
A Notation

Below, we introduce some notations that will be used in appendices.

notation definition

nk value of n after the update in the kth iteration of Algorithm 1

Nk
h(a, ã) value of Nh(a, ã) after the update in the kth iteration of Algorithm 1

Mk
h(o, a, ã) value of Mh(o, a, ã) after the update in the kth iteration of Algorithm 1

θ a parameter triple (T,O, µ1) of a POMDP

θ? the groundtruth POMDP parameter triple

POMDP(θ) POMDP(H,S ,A ,O,T,O, r, µ1)

τh
4 a length-h trajectory: τh = [ah, oh, . . . , a1, o1] ∈ (A × O)h

Γ(π, h)5 {τh = (ah, oh, . . . , a1, o1) | π(ah, . . . , a1|oh, . . . , o1) = 1}.
b(τh; θ) Bh(ah, oh; θ) · · ·B1(a1, o1; θ) · b0(θ)

Pπθ (sh = s) probability of visiting state s at hth step when executing policy π on
POMDP(θ)

1(x = y) equal to 1 if x = y and 0 otherwise.

eo an O-dimensional vector with (eo)i = 1(o = i)

(X)o the oth column of matrix X

In n× n identity matrix

Cpoly poly(S,O,A,H, 1/α, log(1/δ))

ι log(AOHK/δ)

Let x ∈ Rnx , y ∈ Rny and z ∈ Rnz . We denote by x ⊗ y ⊗ z the tensor product of vectors
x, y and z, an nx × ny × nz tensor with (i, j, k)th entry equal to xiyjzk. Let X ∈ RnX×m,
Y ∈ RnY ×m and Z ∈ RnZ×m. We generalize the notation of tensor product to matrices by defining
X⊗Y ⊗ Z =

∑m
l=1(X)l ⊗ (Y)l ⊗ (Z)l, which is an nX × nY × nZ tensor with (i, j, k)th entry

equal to
∑m
l=1 XilYjlZkl.

Let X be a random variable taking value in [m], we denote by P(X = ·) an m-dimensional vector
whose ith entry is P(X = i).

3Note that this definition is different from the one used in Section 5, where τh = [oh, . . . , a1, o1] ∈
O × (A × O)h−1 does not include the action ah at hth step.

4WLOG, all the polices considered in this paper are deterministic. Also note that the trajectory in Γ(π, h)
contains ah, which is different from the definition in Section 5
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B Proof of Hardness Results

The hard examples constructed below are variants of the ones used in [19].
Proposition 1. For any algorithm A, there exists an overcomplete POMDP (S > O) with S and O
being small constants, which satisfies σmin(Oh) = 1 for all h ∈ [H], such that algorithm A requires
at least Ω(AH−1) samples to ensure learning a (1/4)-optimal policy with probability at least 1/2.

Proof. Consider the following H-step nonstationary POMDP:

1. STATE There are four states: two good states g1 and g2 and two bad states b1 and b2. The
initial state is picked uniformly at random.

2. OBSERVATION There are only two different observations u1 and u2. At step h ∈ [H − 1],
we always observe u1 at g1 and b1, and observe u2 at g2 and b2. At step H , we always
observe u1 at good states and u2 at bad states. It’s direct to verify σmin(Oh) = 1 for all
h ∈ [H].

3. REWARD There is no reward at the fistH−1 steps (i.e. rh = 0 for all h ∈ [H−1]). At step
H , we receive reward 1 if we observe u1 and no reward otherwise (i.e. rH(o) = 1(o = u1)).

4. TRANSITION There is one good action a?h and A− 1 bad actions for each h ∈ [H − 1]. At
step h ∈ [H − 1], suppose we are at a good state (g1 or g2), then we will transfer to g1 or g2

uniformly at random if we take a?h and otherwise transfer to b1 or b2 uniformly at random.
In contrast, if we are at a bad state (b1 or b2), we will always transfer to b1 or b2 uniformly
at random no matter what action we take. Note that two good (bad) states are equivalent in
terms of transition.

We have the following key observations:

1. Once we are at bad states, we always stay at bad states.

2. We have

P(o1:H−1 = z | a1:H−1, oH) =
1

2H−1

for any z ∈ {u1, u2}H−1 and (a1:H−1, oH) ∈ [A]H−1 × {u1, u2}

Therefore, the observations at the first H − 1 steps provide no information about the
underlying transition. The only useful information is the last observation oH which tells us
whether we end in good states or not.

3. The optimal policy is unique and is to execute the good action sequence (a?1, . . . , a
?
H−1)

regardless of the obervations.

Based on the observations above, this is equivalent to a multi-arm bandits problem with AH−1

arms. Therefore, we cannot do better than Brute-force search, which has sample complexity at least
Ω(AH−1).

Proposition 2. For any algorithm A, there exists an undercomplete POMDP (S ≤ O) with S and O
being small constants, such that algorithm A requires at least Ω(AH−1) samples to ensure learning
a (1/4)-optimal policy with probability at least 1/2.

Proof. We continue to use the POMDP constructed in Proposition 1 and slightly modify it by splitting
u2 into another 4 different observations {q1, q2, q3, q4}, so in the new POMDP (O = 5 > S = 4),
we will observe a qi picked uniformly at random from {q1, q2, q3, q4} when we are ’supposed’ to
observe u2. It’s easy to see the modification does not change its hardness.
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C Analysis of OMM-UCB

Throughout the proof, we use τh to denote a length-h trajectory: [ah, oh, . . . , a1, o1] ∈ (A × O)h.
Note that this definition is different from the one used in Section 5, where τh = [oh, . . . , a1, o1] ∈
O × (A × O)h−1 does not include the action ah at hth step. Besides, we define Γ(π, h) = {τh =
(ah, oh, . . . , a1, o1) | π(ah, . . . , a1|oh, . . . , o1) = 1}, which is also different from the definition in
Section 5 wherer ah is not included.

Please refer to Appendix A for definitions of frequently used notations.

