A Notation

Below, we introduce some notations that will be used in appendices.

’ notation ‘ ‘ definition ‘
k value of n after the update in the k*" iteration of Algorithmili
N¥(a,a) value of Ny, (a, @) after the update in the k'" iteration of Algorithm
MF (o, a,a) value of My, (0, a, @) after the update in the k*" iteration of Algorithm
0 a parameter triple (T, Q, ;) of a POMDP
0* the groundtruth POMDP parameter triple
POMDP(0) POMDP(H, %, o/, 0, T,0,r, i1)

7' a length-h trajectory: 7, = [ap, op, - .., a1,01] € (& x O)"
D(m, h {mh = (an,0n,...,a1,01) | w(apn,...,a1lon,...,01) = 1}.
b(7;0) By (an,0n;0)---Bi(ar,01;6) - bo()

Py (s = s) probability of visiting state s at ht" step when executing policy 7 on
POMDP(6)
1(z =y) equal to 1 if z = y and 0 otherwise.

€, an O-dimensional vector with (e,); = 1(0 = 1)

(X)o the o'" column of matrix X

I, n X n identity matrix

Choly poly(S,0,A, H,1/a,log(1/0))
L log(AOHK/$)

Letx € R,y € R" and z € R">. We denote by x ® y ® z the tensor product of vectors
x, y and z, an ny X ny X n, tensor with (3, j, k)t entry equal to x;y;z,. Let X € RHxXm,
Y € R"™*™ and Z € R"#*"™_ We generalize the notation of tensor product to matrices by defining
XY®Z=Y",(X)®(Y), ®(Z), whichisan nx x ny x nz tensor with (i, 7, k)'" entry
equal to Z?il Xilelelo

Let X be a random variable taking value in [m], we denote by P(X = -) an m-dimensional vector

whose ! entry is P(X = i).

*Note that this definition is different from the one used in Section [5| where 75, = [on,...,a1,01] €
O x (& x 0)"~" does not include the action ay, at h*" step.

*WLOG, all the polices considered in this paper are deterministic. Also note that the trajectory in T'(w, )
contains ay,, which is different from the definition in SectionE]
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B Proof of Hardness Results

The hard examples constructed below are variants of the ones used in [[19].

Proposition 1. For any algorithm 2, there exists an overcomplete POMDP (S > O) with S and O
being small constants, which satisfies omin(Op) = 1 for all h € [H], such that algorithm 2 requires
at least (AT =1) samples to ensure learning a (1/4)-optimal policy with probability at least 1 /2.

Proof. Consider the following H -step nonstationary POMDP:

1. STATE There are four states: two good states g; and g, and two bad states b; and by. The
initial state is picked uniformly at random.

2. OBSERVATION There are only two different observations u; and ug. Atstep h € [H — 1],
we always observe u; at g; and by, and observe us at g, and by. At step H, we always

observe u; at good states and us at bad states. It’s direct to verify opin (Qr) = 1 for all
h e [H].

3. REWARD There is no reward at the fist H — 1 steps (i.e. 7, = 0 forall h € [H —1]). At step
H, we receive reward 1 if we observe u1 and no reward otherwise (i.e. rg(0) = 1(0 = u1)).

4. TRANSITION There is one good action a} and A — 1 bad actions for each h € [H — 1]. At
step h € [H — 1], suppose we are at a good state (g1 or g2), then we will transfer to g or go
uniformly at random if we take a} and otherwise transfer to b; or by uniformly at random.
In contrast, if we are at a bad state (b; or by), we will always transfer to by or b, uniformly
at random no matter what action we take. Note that two good (bad) states are equivalent in
terms of transition.

We have the following key observations:

1. Once we are at bad states, we always stay at bad states.

2. We have
1
P(01:H—1 =z | al:H—l;OH) = 21[17_1

H-1

for any z € {Ul,UQ}Hil and (a1.7-1,0m) € [4] x {u,us}

Therefore, the observations at the first H — 1 steps provide no information about the
underlying transition. The only useful information is the last observation oy which tells us
whether we end in good states or not.

3. The optimal policy is unique and is to execute the good action sequence (a7, ...,a%_;)
regardless of the obervations.

Based on the observations above, this is equivalent to a multi-arm bandits problem with A1
arms. Therefore, we cannot do better than Brute-force search, which has sample complexity at least
AR,

Proposition 2. For any algorithm %, there exists an undercomplete POMDP (S < O) with S and O
being small constants, such that algorithm A requires at least (A" =1) samples to ensure learning
a (1/4)-optimal policy with probability at least 1/2.

Proof. We continue to use the POMDP constructed in Proposition[T]and slightly modify it by splitting
us into another 4 different observations {q1, 2, g3, ¢4}, so in the new POMDP (O = 5 > S = 4),
we will observe a ¢; picked uniformly at random from {q1, ¢2, g3, ¢4} when we are *supposed’ to
observe us. It’s easy to see the modification does not change its hardness.
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C Analysis of OMM-UCB

Throughout the proof, we use 7, to denote a length-h trajectory: [ay, o, . .., a1,01] € (& x O)".
Note that this definition is different from the one used in Section where 75, = [op,...,a1,01] €
O x (o x 0)"=1 does not include the action ay, at h*® step. Besides, we define I'(7, h) = {1, =
(ah,0n,...,a1,01) | w(an,...,a1|on,...,01) = 1}, which is also different from the definition in
Section [5| wherer ay, is not included.

