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Abstract

We study the problem of agnostically learning homogeneous halfspaces in the
distribution-specific PAC model. For a broad family of structured distributions,
including log-concave distributions, we show that non-convex SGD efficiently
converges to a solution with misclassification error O(opt) + €, where opt is the
misclassification error of the best-fitting halfspace. In sharp contrast, we show
that optimizing any convex surrogate inherently leads to misclassification error of
w(opt), even under Gaussian marginals.

1 Introduction

1.1 Background and Motivation

Learning in the presence of noisy data is a central challenge in machine learning. In this work, we
study the efficient learnability of halfspaces when a fraction of the training labels is adversarially
corrupted. As our main contribution, we show that non-convex SGD efficiently learns homogeneous
halfspaces in the presence of adversarial label noise with respect to a broad family of well-behaved
distributions, including log-concave distributions. Before we state our contributions, we provide
some background and motivation for this work.

A (homogeneous) halfspace is any function f : R? — {41} of the form f(x) = sign((w,x)),
where the vector w € R? is called the weight vector of f, and the function sign : R — {£1}
is defined as sign(t) = 1if ¢ > 0 and sign(t) = —1 otherwise. Halfspaces are arguably the
most fundamental concept class and have been studied since the beginning of machine learning,
starting with the Perceptron algorithm [Ros58, INov62]]. In the realizable setting, halfspaces are
efficiently learnable in the distribution-independent PAC model [Val84] via linear programming (see,
e.g., [MT94]). On the other hand, in the agnostic model [Hau92, [KSS94], even weak distribution-
independent learning is computationally intractable [[GRO6, [FGKPO6, [Danl6l]. The distribution-
specific agnostic (or adversarial label noise) setting — where the label noise is adversarial but we have
some prior knowledge about the structure of the marginal distribution on examples — lies in between
these two extremes. In this setting, computationally efficient noise-tolerant learning algorithms are
known [KKMSO08, IKL.S09a, [ABL17, IDan15, IDKS18|] under various distributional assumptions. We
start by defining the distribution-specific agnostic model.

Definition 1.1 (Distribution-Specific PAC Learning with Adversarial Label Noise). Given i.i.d.
labeled examples (x, y) from a distribution D on R? x {£1}, such that the marginal distribution Dy
is promised to belong in a known family J but the labels y can be arbitrary, the goal of the learner
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is to output a hypothesis h with small misclassification error err?’ ; (h) ef Pr . ~p[h(x) # yl,

def . .
compared to opt = inf gecerrd 1 (g), where C is the target concept class.

[KKMSO08]] gave an algorithm that learns halfspaces in this model with error opt + € under any
isotropic log-concave distribution, with sample complexity and runtime d"™(1/€), for an appropriate
function m, which is at least polynomial. Moreover, there is evidence that any algorithm that
achieves error opt + € requires time exponential in 1/¢, even under Gaussian marginals [DKZ20,
GGK20]]. Specifically, recent work [DKZ20, IGGK20] obtained Statistical Query (SQ) lower bounds
of dP°¥(1/¢) for this problem.

A line of work [KLS09al[ABL17, [Dan13|[DKS18]| focused on obtaining poly(d, 1/¢) time algorithms
with near-optimal error guarantees. Specifically, [ABL17]] gave a polynomial time constant-factor
approximation algorithm —i.e., an algorithm with misclassification error of C' - opt + €, for some
universal constant C' > 1 — for homogeneous halfspaces under any isotropic log-concave distribution.
More recent work [DKS18]] gave an algorithm achieving this error bound for arbitrary halfspaces
under Gaussian marginals. The algorithms of [ABLI17, [DKS18] rely on an iterative localization
technique and are quite sophisticated. Moreover, while their complexity is polynomial, they do not
appear to be practical. The motivation for this work is the design of simple and practical algorithms
for this problem with the same near-optimal error guarantees as these prior works.

1.2  Our Contributions

Our main result is that SGD on a non-convex surrogate of the zero-one loss solves the problem
of learning a homogeneous halfspace with adversarial label noise when the underlying marginal
distribution on the examples is well-behaved. As we already mentioned, prior work [ABL17,[DKS18]|
uses more complex methods and custom algorithms that run in multiple phases using multiple passes
over the samples. In contrast, we take a direct optimization approach and define a single loss function
over the space of halfspaces whose approximate stationary points are near-optimal solutions. This
implies that any optimization method that is guaranteed to converge to stationary points, for example
SGD, will yield a halfspace with error O(opt) + e.

