-step observation distributions.

Next, note that we can always choose the greedy policy πk to be deterministic, i.e., the probability
to take any action given a history is either 0 or 1. This allows us to define the following set for any
deterministic policy π:

Γ(π,H) := {τH = (oH , . . . , a1, o1) | π(aH−1, . . . , a1|oH , . . . , o1) = 1}.

In words, Γ(π,H) is a set of all the observation and action sequences of length H that could occur
under the π. For any deterministic policy π, there is a one-to-one correspondence between OH and
Γ(π,H) and moreover, for any sequence τH = (oH , . . . , a1, o1) ∈ Γ(π,H), we have:

p(τH ; θ) := Pθ(oH , . . . , o1|aH−1, . . . , a1) = Pπθ (oH , . . . , o1). (6)

The derivation of equation (6) can be found in Appendix E.2. Combining this with (5) and summing
over all episodes, we conclude that:

K∑
k=1

(V ? − V πk) ≤ H
K∑
k=1

∑
τH∈Γ(πk,H)

|p(τH ; θk)− p(τH ; θ?)|.

This upper bounds the suboptimality in value by errors in estimating the conditional probabilities.
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5.2 Bounding error in density estimation by error in estimating operators

For the next step, we leverage the OOM representation to bound the difference between the conditional
probabilities p(τH ; θk) and p(τH ; θ?). Recall that from (2), the conditional probability can be written
as a product of the observable operators for each step and b0. Therefore, for any two parameters θ̂
and θ, we have following relation for any sequence τH = (oH , . . . , a1, o1):

p(τH ; θ̂)− p(τH ; θ) = e>oH ·BH−1(aH−1, oH−1; θ̂) · · ·B1(a1, o1; θ̂) · [b0(θ̂)− b0(θ)]

+

H−1∑
h=1

e>oH ·BH−1(aH−1, oH−1; θ̂) · · · [Bh(ah, oh; θ̂)−Bh(ah, oh; θ)] · · ·B1(a1, o1; θ) · b0(θ).

This relates the difference p(τH ; θ̂)− p(τH ; θ) to the differences in operators and b0. Formally, with
further relaxation and summation over all sequence in Γ(π,H), we have the following lemma (also
see Lemma 10 in Appendix C).
Lemma 5. Given a deterministic policy π and two sets of undercomplete POMDP parameters
θ = (O,T, µ1) and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, we have

∑
τH∈Γ(π,H)

|p(τH ; θ̂)− p(τH ; θ)| ≤
√
S

α

‖b0(θ̂)− b0(θ)‖1 +
∑

(a,o)∈A×O

‖[B1(a, o; θ̂)−B1(a, o; θ)]b0(θ)‖1

+

H−1∑
h=2

∑
(a,ã,o)∈A 2×O

S∑
s=1

∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ)
)
OhTh−1(ã)es

∥∥∥
1
Pπθ (sh−1 = s)

 . (7)

This lemma suggests that if we could estimate the operators accurately, we would have small value
sub-optimality. However, Assumption 1 is not sufficient for parameter recovery. It is possible that
in some step h, there exists a state sh that can be reached with only very small probability no
matter what policy is used. Since we cannot collect many samples from sh, it is not possible to
estimate the corresponding component in the operator Bh. In other words, we cannot hope to make
‖Bh(a, o; θ̂)−Bh(a, o; θ)‖1 small in our setting.

To proceed, it is crucial to observe that the third term on the RHS of (7), is in fact the operator error
Bh(a, o; θ̂)−Bh(a, o; θ) projected onto the direction OhTh−1(ã)es and additionally reweighted by
the probability of visiting state s in step h−1. Therefore, if s is hard to reach, the weighting probability
will be very small, which means that even though we cannot estimate Bh(a, o; θ) accurately in the
corresponding direction, it has a negligible contribution to the density estimation error (LHS of (7)).

5.3 Bounding error in estimating operators by OOM-UCB algorithm

By Lemma 5, we only need to bound the error in operators reweighted by visitation probability. This
is achieved by a careful design of the confidence sets in the OOM-UCB algorithm. This construction
is based on the method of moments, which heavily exploits the undercompleteness of the POMDP.
To showcase the main idea, we focus on bounding the third term on the RHS of (7).

Consider a fixed (o, a, ã) tuple, a fixed step h ∈ [H], and a fixed iteration k ∈ [K]. We define
moment matrices Ph(a, ã),Qh(o, a, ã) ∈ RO×O as in (3) for distribution on sh−1 that equals (1/k) ·∑k
t=1 P

πt

θ?(sh−1 = ·). We also denote P̂h(a, ã) = Nh(a, ã)/k, Q̂h(o, a, ã) = Mh(o, a, ã)/k for
Nh,Mh matrices after the update in the k-th iteration of Algorithm 1. By martingale concentration,
it is not hard to show that with high probability:

‖Ph(a, ã)− P̂h(a, ã)‖F ≤ Õ(1/
√
k), ‖Qh(o, a, ã)− Q̂h(o, a, ã)‖F ≤ Õ(1/

√
k).

Additionally, we can show that for the true operator and the true moments, we have
Bh(a, o; θ?)Ph(a, ã) = Qh(o, a, ã). Meanwhile, by the construction of our confidence set Θk+1,
we know that for any θ̂ ∈ Θk+1, we have

‖Bh(a, o; θ̂)P̂h(a, ã)− Q̂h(o, a, ã)‖F ≤ γk/k.

Combining all relations above, we see that Bh(a, o; θ̂) is accurate in the directions spanned by
Ph(a, ã), which, by definition, are directions frequently visited by the previous policies {πt}kt=1.
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Formally, we have the following lemma, which allows us to bound the third term on the RHS of (7)
using the algebraic transformation in Lemma 16.

Lemma 6. With probability at least 1 − δ, for all k ∈ [K], for any θ̂ = (Ô, T̂, µ̂1) ∈ Θk+1 and
(o, a, ã, h) ∈ O ×A 2 × {2, . . . ,H − 1}, and ι = log(KAOH/δ), we have

S∑
s=1

∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)
OhTh−1(ã)es

∥∥∥
1

k∑
t=1

Pπt

θ?(sh−1 = s) ≤ O

(√
kS2Oι

α4

)
.

6 Conclusion

In this paper, we give a sample efficient algorithm for reinforcement learning in undercomplete
POMDPs. Our results leverage a connection to the observable operator model and employ a refined
error analysis. To our knowledge, this gives the first provably efficient algorithm for strategic
exploration in partially observable environments.

Broader Impact

As this is a theoretical contribution, we do not envision that our direct results will have a tangible
societal impact. Our broader line of inquiry could impact a line of thinking in a way that provides
additional means to provide confidence intervals relevant for planning and learning. There is an
increasing needs for applications to understand planning under uncertainty in the broader context of
safety and reliability, and POMDPs provide one potential framework.
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