Please refer to Appendix [A]for definitions of frequently used notations.

C.1 Bounding the error in belief states
In this subsection, we will bound the error in (unnormalized) belief states, i.e., b(7y,;6) — b(7y; é)
by the error in operators reweighed by the probability distribution of visited states.

We start by proving the following lemma that helps us decompose the error in belief states inductively.

Lemma 7. Given a deterministic policy m and two set of POMDP parameters 6 = (@, ﬁ‘, fi1) and
0= (0,T,u), forallh > 1and X € {Io,@LH}, we have

Z HX (b(T;L;G) — b(Tmé)) H1 < Z H@L (b(Th_l;G) — b(Th_l;é)) H1

Th €0 (7,h) Th—1€N(m,h—1)

>

Th €T (m,h)

X (Bu(an, 0n30) = Bn(an,0n:0)) blrn-1:6) -

Proof. By the definition of b(7,;6) and b(7;6),

> 1X (bri0) = b(m:d)) s

Th €D (7,h)

= 3 IX(Bulan,0n: O)b(ri150) ~ Buan.0ns 0)b(m-1:6)) |
Th €0 (m,h)

< Y IXBu(an 0ni0) (b(rh-130) = b(ra-1:0) ) Il

Th €T(7,h)

+ 3 IX (Bulan, 0u:0) — Bulan, 0n:6) ) b(ri130)]h.
Th €0 (m,h)

The first term can be bounded as following,

> IXBu(an, 0n;0)(b(rh-1;0) — b(7i-1;6))|1

TR €L (m,h)

= Y XOus1Th(an)diag(Qn(on | )0}, (b(7h71;9) - b(Thﬂ;é)) [t
T €0 (m,h)

S>3 | (XOnsrTa(an)diag(nion | )

Th€Dl(m,h) 1

> 5 [(x0ntio)

ThEDl(m,h

S S 0uton | 9)](6 (bru1:0) ~ b(m1:0))).

Thel(m,h) i !

IN

. ‘(@L (b(’l’h_l; 0) — b(1h—1; é)))

i i

Oulon | )| (0] (b(-10) ~ b(rn1:6)) ).

b

where the inequality is by triangle inequality, and the last identity follows from ﬁ‘h(ah) (when
X = (O)L_H) and Q41T (ar) (when X = Ip) having columns with ¢;-norm equal to 1.
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As 7 is deterministic, ay, is unique given 73,1 and oy,. Therefore,

Z Z©h(oh | i) ’(@2 (b(Th—1§9) - b(Th—l;é))).

i
€l (m,h) ¢

> > Onlon | ) ’( ( (Th71§9)_b(7—h71;é)))‘

i
Th_1€l(m,h—1) on @

S 3> 0ulon [9)|(OF (blru-1:0) = b(ri-1:0)))

. (]
Th— 1€F(7rh 1 1 Op

> Z‘( ( Th—lQQ)_b(Th—ﬁé)))

. K3
Tho1ED(m,h—1) i

Z H@L (b(Th_1;9) — b(Th_1;9)>’ )

Th—1€l(m,h—1)

)

which completes the proof. O

By applying Lemma 7] inductively, we can bound the error in belief states by the projection of errors
in operators on preceding belief states.

Lemma 8. Given a deterministic policy m and two sets of undercomplete POMDP parameters
0=(0,T,u) and 0 = (0O, T, fi1) with omin(Q) > «, for all h > 1, we have

Hb(Th;e) —b(Th;é)Hl
Ther(ﬂ h)

<7Z Z H( aJaOJvé)*Bj(ajaoj;9)>b(Tj—l;Q)HlJrgHbo(t?)—bo(é)1

Jj=1r1;€l(m,j5)

Proof. Invoking Lemmalw1th X = @] 41> We have

> H@]H((Tj;e)—b(n;é>)|\1g )

@}L (b(Tj,l; ) —b(7;_1; é)) H

1

7 €0(m,5) 7j—1€T(m,j—1)
+ Z ]+1 ( a]70],9)—Bj(aj,oj;9)) b(7;—-1;6) |1 ®)
TJEF(W,j)
Summing () over j = 1,...,h — 1, we obtain
S 18] (brn1:0) b)) | ©
Thfler(ﬂ',h—l)

‘©§+1 (Bj(aj, 0;:0) — Bj(aj, 05; 9)) b(7j-1; a)Hl + H@I <b0(9) - bO(é)) H1 '
j=1r1;€0(m,j5)

Again, invoking Lemma [7|with X = I, gives
> Ibm®) =bmidli < D> 0hb(ra-1;0) = b(7a-1;0)ll:
Th€l'(m,h) Th—1€L(m,h—1)