Our loss function is a smooth version of the 0-1 loss using a sigmoid function. In our case, we use
the logistic function S, (t) = 1/(1 + e~/?). Our overall objective is:

‘CU(W) = E [Sa (_y <W7 X>)] ) (D

(x,y)~D
and we optimize it over the unit sphere | w||, = 1. We show that, for a broad class of distributions,
any stationary point of this loss function corresponds to a halfspace with near-optimal error. In more
detail, we require that the distribution on the examples is sufficiently well-behaved (Definition [I.2)
satisfying natural (anti-)concentration properties.

In [DKTZ20], it was shown that the (approximate) stationary points of the objective of Equation (T)
are (approximately) optimal halfspaces under Massart noise, which is a milder noise assumption
than adversarial label noise. Interestingly, our results suggest that optimizing this objective is a
unified approach for learning halfspaces under label noise, as we show that it works even in the more
challenging adversarial noise setting.

Definition 1.2 (Well-behaved distributions). Let U, R > 0 be absolute constants and ¢ : R, — R
be a non-negative function. An isotropic (i.e., zero mean and identity covariance) distribution Dy on
R? is called well-behaved if for any projection (Dy )y of Dy onto a 2-dimensional subspace V' the
corresponding pdf ~y- on R? satisfies the following properties:

1. yv(x) > 1/U, for all x € V such that ||x||, < R (anti-anti-concentration).

2. Forallx € V, we have vy (x) < ¢ (||x]|,) and also sup, oy t(|[x]|,) < U, [i, t([[x]],)dx <
U. [ 1%, t(|x]l,)dx < U (anti-concentration and concentration).

Our class of distributions contains well-known distribution classes such as Gaussian and log-concave.
In addition to distributions with strong concentration properties, our results also handle distributions
with very weak concentration such as heavy-tailed distributions. In particular, we handle distributions
whose density function decays only polynomially with the distance from the origin, see Table[T}



We use the non-convex objective of Equation () and SGD to obtain our main algorithmic result.

Theorem 1.3. Let D be a distribution on R? x {£1} such that the marginal Dy on R? is well-
behaved. Then SGD on the objective (1) has the following performance guarantee: For any € > 0,
it draws m = O(d/e*) labeled examples from D, uses O(m) gradient evaluations, and outputs a
hypothesis halfspace with misclassification error O(opt) + € with probability at least 99%.

Theorem [I.3] gives a simple and practical learning algorithm for halfspaces with adversarial label
noise with respect to a broad family of marginal distributions.

A natural question is whether the non-convexity of our surrogate loss (I) is required. In many practical
settings, convex surrogates of the 0/1 loss such as Hinge or ReLU loss are used, see [BIMO0G] for
more choices. In general, given a convex and increasing loss £(-) the following objective is defined.

Cw)= E [l(-yxw))]. 2)

(x,y)~D
One such convex optimization problem closely related to our non-convex formulation is logistic re-
gression. In that case, the convex surrogate is simply £(t) = log(S,(t)) (compare with Equation (TJ)).

To complement our positive result, we show that convex surrogates are insufficient for the task at
hand. In particular, for any convex surrogate objective, one will obtain a halfspace with error w(opt).
In more detail, we construct a single noisy distribution whose x-marginal is well-behaved such that
optimizing any convex objective over this distribution will yield a halfspace with error w(opt). We
establish a fine-grained result showing that the misclassification error of convex objectives degrades
as the distributions become more heavy tailed, see Table m

Theorem 1.4. Let Dy be the standard normal distribution on R®. There exists a distribu-
tion D on R x {£1} such that for every convex and non-decreasing loss ((-) the objective
C(w) = Exy)~pll(—y (x,wW))] is minimized at some halfspace h with misclassification error

Q(opt+/log(1/opt)). Moreover, if the marginal Dy is allowed to be log-concave (resp. s-heavy
tailed, s > 2) the error of any minimizer is Q(opt log(1/opt)) (resp. Q(opt!=1/%)).

In fact, our lower bound result shows a strong statement about convex surrogates: Even under the
nicest distribution possible, i.e., a Gaussian, there is some simple label noise (flipping the labels of
points far from the origin) thar does not depend on the convex loss £(-) such that no convex objective
can achieve O(opt) error. This suggests that the shortcoming of convex objectives is not due to
pathological cases and complicated noise distributions that are designed to fool each specific loss
function, but is rather inherent.

Table 1: Common well-behaved distribution families with their corresponding parameters U, R, ¢(-),
see Definition[I.2] The last two columns show the best possible error achievable by convex objectives
and our non-convex objective of Eq.(T).