C.1 Bounding the error in belief states

In this subsection, we will bound the error in (unnormalized) belief states, i.e., b(τh; θ)− b(τh; θ̂)
by the error in operators reweighed by the probability distribution of visited states.

We start by proving the following lemma that helps us decompose the error in belief states inductively.

Lemma 7. Given a deterministic policy π and two set of POMDP parameters θ̂ = (Ô, T̂, µ̂1) and
θ = (O,T, µ1), for all h ≥ 1 and X ∈ {IO, Ô†h+1}, we have∑
τh∈Γ(π,h)

∥∥∥X(b(τh; θ)− b(τh; θ̂)
)∥∥∥

1
≤

∑
τh−1∈Γ(π,h−1)

∥∥∥Ô†h (b(τh−1; θ)− b(τh−1; θ̂)
)∥∥∥

1

+
∑

τh∈Γ(π,h)

∥∥∥X(Bh(ah, oh; θ̂)−Bh(ah, oh; θ)
)
b(τh−1; θ)

∥∥∥
1
.

Proof. By the definition of b(τh; θ) and b(τh; θ̂),∑
τh∈Γ(π,h)

‖X
(
b(τh; θ)− b(τh; θ̂)

)
‖1

=
∑

τh∈Γ(π,h)

‖X
(
Bh(ah, oh; θ)b(τh−1; θ)−Bh(ah, oh; θ̂)b(τh−1; θ̂)

)
‖1

≤
∑

τh∈Γ(π,h)

‖XBh(ah, oh; θ̂)
(
b(τh−1; θ)− b(τh−1; θ̂)

)
‖1

+
∑

τh∈Γ(π,h)

‖X
(
Bh(ah, oh; θ̂)−Bh(ah, oh; θ)

)
b(τh−1; θ)‖1.

The first term can be bounded as following,∑
τh∈Γ(π,h)

‖XBh(ah, oh; θ̂)(b(τh−1; θ)− b(τh−1; θ̂))‖1

=
∑

τh∈Γ(π,h)

‖XÔh+1T̂h(ah)diag(Ôh(oh | ·))Ô†h
(
b(τh−1; θ)− b(τh−1; θ̂)

)
‖1

≤
∑

τh∈Γ(π,h)

∑
i

∥∥∥(XÔh+1T̂h(ah)diag(Ôh(oh | ·))
)
i

∥∥∥
1

∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣∣∣
=

∑
τh∈Γ(π,h)

∑
i

∥∥∥(XÔh+1T̂h(ah)
)
i

∥∥∥
1
Ôh(oh | i)

∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣∣∣
=

∑
τh∈Γ(π,h)

∑
i

Ôh(oh | i)
∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)

))
i

∣∣∣ ,
where the inequality is by triangle inequality, and the last identity follows from T̂h(ah) (when
X = Ô†h+1) and Ôh+1T̂h(ah) (when X = IO) having columns with `1-norm equal to 1.
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As π is deterministic, ah is unique given τh−1 and oh. Therefore,∑
τh∈Γ(π,h)

∑
i

Ôh(oh | i)
∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)

))
i

∣∣∣
=

∑
τh−1∈Γ(π,h−1)

∑
oh

∑
i

Ôh(oh | i)
∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)

))
i

∣∣∣
=

∑
τh−1∈Γ(π,h−1)

∑
i

∑
oh

Ôh(oh | i)
∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)

))
i

∣∣∣
=

∑
τh−1∈Γ(π,h−1)

∑
i

∣∣∣(Ô†h (b(τh−1; θ)− b(τh−1; θ̂)
))

i

∣∣∣
=

∑
τh−1∈Γ(π,h−1)

∥∥∥Ô†h (b(τh−1; θ)− b(τh−1; θ̂)
)∥∥∥

1
,

which completes the proof.

By applying Lemma 7 inductively, we can bound the error in belief states by the projection of errors
in operators on preceding belief states.
Lemma 8. Given a deterministic policy π and two sets of undercomplete POMDP parameters
θ = (O,T, µ1) and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, for all h ≥ 1, we have∑

τh∈Γ(π,h)

∥∥∥b(τh; θ)− b(τh; θ̂)
∥∥∥

1

≤
√
S

α

h∑
j=1

∑
τj∈Γ(π,j)

∥∥∥(Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)
b(τj−1; θ)

∥∥∥
1

+

√
S

α

∥∥∥b0(θ)− b0(θ̂)
∥∥∥

1
.

Proof. Invoking Lemma 7 with X = Ô†j+1, we have∑
τj∈Γ(π,j)

‖Ô†j+1

(
b(τj ; θ)− b(τj ; θ̂)

)
‖1 ≤

∑
τj−1∈Γ(π,j−1)

∥∥∥Ô†j (b(τj−1; θ)− b(τj−1; θ̂)
)∥∥∥

1

+
∑

τj∈Γ(π,j)

‖Ô†j+1

(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b(τj−1; θ)‖1. (8)

Summing (8) over j = 1, . . . , h− 1, we obtain∑
τh−1∈Γ(π,h−1)

‖Ô†h
(
b(τh−1; θ)− b(τh−1; θ̂)

)
‖1 (9)

≤
h−1∑
j=1

∑
τj∈Γ(π,j)

∥∥∥Ô†j+1

(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b(τj−1; θ)

∥∥∥
1

+
∥∥∥Ô†1 (b0(θ)− b0(θ̂)

)∥∥∥
1
.

Again, invoking Lemma 7 with X = IO gives∑
τh∈Γ(π,h)

‖b(τh; θ)− b(τh; θ̂)‖1 ≤
∑

τh−1∈Γ(π,h−1)

‖Ô†h(b(τh−1; θ)− b(τh−1; θ̂))‖1

+
∑

τh∈Γ(π,h)

‖
(
Bh(ah, oh; θ̂)−Bh(ah, oh; θ)

)
b(τh−1; θ)‖1. (10)

Plugging (9) into (10), and using the fact that ‖Ô†h‖1→1 ≤
√
S‖Ô†h‖2 ≤

√
S
α complete the proof.