+ 3 1(Bulan, 0n:6) — Bu(an,01:0)) b(m1:60)[1. (10)
Th €0 (m,h)

Plugging (@) into (T0), and using the fact that [|O] ||, 1 < v/5||O] || < @ complete the proof. [J
The following lemma bounds the projection of any vector on belief states by its projection on the

product of the observation matrix and the transition matrix, reweighed by the visitation probability of
states.
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Lemma 9. For any deterministic policy 7, fixed ap11 € &7, u € RO, and h > 0, we have

s
> > ub(antrsonn, i 0)] <D [uT (Ong2Thga(anta))s[Pf (shi1 = ).

on+1€0 1, €T (m,h) s=1

Proof. By definition, for any [aj11,0r+1,Tr] € & X O x T'(7, h), we have

b([ani1,0n+1,Th];0) = Ont2Thi1(ant1)Pg(Sht1 = - [0nt1, Th]),
where PZ (sp11 = -, [0n41, 74]) is an s-dimensional vector, whose i*? entry is equal to the probability
of observing [op,41, 7] and reaching state ¢ at step h + 1 when executing policy 7 in POMDP(6).
Therefore,
> > la"b(lant1, ons1, 7] 0)]
Th €L (m,h) O 41€EC
= D> Y [ OnreThia(an+)Pg(sns1 = - [on41. 7))
Th€l(m,h) op+1€0
s
< > D D W (OngaThia(ans))s|Pg (snyr = s, [ons1, 7))

Th,GF(ﬂ',h) O}L+1Eﬁ s=1

(Op42Tht1(ant1)) ( Z Z PG (sht1 = s, [0h+1aTh]))

Th €D (m,h) 0Oh+1€E0

(On+2Ths1(ant1))s|Pg (sni1 = s). O

S
"L

Combining Lemma [8]and Lemma|[9} we obtain the target bound.

Lemma 10. Given a deterministic policy w and two sets of undercomplete POMDP parameters
0= (0,T,u)and 0 = (0O, T, fiy) with omin(Q) > «, for all h > 1, we have

> Ib(rn;6) — b(ra:0)[h

)
S? Hbo(e) — bo(é)‘ ) + ? Z H (Bl(a70; 0) — Bl(a,o;G)) b0(9)H1
(a,0)edd X O
+ ? th XS: H (Bj(%O? 0) — B;(a, o; 9)) (0;T;-1(@))s| | PG (s5-1 = 9)-

Proof. By Lemmal(g]

> Ib(rh;6) — b(ra: )]s

TR €L (m,h)

Y5 Zh: | H (Bj(aj»oj;é) - Bj(aj,Oj;9)) b(Tj_1;9)Hl

‘(Bl(al,ol;ﬁ) B (a1, 010 ) H aSHbO(H)—bo(é) 1

(1)
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Bounding the first term: note that I'(7, j) C I'(7,j — 2) x (€ x <7)?, so we have

> 1(Bi(a05:0) = By(a;.05:0)) bry—1:0)]l

7 €T(7,5)

DD DI

Tj—2€l(m,j—2)0j1€0 a; 1€ 0;€0 a;€EA
I (Bj(aj.05:0) = By(a;,0,:0)) Blaj-1,0,-1,7;-2]: 0) s
(aj,aj,l,oJ')EMQXﬁ

> > ( %70;79)—Bj(aw%(’))b([aj—l’oj—lﬁj—z];@)lh- (12)

Tj—2€l(m,j—2)0j_1EC

(0)
We can bound (¢) by Lemma [9]and obtain,

> 1(Blag,05:0) = Bj(az,05:60) ) blr-1:6)]l

7€l (m,5)

< ¥ Zn( (a5, 05:0) = B(a;,0;:6) ) (0;T;-1(aj-1))s 1P (s5-1 = 9)

(aj,a;— 1,OJ)€£¢2><6’S 1
= Y Z | ( (a,0;0) — B, (a, o; 9)) (O;T;_1(@))s[1P5 (551 = 5), (13)
(a,a,0)€x/2x 0 s=1

where the identity only changes the notations (a;,a;_1,0;) — (a,a, o) to make the expression
cleaner.
Bounding the second term: note that I'(7, 1) C & x &, we have

Z H (Bl(al,ol;ﬁ) — Bl(al,ol;é)) bg(@)”1

T €l (m,1)
< Y |(Buei) ~ Bi(a,0:6)) bo0)| - (14)
(a,0)€el xO !
Plugging (T3)) and (14) into (TT) completes the proof. O

C.2 A hammer for studying confidence sets

In this subsection, we develop a martingale concentration result, which forms the basis of analyzing
confidence sets.

We start by giving the following basic fact about POMDP. The proof is just some basic algebraic
calculation so we omit it here.