Distribution UR t(x) Any Convex Loss Our Loss, Eq.(T)
Gaussian O(1) e~ (lIxII3) Q(opt+/log(1/opt)) [Thm O(opt) [Thm|1.3
Log-Concave 0(1) e lxl) Q(optlog(1/opt)) rThm|1.4) O(opt) [Thm]1.3
s-Heavy Tailed, s > 2 ©O(1) (HXIE% Q(opt!~1/9) [Thm O(opt) [Thm|1.3

1.3 Overview of Techniques

Our approach is inspired by the recent work [DKTZ20], where the authors use the same loss
function for learning halfspaces under the (weaker) Massart noise model. Under similar distributional
assumptions to the ones we consider here, [DKTZ20] shows that the gradient of the loss function
points towards the parameters of the optimal halfspace. A major difference between the two settings
is that under Massart noise there exists a unique optimal halfspace and is identifiable. In the agnostic
setting, there may be multiple halfspaces achieving optimal error. However, as we show, for the class
of distributions we consider, all these solutions lie on a small cone, see Claimestablishing that
the angle between any two halfspaces is small. Our algorithm aims to move towards the cone with
every gradient step.



To achieve this, we must carefully set the parameter o of the objective. Smaller values of sigma
amplify the contribution to the gradient of points closer to the current guess and enable using local
information to obtain good gradients. This localization approach is necessary and is commonly used
to efficiently learn halfspaces under structured distributions [ABL17,[DKS18]]. In the Massart model,
the authors of [DKTZ20] show that for the loss function of Equation (I]) any sufficiently small value
for o suffices to obtain a gradient pointing towards the optimal halfspace. This is not true in the
agnostic setting that we consider here. In particular, choosing small values of ¢ may put a lot of
weight on points close to the halfspace that may all be noisy. To prove our structural result, we show
that there exists an appropriate setting of a not-too-small ¢ that will guarantee convergence to a
solution with O(opt) error. This is our main structural result, Lemma 3.2]

Our lower bound hinges on the fact that such a trade-off can only be achieved using non-convex loss
functions. In particular, our lower bound construction leverages the structure of convex objectives to
design a noisy distribution where any convex objective results in misclassification error w(opt). In
more detail, we exploit the fact that all optimal halfspaces lie in a small cone, and show that there
exists a fixed noise distribution such that all convex loss functions have non-zero gradients inside this
cone.

1.4 Related Work

Here we provide a detailed summary of the most relevant prior work with a focus on poly(d/e) time
algorithms. [KLSO9b] studied the problem of learning homogeneous halfspaces in the adversarial
label noise model, when the marginal distribution on the examples is isotropic log-concave, and gave
a polynomial-time algorithm with error guarantee O(optl/ 3) + €. This error bound was improved
by [ABL17] who gave an efficient localization-based algorithm that learns to accuracy O(opt) + € for
isotropic log-concave distributions. [DKS18] gave a localization-based algorithm that learns arbitrary
halfspaces with error O(opt) ¢ for Gaussian marginals. [BZ17]] extended the algorithms of [ABL17]
to the class of s-concave distributions, for s > —Q(1/d). Inspired by the localization approach,
[YZ17] gave a perceptron-like learning algorithm that succeeds under the uniform distribution on the
sphere. The algorithm of [YZ17] takes O(d/¢) samples, runs in time O(d?/€), and achieves error
of O(log d - opt) + € — scaling logarithmically with the dimension d. We also note that [DKTZ20]
established a structural result regarding the sufficiency of stationary points for learning homogeneous
halfspaces with Massart noise. Finally, we draw an analogy with recent work [DGK™"20] which
established that convex surrogates suffice to obtain error O(opt) + € for the related problem of
agnostically learning ReLUs under well-behaved distributions. This positive result for ReLUs stands
in sharp contrast to the case of sign activations studied in this paper (as follows from our lower bound
result). An interesting direction is to explore the effect of non-convexity for other common activation
functions.

2 Preliminaries and Notation

Forn € Z., let [n] o {1,...,n}. We will use small boldface characters for vectors. For x € R?

and i € [d], x; denotes the i-th coordinate of x, and ||x||; (3%, x2)1/2 denotes the £5-norm
of x. We will use (x,y) for the inner product of x,y € R% and 6(x, y) for the angle between x, y.
We will also denote 1 4 to be the characteristic function of the set 4, i.e,, 14(x) = lifx € A
and 14(x) = 0if x ¢ A. Let e; be the i-th standard basis vector in R%. Let proj;(x) be the
projection of x onto subspace U C R?. Let E[X] denote the expectation of random variable X
and Pr[€] the probability of event £. We consider the binary classification setting where labeled
examples (x, ) are drawn i.i.d. from a distribution D on R? x {41}. We denote by D, the marginal
of D on x. The misclassification error of a hypothesis & : R? — {41} (with respect to D) is

erry | (h) def Pr(x,y)~p[h(x) # y]. The zero-one error between two functions f, h (with respect to

Dy) is ert?x, (£, 1) < Pryop [f(x) # h(x)].