The following lemma bounds the projection of any vector on belief states by its projection on the
product of the observation matrix and the transition matrix, reweighed by the visitation probability of
states.
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Lemma 9. For any deterministic policy π, fixed ah+1 ∈ A , u ∈ RO, and h ≥ 0, we have

∑
oh+1∈O

∑
τh∈Γ(π,h)

∣∣u>b([ah+1, oh+1, τh]; θ)
∣∣ ≤ S∑

s=1

|u>(Oh+2Th+1(ah+1))s|Pπθ (sh+1 = s).

Proof. By definition, for any [ah+1, oh+1, τh] ∈ A × O × Γ(π, h), we have

b([ah+1, oh+1, τh]; θ) = Oh+2Th+1(ah+1)Pπθ (sh+1 = ·, [oh+1, τh]),

where Pπθ (sh+1 = ·, [oh+1, τh]) is an s-dimensional vector, whose ith entry is equal to the probability
of observing [oh+1, τh] and reaching state i at step h+ 1 when executing policy π in POMDP(θ).

Therefore, ∑
τh∈Γ(π,h)

∑
oh+1∈O

|u>b([ah+1, oh+1, τh]; θ)|

=
∑

τh∈Γ(π,h)

∑
oh+1∈O

|u>Oh+2Th+1(ah+1)Pπθ (sh+1 = ·, [oh+1, τh])|

≤
∑

τh∈Γ(π,h)

∑
oh+1∈O

S∑
s=1

|u>(Oh+2Th+1(ah+1))s|Pπθ (sh+1 = s, [oh+1, τh])

=

S∑
s=1

|u>(Oh+2Th+1(ah+1))s|
( ∑
τh∈Γ(π,h)

∑
oh+1∈O

Pπθ (sh+1 = s, [oh+1, τh])

)

=

S∑
s=1

|u>(Oh+2Th+1(ah+1))s|Pπθ (sh+1 = s).

Combining Lemma 8 and Lemma 9, we obtain the target bound.

Lemma 10. Given a deterministic policy π and two sets of undercomplete POMDP parameters
θ = (O,T, µ1) and θ̂ = (Ô, T̂, µ̂1) with σmin(Ô) ≥ α, for all h ≥ 1, we have∑

τh∈Γ(π,h)

‖b(τh; θ)− b(τh; θ̂)‖1

≤
√
S

α

∥∥∥b0(θ)− b0(θ̂)
∥∥∥

1
+

√
S

α

∑
(a,o)∈A×O

∥∥∥(B1(a, o; θ̂)−B1(a, o; θ)
)
b0(θ)

∥∥∥
1

+

√
S

α

h∑
j=2

∑
(a,ã,o)∈A 2×O

S∑
s=1

∥∥∥(Bj(a, o; θ̂)−Bj(a, o; θ)
)

(OjTj−1(ã))s

∥∥∥
1
Pπθ (sj−1 = s).

Proof. By Lemma 8,∑
τh∈Γ(π,h)

‖b(τh; θ)− b(τh; θ̂)‖1

≤
√
S

α

h∑
j=2

∑
τj∈Γ(π,j)

∥∥∥(Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)
)
b(τj−1; θ)

∥∥∥
1

+

√
S

α

∑
τ1∈Γ(π,1)

∥∥∥(B1(a1, o1; θ̂)−B1(a1, o1; θ̂)
)
b0(θ)

∥∥∥
1

+

√
S

α

∥∥∥b0(θ)− b0(θ̂)
∥∥∥

1
. (11)
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Bounding the first term: note that Γ(π, j) ⊆ Γ(π, j − 2)× (O ×A )2, so we have∑
τj∈Γ(π,j)

‖
(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b(τj−1; θ)‖1

≤
∑

τj−2∈Γ(π,j−2)

∑
oj−1∈O

∑
aj−1∈A

∑
oj∈O

∑
aj∈A

‖
(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b([aj−1, oj−1, τj−2]; θ)‖1

=
∑

(aj ,aj−1,oj)∈A 2×O∑
τj−2∈Γ(π,j−2)

∑
oj−1∈O

‖
(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b([aj−1, oj−1, τj−2]; θ)‖1︸ ︷︷ ︸

(�)

. (12)

We can bound (�) by Lemma 9 and obtain,∑
τj∈Γ(π,j)

‖
(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
b(τj−1; θ)‖1

≤
∑

(aj ,aj−1,oj)∈A 2×O

S∑
s=1

‖
(
Bj(aj , oj ; θ̂)−Bj(aj , oj ; θ)

)
(OjTj−1(aj−1))s‖1Pπθ (sj−1 = s)

=
∑

(a,ã,o)∈A 2×O

S∑
s=1

‖
(
Bj(a, o; θ̂)−Bj(a, o; θ)

)
(OjTj−1(ã))s‖1Pπθ (sj−1 = s), (13)

where the identity only changes the notations (aj , aj−1, oj) → (a, ã, o) to make the expression
cleaner.

Bounding the second term: note that Γ(π, 1) ⊆ O ×A , we have∑
τ1∈Γ(π,1)

∥∥∥(B1(a1, o1; θ)−B1(a1, o1; θ̂)
)
b0(θ)

∥∥∥
1

≤
∑

(a,o)∈A×O

∥∥∥(B1(a, o; θ)−B1(a, o; θ̂)
)
b0(θ)

∥∥∥
1
. (14)

Plugging (13) and (14) into (11) completes the proof.

C.2 A hammer for studying confidence sets

In this subsection, we develop a martingale concentration result, which forms the basis of analyzing
confidence sets.

We start by giving the following basic fact about POMDP. The proof is just some basic algebraic
calculation so we omit it here.

Fact 11. In POMDP(θ), suppose sh−1 is sampled from µh−1, fix ah−1 ≡ ã, and ah ≡ a. Then the
joint distribution of (oh+1, oh, oh−1) is

P(oh+1 = ·, oh = ·, oh−1 = ·) = (Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(µh−1)Th−1(ã)>).