Fact 11. In POMDP(0), suppose sy_1 is sampled from uy,_1, fix ap—1 = a, and ap, = a. Then the
Jjoint distribution of (0n+1,0p,0n—1) IS

P(opt1=",0n = - 0p-1 =) = (Op41Tn(a)) ©® Op @ (Op-1diag(un—1)Th-1(@) 7).
By slicing the tensor, we can further obtain

]P(Oh_l = ) = @h—l,ufh—la
P(on = -,0n-1 = -) = 0 Tj—1(a)diag(pn—1)Op_1,
P(opy1 =00 = 0,051 = ) = Opy1Tp(a)diag(On(o | -)Th-1(a)diag(pn—1)0p_ ;-
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A simple implication of Fact[T1]is that if we execute policy 7 from step 1 to step h — 2, take G and a
at step h — 1 and h respectively, then the joint distribution of (0j,41, 0, 0n—1) is the same as above
except for replacing pi,—1 with P§ (sp,—1 = ).

Suppose we are given a set of sequential data {(05317 ogf), ogle)}ivzl generated from POMDP(6)
in the following way: at time ¢, execute policy 7; from step 1 to step h — 2, take action a at step
h — 1, and action a at step h respectively, and observe (0531, ogf), 0521). Here, we allow the policy
¢ to be adversarial, in the sense that 7; can be chosen based on { (7, oziil, ogj), ogll)}ﬁ;i. Define

e = % Zivzl Pyt (sh—1 = -). Based on Fact|11} we define the following probability vector,
matrices and tensor,
Py = Op_1pf ™,
Py -1 = 0 Tp_1(a)diag(ui) 0y,
Pt -1 = (On1Th(a)) © On ® (Op—1diag(ph?)Tr-1(a) ")
Pri1,0h-1 = Opy1Ty(a)diag(Op(o | ) Th-1(a)diag(pi?)0p_y, o€ O.

Accordingly, we define their empirical estimates as below
1
thl = N Z eogfll’
t=1
1

1 X
P, 1hh71:*5 emn Ve mne o
thh, N P Opt1 op 05,21’

N

R 1

Ph—o—l,o,h—l = N E eo(htj—l 29 eogfll].(Og) = O), 0€E 0.
t=1

Lemma 12. There exists an absolute constant c1, s.t. the following concentration bound holds with
probability at least 1 — §

maX{HPthLh,hl — Poiinwnilles |Pon1 — Ponoillrs

R . [log(ON/d
Tgleag ||Ph+1,o7h71 - Ph+1>o,h71||Fa | Ph—1 — Ph1|2} < g(T/)

Proof. We start with proving that with probability at least 1 — §/2,

2 log(ON/6
1 Prt1,hh—1 — Pr1hph—1llr < g(T/)

Let F; be the o-algebra generated by {{m S {(05317 ol o Y}, } (F¢) is a filtration. Define

Xe=e,m @, @e,w —(On1Th(a)) ® Op @ (Op-1diag(F* (sn-1 = NTh-1(@)").

We have X; € F; and E[X; | F;r—1] = E[X} | m¢] = 0, where the second identity follows from Fact
[Tl Moreover,

[Xellr < [[Xelln < lle;r ®e o ®@e o |1+
h+1 h h—1
1(On+1Th(a)) ® Op ® (Op-1diag(Pg* (sn-1 = ) Th-1(a) ")l = 2, (15)
where || - ||1 denotes the entry-wise ¢1-norm of the tensor.

Now, we can bound ||]5h+1,h’h,1 — Pyy1,h,h—1||F by writing Phﬂ,h’h,l — Pyy1,h,n—1 as the sum of
a sequence of tensor-valued martingale difference, vectorizing the tensors, and applying the standard
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vector-valued martingale concentration inequality (e.g. see Corollary 7 in [17]]):

| Prstmn-1— Poyinnillr
N

1
=|| N Z (eogi)rl (9 60(;) (39 60521 _

t=1

(On41Th(a)) ® Of ® (Op—1diag(P§ (sp—1 = -))Ta-1(a) ")) llr

N
1 log(ON/§)
:||—N tE_lXtF§O< — N )

with probability at least 1 — §/2. We remark that when vectoring a tensor, its Frobenius norm will
become the /5-norm the vector. So the upper bound of the norm of the vectorized martingales directly
follows from (13).

Similarly, we can show that with probability at least 1 — /2,

N log(ON/6§ N log(ON/6
| Prh—1 — Php—1llpr <O ( g(N/)> and ||Pp—1 — Pho1l|lp <O ( g(N/)> .

Using the fact ||I5h+170,h_1 — Pht10h-1]lF < HIAD;,,H’h’h_l — Pht1,n,h—1]|F completes the whole
proof. O

C.3 Properties of confidence sets

For convenience of discussion, we divide the constraints in ©y, into three categories as following

Type-0 constraint:
1% - bo(8) — n*[|2 < B}
Type-I constraint:
”Bl(a’ 0; é)Nllc(aa d) - le(ov a, &)HF < Y&,
where M¥ and N¥ are actually equivalent to O-dimensional counting vectors because there is no
observation (or only a dummy observation) at step 0, which implies each of them has only one

non-zero column. With slight abuse of notation, we use M¥ and N¥ to denote their non-zero columns
in the following proof.