3 Non-Convex SGD Learns Halfspaces with Adversarial Noise

In this section, we prove our main algorithmic result, whose formal version we restate here.



Theorem 3.1. Let D be a distribution on R? x {£1} such that the marginal Dy on R? is well-
behaved. There is an algorithm with the following performance guarantee: For any € > 0, it draws
m = O(dlog(1/5)/€*) labeled examples from D, uses O(m) gradient evaluations, and outputs a
hypothesis vector w that satisfies err}_; (hw) < O(opt) + € with probability at least 1 — §, where
opt is the minimum classification error achieved by halfspaces.

The crucial component in the proof of Theorem [3.1]is the following structural lemma, Lemma 3.2}
We show that by carefully choosing the parameter ¢ > 0 of the non-convex surrogate loss S, of
Equation (TJ), we get that any approximate stationary point of this objective will be close to some
optimal halfspace. Instead of optimizing over the unit sphere, we can normalize our objective L,
defined in Equation (II]) as follows

wo0= B 5 ()] .

H—e%f/” is the logistic function with growth rate 1/0. We prove the following:

where S, () =

Lemma 3.2 (Stationary points of £, suffice). Let Dy be a well-behaved distribution on R¢ and let

w* be a halfspace achieving optimal classification error opt. Fix o > 0 and let 0 = (4\/§7TU /R) - o.

Ifopt < R*/(215U3) - a, then for every W such that 0(W,w*) € (0, 7 —0) it holds |V Ly (W) |, >
R2

64U "

Proof Sketch. To simplify notation, we will write h(w,x) = (W) Note that Vwh(w,x) =

Twll,
™o~ (W, x) # We define the “noisy" region S, as follows S = {x € R? : y # sign((w*,x))}.
2 Wil2
The gradient of the objective L, (w) is
Vwlo(w)= B 75 (=y 1w, x)) Vih(w, x) y]
X, Y )~
= B[S (h(w.x)]) Vah(w,x) (1 -2+ L5(x)) sign((w",x))]
Let V = span(w*,w). Since projections can only decrease the norm of a vector, we have
IVwLo(W)|ly > [|projy VwLles(w)||, . Without loss of generality, we may assume that w = e
and w* = —sin@ - e; + cos 0 - ez. Then, we have projy (h(w,x)) = (x1,0). Using the above and

the triangle inequality, we obtain

9ol = | B, 15, (e, )]) (x0,0) sign((w” )

2

I

-2

E [~15(x)S; ([h(w,x)]) (x1,0) sign({w", x))]

x~Dy

2

Iy

Let R, U be absolute constants from the Definition[I.2] We will first bound from above the term I,
i.e., the contribution of the noisy points to the gradient. Using the fact that S (|t|) < e~11/7 /o we
obtain

e—2\x2\/a

—|x2|/o
e
L< B { — il 1S(X)] <\V.E [HS(X)]\/XNEDX [02 Xf]
—2[x2|/0
L fot \/ o {6 Xﬂ |
g XN(DX)V g

where the first inequality follows from the Cauchy-Schwarz inequality and for the second we used
the fact that the set S has probability at most opt. To finish the bound, notice that the remaining
expectation depends only on x1, X9 and therefore we can use the upper bound #(-) on the density




function. Using polar coordinates we obtain

e—20x2|/0 ™/2 .3 -
xl} < 4/ / —cos P)e2rsm@)/ ot (1) dgpdr

XN(D )V |: ag
7\'/2 2 .
< 2/ r t(r)/ lc05(¢)e_2”m(¢)/"d¢dr
0 0

o
= 2/ r2t(r)(1 — e~ 2/9)dr < 2/ r? t(r)dr < 2U,
0 0

where for the last inequality we used the fact that 1 — e=2r/o < 1. We thus have I, < /2Uopt/o.

We now bound 7; from below. Observe that since inner products with w*, w are preserved when
we project x to V, we have I; = ‘ Ex (D) [55 (|x2])x18ign((w*, x))]‘ Now, if we define G =
{(x1,%2) € R? : x;sign((w*,x)) > 0}, using the triangle inequality we have
L> E [9 1 - E 9 1ge .
12 B (Sxalbaltet] = B[S (el b Lo ()]
Moreover, using the fact that e~ 1!1/7 /(40) > S’ (|t|) < e 11/ /o we get
L>- E [ Lg(x)e 21/ ]— E [ Lo (x)e21/e } 4

125 B [kaltebeel7 /e - B [haltes el /o @

We can now bound each term separately using the fact that the distribution Dy is well-behaved.