By slicing the tensor, we can further obtain
P(oh−1 = ·) = Oh−1µh−1,

P(oh = ·, oh−1 = ·) = OhTh−1(ã)diag(µh−1)O>h−1,

P(oh+1 = ·, oh = o, oh−1 = ·) = Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µh−1)O>h−1.
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A simple implication of Fact 11 is that if we execute policy π from step 1 to step h− 2, take ã and a
at step h− 1 and h respectively, then the joint distribution of (oh+1, oh, oh−1) is the same as above
except for replacing µh−1 with Pπθ (sh−1 = ·).

Suppose we are given a set of sequential data {(o(t)
h+1, o

(t)
h , o

(t)
h−1)}Nt=1 generated from POMDP(θ)

in the following way: at time t, execute policy πt from step 1 to step h − 2, take action ã at step
h− 1, and action a at step h respectively, and observe (o

(t)
h+1, o

(t)
h , o

(t)
h−1). Here, we allow the policy

πt to be adversarial, in the sense that πt can be chosen based on {(πi, o(i)
h+1, o

(i)
h , o

(i)
h−1)}t−1

i=1 . Define
µadvh−1 = 1

N

∑N
t=1 P

πt

θ (sh−1 = ·). Based on Fact 11, we define the following probability vector,
matrices and tensor,

Ph−1 = Oh−1µ
adv
h−1,

Ph,h−1 = OhTh−1(ã)diag(µadvh−1)O>h−1,

Ph+1,h,h−1 = (Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(µadvh−1)Th−1(ã)>)

Ph+1,o,h−1 = Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µadvh−1)O>h−1, o ∈ O.

Accordingly, we define their empirical estimates as below

P̂h−1 =
1

N

N∑
t=1

e
o
(t)
h−1

,

P̂h,h−1 =
1

N

N∑
t=1

e
o
(t)
h

⊗ e
o
(t)
h−1

,

P̂h+1,h,h−1 =
1

N

N∑
t=1

e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

,

P̂h+1,o,h−1 =
1

N

N∑
t=1

e
o
(t)
h+1

⊗ e
o
(t)
h−1

1(o
(t)
h = o), o ∈ O.

Lemma 12. There exists an absolute constant c1, s.t. the following concentration bound holds with
probability at least 1− δ

max

{
‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F , ‖P̂h,h−1 − Ph,h−1‖F ,

max
o∈O
‖P̂h+1,o,h−1 − Ph+1,o,h−1‖F , ‖P̂h−1 − Ph−1‖2

}
≤ c1

√
log(ON/δ)

N
.

Proof. We start with proving that with probability at least 1− δ/2,

‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F ≤ c1

√
log(ON/δ)

N
.

LetFt be the σ-algebra generated by
{
{πi}t+1

i=1, {(o
(i)
h+1, o

(i)
h , o

(i)
h−1)}ti=1

}
. (Ft) is a filtration. Define

Xt = e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

− (Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(Pπt

θ (sh−1 = ·))Th−1(ã)>).

We have Xt ∈ Ft and E[Xt | Ft−1] = E[Xt | πt] = 0, where the second identity follows from Fact
11. Moreover,

‖Xt‖F ≤ ‖Xt‖1 ≤ ‖eo(t)h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

‖1+

‖(Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(Pπt

θ (sh−1 = ·))Th−1(ã)>)‖1 = 2, (15)

where ‖ · ‖1 denotes the entry-wise `1-norm of the tensor.

Now, we can bound ‖P̂h+1,h,h−1−Ph+1,h,h−1‖F by writing P̂h+1,h,h−1−Ph+1,h,h−1 as the sum of
a sequence of tensor-valued martingale difference, vectorizing the tensors, and applying the standard

17



vector-valued martingale concentration inequality (e.g. see Corollary 7 in [17]):

‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F

=‖ 1

N

N∑
t=1

(
e
o
(t)
h+1

⊗ e
o
(t)
h

⊗ e
o
(t)
h−1

−

(Oh+1Th(a))⊗Oh ⊗ (Oh−1diag(Pπt

θ (sh−1 = ·))Th−1(ã)>)
)
‖F

=‖ 1

N

N∑
t=1

Xt‖F ≤ O

(√
log(ON/δ)

N

)
,

with probability at least 1− δ/2. We remark that when vectoring a tensor, its Frobenius norm will
become the `2-norm the vector. So the upper bound of the norm of the vectorized martingales directly
follows from (15).

Similarly, we can show that with probability at least 1− δ/2,

‖P̂h,h−1 − Ph,h−1‖F ≤ O

(√
log(ON/δ)

N

)
and ‖P̂h−1 − Ph−1‖F ≤ O

(√
log(ON/δ)

N

)
.

Using the fact ‖P̂h+1,o,h−1 − Ph+1,o,h−1‖F ≤ ‖P̂h+1,h,h−1 − Ph+1,h,h−1‖F completes the whole
proof.

C.3 Properties of confidence sets

For convenience of discussion, we divide the constraints in Θk into three categories as following

Type-0 constraint:
‖k · b0(θ̂)− nk‖2 ≤ βk}

Type-I constraint:
‖B1(a, o; θ̂)Nk

1(a, ã)−Mk
1(o, a, ã)‖F ≤ γk,

where Mk
1 and Nk

1 are actually equivalent to O-dimensional counting vectors because there is no
observation (or only a dummy observation) at step 0, which implies each of them has only one
non-zero column. With slight abuse of notation, we use Mk

1 and Nk
1 to denote their non-zero columns

in the following proof.