Type-II constraint: for2 < h < H — 1,

HBh(a7 0; é)Ni(a» d) - MZ(Ov a, d) ”F < Ve
Recalling the definition of n*(¢), N¥ (a, a) and M} (0, a, @) and applying Lemma|12] we get the
following concentration results.

Corollary 13. Let 6* = (T, O, u1). By applying Lemmadirectly, with probability at least 1 — 6,
forallk € [K] and (0,a,a) € O x o/?, we have

1
—n* — Oy §O< L)a
9 k
L
SO( >7
9 k

k
MT(O, a, d) - <©2T1(&)dlag(ul)©;—>o

1 -
ENllc(a‘a CL) - @1,&1

1
k

NE(0,8) ~ OWTho1 (@)ding(uh_)OL,| <O

<o({)
1 <

A\ F

1 ~ . .
P M0, 0,) ~ OnrTala)ding(O4(0 | ) Tas @it )0, <0 (y/7).
W F

18



where

v =log(KAOH/S) and puf_| =

?v\)—‘

k
Z M(shor=1) 2<h<H-L

Note that for all k € [K|, u¥ = uy independent of 7y, . . ., 7.

Now, with Corollary we can prove the true parameter §* always lies in the confidence sets for
k € [K] with high probability.

Lemma 14. Denote by 6* = (T,Q, 1) the the ground truth parameters of the POMDP. With
probability at least 1 — 6, we have 0* € Oy, for all k € [K].

Proof. By the definition of by (6*) and By, (a, 0; 8*), we have
bo(6") = O1pa,
(#) § (02T1(a)diag(p1)0) ), = Bu(@,0;6*) 01 pu1,
W =By(a,0;0%)-V, h>2
where W and V are shorthands defined in Corollary [T3]
It’s easy to see (x) and Corollar directly imply ||n* — by (6*) H2 <0 (\/E) and thus ™ satisfies
Type-0 constraint. For other constraints, we have
Type-I constraint:
1M (0,a,@) — By (@, 0;6*)N7 (a,a)]2
<|Mf(0,a,a) — k (@2T1(&)diag(ﬂl)@f)0”2 + ||B1(@, 0;6%) (kO1 1 — Ni(a,@))|l2
+ k[ (02 Ty (@)diag(p1)O] ), — Bi(a, 036" )01 a1 fo
=M} (0,a,a) — k (@2T1(&)diag(#1)@f)0”2 + ||B1(@, 0;6%)(kO1 1 — N (a,@))|l2
§||M]f(o,a, a)—k (@2T1(d)diag(/~b1)@f)o”2 + [|B1(@, 0; 0|2 | kO 1y — N]f(a»d)”z
(5]

(0%

where the identity follows from (x), and the last inequality follows from Corolla and
1B (a,0;6%)||2 = | On+1Th(a)diag(On(o]-))O} ||z
1 .
< 2 1O0n41Th(a)diag(On(o])|2

V'S .
7||@h+17fh(a)dlag(©h(0\-))HHl <

%

IN

Type-1I constraint: similarly, for A > 2, we have
1By (a, 0;6*)N} (a,a) — M (0,a,a)|
<k|Bn(a,0:6") - V = W||p + |By(a, 0;6") (N} (a, @) — k V)| + kW — M (0, a,a)||r
=|Bn(a,0;6") (N (a,a) — kV)|p + kW — M} (0, a,a)||r
<|Bn(a, 0:6")||2|N}; (a,@) — V|| ¢ + [|kW — M (0,a,d)| r

<o),

«
Therefore, we conclude that * € Oy, for all k € [K] with probability at least 1 — 4. O

Furthermore, with Corollary [T3] we can prove the following bound for operator error.

19



Lemma 15. With probability at least 1—6, forall k € [K), 0 = (0, T, i) € Op41 and (0,a,d,h) €
O x o? x{2,...,H — 1}, we have

o)

H (Bl(a’o; 6) — Bu(a, o; 9*)) b (6%)

[bo(6*) = bo (6)

St
< il
2_(9( ka2>’

s k
> H(Bh(a70§ 0) — B(a, o; 9*)) (OnTh-1( Hsh-1=5)<0 ( k5240L> ’
s=1

«
=1

where 1 = log(KAOH/9).

Proof. For readability, we copy the following set of identities from Lemma [[4] here,

bo( ) @1,&1,
(%) (@ng(a)dlag(ul)@I)o = B1(a, 0;0*)O1 1,
W =By(a,0;0%)-V, h>2.

Type-0 closeness:

Iok - by (6)

1
7nk - bo(a*) k

-] =

4

<o)

2

where the last inequality follows from (x), Corollary|13|and feco k1

Type-I closeness: similarly, we have

| (B1(@,0:0) = Bu(@, 0307) ) bo(6) |
< || (02T (@)ding()07 ), — Ba(a,0; 0%)bo(6")]

+[[(02 Ty (a)diag(11)07 ) , — B1(@, 0; 6)bo(6%)])2
=|| (©2T1(&)diag(u1)@f)o — B1(@,0;0)bo(6")]2

N 1k 1 . 1 - . A ~
<[0T (a)diag(p1)O1 ), = M1 (0, a,a)]l2 + £ [IMi (0, a,@) — B1(a, 0; 0)N1(a, a)|l2

k
+ ||B1 a 0; 9 %N bo( *)>||2
<[I(02T (a)diag(111)0y ), — *M 1(0,a,a)l2 + *IIM’“(O a,@) — B1(a,0;0)N}(a, )]

+ [1B1(@, 0; 9)\\2IIEN’f(a,&) — O1paalf2

St
< el

where the identity follows from (x) and the last inequality follows from Corollar andf € © k+1-
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Type-II closeness: we continue to use the same proof strategy, for h > 2
H (Bh(a, 0;0) — B (a, o; 9*)) VHF
<IW ~ By(a, 06V | + | M 0,0,8) — W
+ B0, sNE . 8) M (0,0.0) | + [Bu(a.036) (V - ;Nb @) ) I
=M (0,0,8) = Wils + B (a,0:)NE (0,) ~ M (0,0,3) |

A 1
+Bua,0i0) (V - 1NE@.) ) I

<0 ( ,j;) , (16)
where the identity follows from (x) and the last inequality follows from Corollar and f € Oy 1.
Recall V = O, T (a@)diag(puf _,)O,_, and utilize Assumption
H (Bh(a,o; 0) — By (a, o; 0*)) VHF
>q H (Bh(a, 0; é) — By(a,o; 9*)) @hTh,l(d)diag(uﬁfl)HF

\/Z‘% H (Bh(a,o; é) — By (a,o; 9*)) @hTh,l(d)diag(uZ_l)Hl

:% i H (Bh(a,o; 6) — By, (a, o; 9*)) (0rTh-1(a))s

>

k
L Zpgi (Sh—l = S).

t=1

Plugging it back into (T6) completes the whole proof. O

C.4 Proof of Theorem

In order to utilize Lemma [T3] to bound the operator error in Lemma [I0] we need the following
algebraic transformation. Its proof is postponed to Appendix [E]
Lemma 16. Let z;, € [0,C,] and wy, € [0,Cy] for k € N. Define Sy, = Z§:1 w; and Sy = 0. If
26Sk_1 < C,CWwCoVk for any k € [K], we have

K

Z zrwg < 20,0, (Co + 1)\/§log(K).

k=1

Moreover, there exists some hard case where we have a almost matching lower bound

0 (czc,wcoﬁ).

Now, we are ready to prove the main theorem based on Lemma [0} Lemma [I5]and Lemma [T6]

Theorem 3. For any € € (0, H|, there exists Ky = poly(H, S, A,0,a~1)/e? and an absolute
constant ¢y, such that for any POMDP that satisfies Assumption [1} if we set hyperparameters

Br = c1y/klog(KAOH), v, = \/gﬂk/oz, and K > Ky ay, then the output policy 7 ofAlgorithm
will be e-optimal with probability at least 2/3.

Proof. There always exist an optimal deterministic policy 7* for the ground truth POMDP(6*), i.e.,

V*(6*) = V™ (6*). WLOG, we can always choose the greedy policy 7, to be deterministic, i.e., the
probability to take any action given a history is either O or 1.

21



By Lemma we have 6* € Oy, for all k € [K] with probability at least 1 — §. Recall that
(g, 0k) = argmaxr gco, V™ (0), so with probability at least 1 — §, we have

K

Z (v o) - veen)
K
<> (VTE(O) = VTE(6Y))
k=1

K
<HY > IPG: ([orr, Tr—1]) = Pyt (lom, Tr—1]) 11

k=1 [OH,TH_l]GﬁXF(Wk,Hfl)

K
:HZ Z Ib(Tr—-1;0%) —b(TH—1;0k)1, (17)

k=17y_1€0(m, H—1)

where the identity follows from Fact[I8]

Applying Lemma[I0] we have
ST Ib(ra_1367) = b(rr_1;60)lh
T_1€0 (7, H-1)
VS . VS . N
<= bo(0") =bo(Ok), + == > (B, 0:6k) — Bala,0;6")) bo(6")]],
(a,0)edd X O
Jk

H-1 S
+§ Z Z Z”(Bh(a‘ao;ok)_Bh(a70;9*)) (QhTh 1( )) ||1 o* (Sh 1 —3)

h=2 (a,a,0)€4/2x 0 s=1

(18)
We can bound the first two terms by Lemma|[I5] and obtain that with probability at least 1 — 4,
K
HSAO
HZJkg(’)( - \/KL). (19)
o

k=1

Plugging (T8) and (19) into (T7), we obtain

i (v (0 - vee) <0 (H*sz JE) +

k=1

H?2SY5A%0
———— max ZH B (a,0;0) — By(a,0;0%)) (0,Tr-1(a))s|l, Pot (sh—1 = s). (20)

s,0,a,a,h

It remains to bound the second term.