Type-II constraint: for 2 ≤ h ≤ H − 1,

‖Bh(a, o; θ̂)Nk
h(a, ã)−Mk

h(o, a, ã)‖F ≤ γk

Recalling the definition of nk(θ), Nk
h(a, ã) and Mk

h(o, a, ã) and applying Lemma 12, we get the
following concentration results.
Corollary 13. Let θ? = (T,O, µ1). By applying Lemma 12 directly, with probability at least 1− δ,
for all k ∈ [K] and (o, a, ã) ∈ O ×A 2, we have

∥∥∥∥1

k
nk −O1µ1

∥∥∥∥
2

≤ O
(√

ι

k

)
,∥∥∥∥1

k
Nk

1(a, ã)−O1µ1

∥∥∥∥
2

≤ O
(√

ι

k

)
,∥∥∥∥1

k
Mk

1(o, a, ã)−
(
O2T1(ã)diag(µ1)O>1

)
o

∥∥∥∥
2

≤ O
(√

ι

k

)
,∥∥∥∥∥∥∥

1

k
Nk
h(a, ã)−OhTh−1(ã)diag(µkh−1)O>h−1︸ ︷︷ ︸

V

∥∥∥∥∥∥∥
F

≤ O
(√

ι

k

)
,

∥∥∥∥∥∥∥
1

k
Mk

h(o, a, ã)−Oh+1Th(a)diag(Oh(o | ·))Th−1(ã)diag(µkh−1)O>h−1︸ ︷︷ ︸
W

∥∥∥∥∥∥∥
F

≤ O
(√

ι

k

)
,
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where

ι = log(KAOH/δ) and µkh−1 =
1

k

k∑
t=1

Pπt

θ?(sh−1 = ·) 2 ≤ h ≤ H − 1.

Note that for all k ∈ [K], µk1 = µ1 independent of π1, . . . , πk.

Now, with Corollary 13, we can prove the true parameter θ? always lies in the confidence sets for
k ∈ [K] with high probability.
Lemma 14. Denote by θ? = (T,O, µ1) the the ground truth parameters of the POMDP. With
probability at least 1− δ, we have θ? ∈ Θk for all k ∈ [K].

Proof. By the definition of b0(θ?) and Bh(a, o; θ?), we have

(∗)


b0(θ?) = O1µ1,(
O2T1(ã)diag(µ1)O>1

)
o

= B1(ã, o; θ?)O1µ1,

W = Bh(a, o; θ?) ·V, h ≥ 2,

where W and V are shorthands defined in Corollary 13.

It’s easy to see (∗) and Corollary13 directly imply
∥∥nk − b0(θ?)

∥∥
2
≤ O

(√
kι
)

and thus θ? satisfies
Type-0 constraint. For other constraints, we have

Type-I constraint:

‖Mk
1(o, a, ã)−B1(ã, o; θ?)Nk

1(a, ã)‖2
≤‖Mk

1(o, a, ã)− k
(
O2T1(ã)diag(µ1)O>1

)
o
‖2 + ‖B1(ã, o; θ?)(kO1µ1 −Nk

1(a, ã))‖2
+ k‖

(
O2T1(ã)diag(µ1)O>1

)
o
−B1(ã, o; θ?)O1µ1‖2

=‖Mk
1(o, a, ã)− k

(
O2T1(ã)diag(µ1)O>1

)
o
‖2 + ‖B1(ã, o; θ?)(kO1µ1 −Nk

1(a, ã))‖2
≤‖Mk

1(o, a, ã)− k
(
O2T1(ã)diag(µ1)O>1

)
o
‖2 + ‖B1(ã, o; θ?)‖2‖kO1µ1 −Nk

1(a, ã)‖2

≤O

(√
kSι

α

)
where the identity follows from (∗), and the last inequality follows from Corollary13 and

‖Bh(a, o; θ?)‖2 = ‖Oh+1Th(a)diag(Oh(o|·))O†h‖2

≤ 1

α
‖Oh+1Th(a)diag(Oh(o|·))‖2

≤
√
S

α
‖Oh+1Th(a)diag(Oh(o|·))‖1→1 ≤

√
S

α
.

Type-II constraint: similarly, for h ≥ 2, we have

‖Bh(a, o; θ?)Nk
h(a, ã)−Mk

h(o, a, ã)‖F
≤k‖Bh(a, o; θ?) ·V −W‖F + ‖Bh(a, o; θ?)(Nk

h(a, ã)− kV)‖F + ‖kW −Mk
h(o, a, ã)‖F

=‖Bh(a, o; θ?)(Nk
h(a, ã)− kV)‖F + ‖kW −Mk

h(o, a, ã)‖F
≤‖Bh(a, o; θ?)‖2‖Nk

h(a, ã)− kV‖F + ‖kW −Mk
h(o, a, ã)‖F

≤O

(√
kSι

α

)
,

Therefore, we conclude that θ? ∈ Θk for all k ∈ [K] with probability at least 1− δ.

Furthermore, with Corollary 13, we can prove the following bound for operator error.
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Lemma 15. With probability at least 1−δ, for all k ∈ [K], θ̂ = (Ô, T̂, µ̂1) ∈ Θk+1 and (o, a, ã, h) ∈
O ×A 2 × {2, . . . ,H − 1}, we have



∥∥∥b0(θ?)− b0(θ̂)
∥∥∥

2
≤ O

(√
ι

k

)
,

∥∥∥(B1(ã, o; θ̂)−B1(ã, o; θ?)
)
b0(θ?)

∥∥∥
2
≤ O

(√
Sι

kα2

)
,

S∑
s=1

∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)

(OhTh−1(ã))s

∥∥∥
1

k∑
t=1

Pπt

θ?(sh−1 = s) ≤ O

(√
kS2Oι

α4

)
,

where ι = log(KAOH/δ).

Proof. For readability, we copy the following set of identities from Lemma 14 here,

(∗)


b0(θ?) = O1µ1,(
O2T1(ã)diag(µ1)O>1

)
o

= B1(ã, o; θ?)O1µ1,

W = Bh(a, o; θ?) ·V, h ≥ 2.

Type-0 closeness:

∥∥∥b0(θ?)− b0(θ̂)
∥∥∥

2
≤
∥∥∥∥1

k
nk − b0(θ?)

∥∥∥∥
2

+

∥∥∥∥1

k
nk − b0(θ̂)

∥∥∥∥
2

≤ O
(√

ι

k

)
,

where the last inequality follows from (∗), Corollary13 and θ̂ ∈ Θk+1.

Type-I closeness: similarly, we have

∥∥∥(B1(ã, o; θ̂)−B1(ã, o; θ?)
)
b0(θ?)

∥∥∥
2

≤
∥∥(O2T1(ã)diag(µ1)O>1

)
o
−B1(ã, o; θ?)b0(θ?)

∥∥
2

+ ‖
(
O2T1(ã)diag(µ1)O>1

)
o
−B1(ã, o; θ̂)b0(θ?)‖2

=‖
(
O2T1(ã)diag(µ1)O>1

)
o
−B1(ã, o; θ̂)b0(θ?)‖2

≤‖
(
O2T1(ã)diag(µ1)O>1

)
o
− 1

k
Mk

1(o, a, ã)‖2 +
1

k
‖Mk

1(o, a, ã)−B1(ã, o; θ̂)Nk
1(a, ã)‖2

+ ‖B1(ã, o; θ̂)

(
1

k
Nk

1(a, ã)− b0(θ?)

)
‖2

≤‖
(
O2T1(ã)diag(µ1)O>1

)
o
− 1

k
Mk

1(o, a, ã)‖2 +
1

k
‖Mk

1(o, a, ã)−B1(ã, o; θ̂)Nk
1(a, ã)‖2

+ ‖B1(ã, o; θ̂)‖2‖
1

k
Nk

1(a, ã)−O1µ1‖2

≤O

(√
Sι

kα2

)
,

where the identity follows from (∗) and the last inequality follows from Corollary13 and θ̂ ∈ Θk+1.
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Type-II closeness: we continue to use the same proof strategy, for h ≥ 2∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)
V
∥∥∥
F

≤‖W −Bh(a, o; θ?)V‖F + ‖1

k
Mk

h(o, a, ã)−W‖F

+
1

k
‖Bh(a, o; θ̂)Nk

h(a, ã)−Mk
h(o, a, ã)‖F + ‖Bh(a, o; θ̂)

(
V − 1

k
Nk
h(a, ã)

)
‖F

=‖1

k
Mk

h(o, a, ã)−W‖F +
1

k
‖Bh(a, o; θ̂)Nk

h(a, ã)−Mk
h(o, a, ã)‖F

+ ‖Bh(a, o; θ̂)

(
V − 1

k
Nk
h(a, ã)

)
‖F

≤O

(√
Sι

kα2

)
, (16)

where the identity follows from (∗) and the last inequality follows from Corollary13 and θ̂ ∈ Θk+1.

Recall V = OhTh−1(ã)diag(µkh−1)O>h−1 and utilize Assumption 1,∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)
V
∥∥∥
F

≥α
∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)

)
OhTh−1(ã)diag(µkh−1)

∥∥∥
F

≥ α√
SO

∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)
OhTh−1(ã)diag(µkh−1)

∥∥∥
1

=
α

k
√
SO

S∑
s=1

∥∥∥(Bh(a, o; θ̂)−Bh(a, o; θ?)
)

(OhTh−1(ã))s

∥∥∥
1

k∑
t=1

Pπt

θ?(sh−1 = s).

Plugging it back into (16) completes the whole proof.

C.4 Proof of Theorem 3

In order to utilize Lemma 15 to bound the operator error in Lemma 10, we need the following
algebraic transformation. Its proof is postponed to Appendix E.

Lemma 16. Let zk ∈ [0, Cz] and wk ∈ [0, Cw] for k ∈ N. Define Sk =
∑k
j=1 wj and S0 = 0. If

zkSk−1 ≤ CzCwC0

√
k for any k ∈ [K], we have

K∑
k=1

zkwk ≤ 2CzCw(C0 + 1)
√
K log(K).

Moreover, there exists some hard case where we have a almost matching lower bound
O
(
CzCwC0

√
K
)

.

Now, we are ready to prove the main theorem based on Lemma 10, Lemma 15 and Lemma 16.

Theorem 3. For any ε ∈ (0, H], there exists Kmax = poly(H,S,A,O, α−1)/ε2 and an absolute
constant c1, such that for any POMDP that satisfies Assumption 1, if we set hyperparameters
βk = c1

√
k log(KAOH), γk =

√
Sβk/α, and K ≥ Kmax, then the output policy π̂ of Algorithm 1

will be ε-optimal with probability at least 2/3.

Proof. There always exist an optimal deterministic policy π? for the ground truth POMDP(θ?), i.e.,
V ?(θ?) = V π

?

(θ?). WLOG, we can always choose the greedy policy πk to be deterministic, i.e., the
probability to take any action given a history is either 0 or 1.
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By Lemma 14, we have θ? ∈ Θk for all k ∈ [K] with probability at least 1 − δ. Recall that
(πk, θk) = arg maxπ,θ∈Θk

V π(θ), so with probability at least 1− δ, we have

K∑
k=1

(
V π

?

(θ?)− V πk(θ?)
)

≤
K∑
k=1

(V πk(θk)− V πk(θ?))

≤H
K∑
k=1

∑
[oH ,τH−1]∈O×Γ(πk,H−1)

‖Pπk

θ? ([oH , τH−1])− Pπk

θk
([oH , τH−1])‖1

=H

K∑
k=1

∑
τH−1∈Γ(πk,H−1)

‖b(τH−1; θ?)− b(τH−1; θk)‖1, (17)

where the identity follows from Fact 18.

Applying Lemma 10, we have∑
τH−1∈Γ(πk,H−1)

‖b(τH−1; θ?)− b(τH−1; θk)‖1

≤
√
S

α
‖b0(θ?)− b0(θk)‖1 +

√
S

α

∑
(a,o)∈A×O

‖(B1(a, o; θk)−B1(a, o; θ?))b0(θ?)‖1︸ ︷︷ ︸
Jk

+

√
S

α

H−1∑
h=2

∑
(a,ã,o)∈A 2×O

S∑
s=1

‖(Bh(a, o; θk)−Bh(a, o; θ?)) (OhTh−1(ã))s‖1 P
πk

θ? (sh−1 = s).