By Lemma |15} with probablhty at least 1 — ¢, for all k € [K], 0, € O and (s,0,a,a,h) €
Yxﬁxsz% ><{2 — 1}, we have

= k5201
I(Bh(a, 0;61) — Br(a, 0;6%)) (05 Th_1(a))sl; Z]P’e* sho1=5) <O |- @y

2k Wy

By simple calculation, we have z, < v/S /. Invoking Lemmawith (21)), we obtain

K =
3wz <0 ( ” i;OL\/I?log(K)> . 22)
k=1
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Plugging (22) back into (20) gives

K
N H2S3A201'5

3 (V” (0%) — V™ (9*)) <0 <4\ﬁ\/f{ 10g(K)) . (23)

k=1 @
Finally, choosing

406 4403
K= O (H S°4%0 lsgg(HSAO/e)) ’
abe

and outputting a policy from {1, ..., 7k} uniformly at random complete the proof. O
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D Learning POMDPs with Deterministic Transition

In this section, we introduce a computationally and statistically efficient algorithm for POMDPs with
deterministic transition. A sketched proof is provided.

We comment that some previous works have studied POMDPs with deterministic transitions or
deterministic emission process assuming the model is known (e.g. [4, 15} 16])); their results mainly focus
on the planning aspect. In contrast, we assume unknown models which requires to learn the transition
and emission process first. It is also worth mentioning that the (quasi)-deterministic POMDPs defined
in these works are not exactly the same as ours. For example, the deterministic POMDPs in [6]] refer
to those with stochastic initial state but deterministic emission process, while we assume deterministic
initial state but stochastic emission process. Therefore, their computational hardness results do not
conflict with the efficient algorithm in this section.

Algorithm 2 Learning POMDPs with Deterministic Transition
1: initialize N = Clog(HSA/p)/(min{e/(VOH),£})?, ny = 1(h = 1) for all h € [H].

2: forh=1,...,H —1do
3: for (s,a) € [ny] x < do

4 Reset 2z «+— Opxj and t < np41 + 1

5 fori e [N]do

6: execute policy 7, (s) from step 1 to step h — 1, take action a at h'" step and observe oy, 1
7 z4 z+ %eoh“

8: for s’ € [np41] do

9: if ||¢h+175/ — Z||2 < 05f then

10: t+ s

11: ift = np41 + 1 then

12: Nht1 & Np+1 + 1

13: ¢h+1,nh+1 < zand 7rh+1(nh+1) — aowh(s)
14: Set the s column of T, 4 to be e;

15: output [ip = e and {nh, {'J/T}L’a/}a/eg{ and {¢ft,i}i€[nh] : he [H]}

Theorem 4. For any p € (0, 1], there exists an algorithm such that for any deterministic transition
POMDP satisfying Assumption|2| within O (HQSA log(HSA/p)/(min{e/(VOH), f})Q) samples
and computations, the output policy of the algorithm is e-optimal with probability at least 1 — p.

Proof. The algorithm works by inductively finding all the states we can reach at each step, utilizing
the property of deterministic transition and good separation between different observation vectors.
We sketch a proof based on induction below.

We say a state s is h-step reachable if there exists a policy 7 s.t. P™(s;, = s) = 1. In our algorithm,
we use ny, to denote the number of h-step reachable states. All the policies mentioned below is a
sequence of fixed actions (independent of observations).

Suppose at step h, there are n, h-step reachable states and we can reach the s*" one of them at the
! step by executing a known policy 7, (s). Note that for every state s that is (h -+ 1)-step reachable,
there must exist some state s and action a s.t. s is h-step reachable and T} (s’ | s,a) = 1. Therefore,
based on our induction assumption, we can reach all the (h + 1)-step reachable states by executing
all a o mp(s) for (a, s) € & X [np)].

Now the problem is how to tell if we reach the same state by executing two different a o 7, (s)’s. The
solution is to look at the distribution of oy ;. Because the POMDP has deterministic transition, we
always reach the same state when executing the same a o 7, (s) and hence the distribution of 0,41
is exactly the distribution of observation corresponding to that state. By Hoeffding’s inequality, for
each fixed a o 7, (s), we can estimate the distribution of 05,41 with ¢2-error smaller than £/8 with
high probability using N > Q(l /&2) samples. Since the observation distributions of two different
states have {o-separation no smaller than £, we can tell if two different a o 7 (s)’s reach the same
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state by looking at the distance between their distributions of oj;. For those policies reaching the
same state, we only need to keep one of them, so there are at most .S policies kept (np11 < 5).

By repeating the argument inductively from A = 1 to h = H, we can recover the exact transition
dynamics T}, (- | s, a) and get an high-accuary estimate of Oy, (- | s) for every h-step reachable state s
and all (h,a) € [H] x < up to permutation of states. Since the POMDP has deterministic transition,
we can easily find the optimal policy of the estimated model by dynamic programming.