(18)

We can bound the first two terms by Lemma 15, and obtain that with probability at least 1− δ,

H

K∑
k=1

Jk ≤ O
(
HSAO

α2

√
Kι

)
. (19)

Plugging (18) and (19) into (17), we obtain

K∑
k=1

(
V π

?

(θ?)− V πk(θ?)
)
≤ O

(
HSAO

α2

√
Kι

)
+

H2S1.5A2O

α
max

s,o,a,ã,h

K∑
k=1

‖(Bh(a, o; θk)−Bh(a, o; θ?)) (OhTh−1(ã))s‖1 P
πk

θ? (sh−1 = s). (20)

It remains to bound the second term.

By Lemma 15, with probability at least 1 − δ, for all k ∈ [K], θk ∈ Θk and (s, o, a, ã, h) ∈
S × O ×A 2 × {2, . . . ,H − 1}, we have

‖(Bh(a, o; θk)−Bh(a, o; θ?)) (OhTh−1(ã))s‖1︸ ︷︷ ︸
zk

k−1∑
t=1

Pπt

θ?(sh−1 = s)︸ ︷︷ ︸
wt

≤ O

(√
kS2Oι

α4

)
. (21)

By simple calculation, we have zk ≤
√
S/α. Invoking Lemma 16 with (21), we obtain

K∑
k=1

wkzk ≤ O

(√
S3Oι

α3

√
K log(K)

)
. (22)
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Plugging (22) back into (20) gives

K∑
k=1

(
V π

?

(θ?)− V πk(θ?)
)
≤ O

(
H2S3A2O1.5

√
ι

α4

√
K log(K)

)
. (23)

Finally, choosing

Kmax = O
(
H4S6A4O3 log(HSAO/ε)

α8ε2

)
,

and outputting a policy from {π1, . . . , πK} uniformly at random complete the proof.
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D Learning POMDPs with Deterministic Transition

In this section, we introduce a computationally and statistically efficient algorithm for POMDPs with
deterministic transition. A sketched proof is provided.

We comment that some previous works have studied POMDPs with deterministic transitions or
deterministic emission process assuming the model is known (e.g. [4, 5, 6]); their results mainly focus
on the planning aspect. In contrast, we assume unknown models which requires to learn the transition
and emission process first. It is also worth mentioning that the (quasi)-deterministic POMDPs defined
in these works are not exactly the same as ours. For example, the deterministic POMDPs in [6] refer
to those with stochastic initial state but deterministic emission process, while we assume deterministic
initial state but stochastic emission process. Therefore, their computational hardness results do not
conflict with the efficient algorithm in this section.

Algorithm 2 Learning POMDPs with Deterministic Transition

1: initialize N = C log(HSA/p)/(min{ε/(
√
OH), ξ})2, nh = 1(h = 1) for all h ∈ [H].

2: for h = 1, . . . ,H − 1 do
3: for (s, a) ∈ [nh]×A do
4: Reset z ← 0O×1 and t← nh+1 + 1
5: for i ∈ [N ] do
6: execute policy πh(s) from step 1 to step h− 1, take action a at hth step and observe oh+1

7: z ← z + 1
N eoh+1

8: for s′ ∈ [nh+1] do
9: if ‖φh+1,s′ − z‖2 ≤ 0.5ξ then

10: t← s′

11: if t = nh+1 + 1 then
12: nh+1 ← nh+1 + 1
13: φh+1,nh+1

← z and πh+1(nh+1)← a ◦ πh(s)

14: Set the sth column of T̂h,a to be et
15: output µ̂0 = e1 and

{
nh, {T̂h,a}a∈A and {φh,i}i∈[nh] : h ∈ [H]

}

Theorem 4. For any p ∈ (0, 1], there exists an algorithm such that for any deterministic transition

POMDP satisfying Assumption 2, within O
(
H2SA log(HSA/p)/(min{ε/(

√
OH), ξ})2

)
samples

and computations, the output policy of the algorithm is ε-optimal with probability at least 1− p.

Proof. The algorithm works by inductively finding all the states we can reach at each step, utilizing
the property of deterministic transition and good separation between different observation vectors.
We sketch a proof based on induction below.

We say a state s is h-step reachable if there exists a policy π s.t. Pπ(sh = s) = 1. In our algorithm,
we use nh to denote the number of h-step reachable states. All the policies mentioned below is a
sequence of fixed actions (independent of observations).

Suppose at step h, there are nh h-step reachable states and we can reach the sth one of them at the
hth step by executing a known policy πh(s). Note that for every state s′ that is (h+ 1)-step reachable,
there must exist some state s and action a s.t. s is h-step reachable and Th(s′ | s, a) = 1. Therefore,
based on our induction assumption, we can reach all the (h+ 1)-step reachable states by executing
all a ◦ πh(s) for (a, s) ∈ A × [nh].

Now the problem is how to tell if we reach the same state by executing two different a ◦ πh(s)’s. The
solution is to look at the distribution of oh+1. Because the POMDP has deterministic transition, we
always reach the same state when executing the same a ◦ πh(s) and hence the distribution of oh+1

is exactly the distribution of observation corresponding to that state. By Hoeffding’s inequality, for
each fixed a ◦ πh(s), we can estimate the distribution of oh+1 with `2-error smaller than ξ/8 with
high probability using N ≥ Ω̃(1/ξ2) samples. Since the observation distributions of two different
states have `2-separation no smaller than ξ, we can tell if two different a ◦ πh(s)’s reach the same
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state by looking at the distance between their distributions of oh+1. For those policies reaching the
same state, we only need to keep one of them, so there are at most S policies kept (nh+1 ≤ S).

By repeating the argument inductively from h = 1 to h = H , we can recover the exact transition
dynamics Th(· | s, a) and get an high-accuary estimate of Oh(· | s) for every h-step reachable state s
and all (h, a) ∈ [H]×A up to permutation of states. Since the POMDP has deterministic transition,
we can easily find the optimal policy of the estimated model by dynamic programming.