The e-optimality simply follows from the fact that when N > Q(H?20/e?), we have the estimated
distribution of observation for each state being O(e/ H ) accurate in ¢; -distance for all reachable states.
This implies that the optimal policy of the estimated model is at most O(e/H)x H = O(¢) suboptimal.
The overall sample complexity follows from our requirement N > max{Q(H20/?),(1/£2)},
and the fact we need to run N episodes for each h € [H],s € ¥,a € . O
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E Auxiliary Results

E.1 Derivation of equation (2)

When conditioning on a fixed action sequence {ag_1,...,a1}, a POMDP will reduce to a
non-stationary HMM, whose transition matrix and observation matrix at pth step are Tj(ap)
and Oy, respectively. So P(og,...,01]lam—1,...,a1) is equal to the probability of observing
{om,...,01} in this particular HMM. Using the basic properties of HMMs, we can easily express
P(og,...,01lam—1,...,a1) in terms of the transition and observation matrices

Om(onl) - [Ta-1(am—1)diag(QOn—1(0m-1]-))] - - [T1(ar)diag(O1 (01])] - pur-

Recall the definition of operators
By, (a,0) = Op41Tx(a)diag(Op(0]-)) O}, by = O1p1,
and @Th@h = I, we conclude that
Plog,...,o1lam—1,...,a1) = eIH -Bp_1(ag-1,01-1) - Bi(a1,01) - bg.
E.2 Derivation of equation (6)

Note that 7 is a deterministic policy and I'(r, H) is a set of all the observation and action sequences

of length H that could occur under policy =, i.e., for any 77 = (og, ..., a1,01) € I'(w, H), we have
m(ag_1...,a1 |omg,...,01) =1l,and w(aly_;...,a} | om,...,01) = 0 for any action sequence
(ag_y-..,a}) # (amg—1...,a1). Therefore, for Ty € I'(w, H), we have:

Py (om,...,01) = Z Z Py (om,ay_q,...,a},01)

aly_ €9 al €

=Pg(om,ap—1,...,a1,01)
H-1 H
= H 7T(Clh | 0h7ah17-"7a1701)‘| : lH Pe(oh | Ghp—1,0n—1 ...7CL1701)
h=1 h=1
H
= H Py(on | an—1,0n-1,...,a1,01)
h=1
=Py(om,...,01lam—1,...,a1).

E.3 Boosting the success probability

We can run Algorithm [1{independently for n = O(log(1/§)) times and obtain n policies. Each
policy is independent of others and is e-optimal with probability at least 2/3. So with probability
at least 1 — 6/2, at least one of them will be e-optimal. In order to evaluate their performance, it
suffices to run each policy for O(log(n/d)H?/&?) episodes and use the empirical average of the
cumulative reward as an estimate. By standard concentration argument, with probability at least
1 — §/2, the estimation error for each policy is smaller than e. Therefore, if we pick the policy with
the best empirical performance, then with probability at least 1 — 4, it is 3e-optimal. Rescaling €
gives the desired accuracy. It is direct to see that the boosting procedure will only incur an additional
polylog(1/4) factor in the final sample complexity, and thus will not hurt the optimal dependence on
E.

E.4 Basic facts about POMDPs and the operators

In this section, we provide some useful facts about POMDPs. Since their proofs are quite straightfor-
ward, we omit them here.

The following fact gives two linear equations the operators always satisfy. Its proof simply follows
from the definition of the operators and Fact[I]
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Fact 17. In the same setting as Fact[I1] suppose Assumption[I|holds, then we have

{ P(on = -,0n-1 = -)eo = Bp(a,0;0)P(op—1 = -),
P(opt+1 = ,0n = 0,0h—1 =) = By(a,0;0)P(oy, = -, 01 = ).

The following fact relates (unnormalized) belief states to distributions of observable sequences. Its
proof follows from simple computation using conditional probability formula and @L(O)h =Is.

Fact 18. For any POMDP(0) satisfying Assumption |1} deterministic policy w and [op, Th—1] €
O x I'(m,h — 1), we have

e,, b(m-1;0) = P§([on, Th-1]),

where Pf([op, Th—1]) is the probability of observing [op,Tr—1] when executing policy T in
POMDP(0).

E.5 Proof of Lemma([16

Proof. WLOG, assume C, = C,, = 1. Letn = min{k € [K]: Sy > 1}. We have

K n K n K
Z 2pWE = Z ZEWE + Z ZpwE < Z Wy + Z 2EWE
k=1 k=1 k=n-+1 k=1 k=n-+1
K
=S, + Z 2R Wi
k=n-+1
K
<2+ Z ZpWE.
k=n-+1

It remains to bound the second term. Using the condition that 2z;.S)_1 < CO\/E forall k € [K], we
have zj, < gZ—f forall k € [K] and i € [m]. Therefore,

K K w
zpwi < CoVk—
3 ams 3 aig
=n-+1 k=n-+1
5w
<CoVK b
_OOfk:z:nH k-1
(a) us S
<2CoVK Z IOg(S =)
k=n+1 k-1
=200V K 1og(§K) < 200VK log(K),
where (a) follows from z < 2log(z + 1) for x € [0, 1]. O
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