The ε-optimality simply follows from the fact that when N ≥ Ω̃(H2O/ε2), we have the estimated
distribution of observation for each state beingO(ε/H) accurate in `1-distance for all reachable states.
This implies that the optimal policy of the estimated model is at mostO(ε/H)×H = O(ε) suboptimal.
The overall sample complexity follows from our requirement N ≥ max{Ω̃(H2O/ε2), Ω̃(1/ξ2)},
and the fact we need to run N episodes for each h ∈ [H], s ∈ S , a ∈ A .
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E Auxiliary Results

E.1 Derivation of equation (2)

When conditioning on a fixed action sequence {aH−1, . . . , a1}, a POMDP will reduce to a
non-stationary HMM, whose transition matrix and observation matrix at hth step are Th(ah)
and Oh, respectively. So P(oH , . . . , o1|aH−1, . . . , a1) is equal to the probability of observing
{oH , . . . , o1} in this particular HMM. Using the basic properties of HMMs, we can easily express
P(oH , . . . , o1|aH−1, . . . , a1) in terms of the transition and observation matrices

OH(oH |·) · [TH−1(aH−1)diag(OH−1(oH−1|·))] · · · [T1(a1)diag(O1(o1|·))] · µ1.

Recall the definition of operators

Bh(a, o) = Oh+1Th(a)diag(Oh(o|·))O†h, b0 = O1µ1,

and O†hOh = IS , we conclude that

P(oH , . . . , o1|aH−1, . . . , a1) = e>oH ·BH−1(aH−1, oH−1) · · ·B1(a1, o1) · b0.

E.2 Derivation of equation (6)

Note that π is a deterministic policy and Γ(π,H) is a set of all the observation and action sequences
of length H that could occur under policy π, i.e., for any τH = (oH , . . . , a1, o1) ∈ Γ(π,H), we have
π(aH−1 . . . , a1 | oH , . . . , o1) = 1, and π(a′H−1 . . . , a

′
1 | oH , . . . , o1) = 0 for any action sequence

(a′H−1 . . . , a
′
1) 6= (aH−1 . . . , a1). Therefore, for τH ∈ Γ(π,H), we have:

Pπθ (oH , . . . , o1) =
∑

a′H−1∈A

· · ·
∑
a′1∈A

Pπθ (oH , a
′
H−1, . . . , a

′
1, o1)

=Pπθ (oH , aH−1, . . . , a1, o1)

=

[
H−1∏
h=1

π(ah | oh, ah−1, . . . , a1, o1)

]
·

[
H∏
h=1

Pθ(oh | ah−1, oh−1 . . . , a1, o1)

]

=

H∏
h=1

Pθ(oh | ah−1, oh−1, . . . , a1, o1)

=Pθ(oH , . . . , o1|aH−1, . . . , a1).

E.3 Boosting the success probability

We can run Algorithm 1 independently for n = O(log(1/δ)) times and obtain n policies. Each
policy is independent of others and is ε-optimal with probability at least 2/3. So with probability
at least 1 − δ/2, at least one of them will be ε-optimal. In order to evaluate their performance, it
suffices to run each policy for O(log(n/δ)H2/ε2) episodes and use the empirical average of the
cumulative reward as an estimate. By standard concentration argument, with probability at least
1− δ/2, the estimation error for each policy is smaller than ε. Therefore, if we pick the policy with
the best empirical performance, then with probability at least 1 − δ, it is 3ε-optimal. Rescaling ε
gives the desired accuracy. It is direct to see that the boosting procedure will only incur an additional
polylog(1/δ) factor in the final sample complexity, and thus will not hurt the optimal dependence on
ε.

E.4 Basic facts about POMDPs and the operators

In this section, we provide some useful facts about POMDPs. Since their proofs are quite straightfor-
ward, we omit them here.

The following fact gives two linear equations the operators always satisfy. Its proof simply follows
from the definition of the operators and Fact 11.

26



Fact 17. In the same setting as Fact 11, suppose Assumption 1 holds, then we have{
P(oh = ·, oh−1 = ·)eo = Bh(ã, o; θ)P(oh−1 = ·),

P(oh+1 = ·, oh = o, oh−1 = ·) = Bh(a, o; θ)P(oh = ·, oh−1 = ·).

The following fact relates (unnormalized) belief states to distributions of observable sequences. Its
proof follows from simple computation using conditional probability formula and O†hOh = IS .
Fact 18. For any POMDP(θ) satisfying Assumption 1, deterministic policy π and [oh, τh−1] ∈
O × Γ(π, h− 1), we have

e>ohb(τh−1; θ) = Pπθ ([oh, τh−1]),

where Pπθ ([oh, τh−1]) is the probability of observing [oh, τh−1] when executing policy π in
POMDP(θ).

E.5 Proof of Lemma 16

Proof. WLOG, assume Cz = Cw = 1. Let n = min{k ∈ [K] : Sk ≥ 1}. We have

K∑
k=1

zkwk =
n∑
k=1

zkwk +
K∑

k=n+1

zkwk ≤
n∑
k=1

wk +
K∑

k=n+1

zkwk

=Sn +

K∑
k=n+1

zkwk

≤2 +

K∑
k=n+1

zkwk.

It remains to bound the second term. Using the condition that zkSk−1 ≤ C0

√
k for all k ∈ [K], we

have zk ≤ C0

√
k

Sk−1
for all k ∈ [K] and i ∈ [m]. Therefore,

K∑
k=n+1

zkwk ≤
K∑

k=n+1

C0

√
k
wk
Sk−1

≤C0

√
K

K∑
k=n+1

wk
Sk−1

(a)

≤2C0

√
K

K∑
k=n+1

log(
Sk
Sk−1

)

=2C0

√
K log(

SK
Sn

) ≤ 2C0

√
K log(K),

where (a) follows from x ≤ 2 log(x+ 1) for x ∈ [0, 1].
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