Similarly to the previous bound, one can use polar coordinates to obtain
R2 e—\xz |/o

E [e“xQ‘/”X 1 0} > — and {
x~(D)v | 1)/ x(Dv | 0
Putting everything in (@), we obtain I; > R2 /(16U) — 2Uo?/ sin? f. Notice now that the case where
O(w,w*) € (r/2, 7—0) follows similarly. Finally, in the case where § = 7 /2, the region G is empty,
and we again get the same lower bound on the gradient. Let A > 0, and set § = A <o < m/2, and let
T = opt/o. Since sin(t) > 2t/ for every t € [0, /2], we have I — 2, > - 727,24% 2UT.

2U o2

sin® 0

il 1 ()] <

For 7 < 215U3 and A > 4v/27U/R, itholds I; — 21, > R?/(32U). O

Using Lemma[3.2)we get our main algorithmic result. Our algorithm proceeds by Projected Stochastic
Gradient Descent (PSGD), with projection on the ¢5-unit sphere, to find an approximate stationary
point of our non-convex surrogate loss. Since £, (w) is non-smooth for vectors w close to 0, at each
step, we project the update on the unit sphere to avoid the region where the smoothness parameter is
high. We are going to use the following result about the convergence of non-convex, smooth SGD on
the unit sphere.

Lemma 3.3 (Lemma 4.2 and 4.3 of [DKTZZO]), Let L,(w) be as in Equation (). After T it-
erations, where T = @(dlog 1/8)/(c*p*)), the output (w™® ... w(T)) ofAlgorithmsatisﬁes
min;—q 7 HV Lo( || < p,with pmbabzllty at least 1 — 5

.....

Algorithm 1 PSGD for f(w) = E,..plg(z, w)]
: procedure PSGD(f,T,3) > f(w) = E,.p[g(z, w)]: loss, T: number of steps, 3: step size.

1

2 w0 ey

3 fori=1,...,Tdo

4: Sample z(*) from D.

5 v wl=1) — gV g(z® wii=1)
6 wl®) v/ [vO|,

7 return (w) ... w(T),

In order to relate the miss-classification error of a candidate halspace with the angle that it forms with
an optimal halfpsace we are going to use the following claim that states that the disagreement error
between two halfspaces is ©(0(u, v)) under well-behaved distributions. Its proof can be found in the
supplementary material.
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Figure 1: The green region depicts all points with +1 label and the red region depicts points with —1
label. We have y = —sign({w*, x)) for all points in S\ C, this corresponds to the hatched region.
We have f(w*,w) = 6, and (W, w) = 5.

Claim 3.4. Let Dy be a distribution on R Let f € argming o erry | (g), where C is the class
of halfspaces, then for any u € R, it holds that errD, (hy, f) — ertd (f) < errd | (hy) <
errd | (f) +errD=, (hu, f). Moreover, if the distribution Dy is well-behaved, then err}*| (hy, hy) =
O(0(u,v)).

Now assuming that we know the value of opt, we can readily use SGD and obtain a halfspace with
small classification error. The following lemma, which relies on Claim @ shows that SGD will
output a list of candidate vectors, one of which will have error opt + O(o). For our structural result
to work, we need opt < C'o which gives the O(opt) error overall. Recall that for all well-behaved
distributions the parameters U, R are absolute constants. Its proof can be found in the Supplementary
Material.

Lemma 3.5. Let D be a distribution on R? x {£1} such that the marginal Dy on R? is well-

behaved. Algorithmhas the following performance guarantee: If opt < C - 0 where C' = %

it draws m = poly(U/R) - dlogfy# labeled examples from D, uses O(m) gradient evaluations,
and outputs a hypothesis list of vectors L, such that there exist a vector w € L that satisfies
erry | (hw) < opt + O(o) with probability at least 1 — &, where opt is the minimum classification

error achieved by halfspaces.

We now sketch the proof of our main theorem, Theorem[I.3] For the full proof see Supplementary
Material.

Proof Sketch of Theorem [I.3] Since we do not know the value of opt, we can make an e
grid of [0, 1] and run the SGD, Algorithm |1| Then we can test the empirical classification error
all candidates produced and pick the best one. This would result in an additional 1/e factor in the
sample complexity. A simple way to avoid that is by doing binary search for ¢ instead, which only
increases sample complexity by a log(1/¢) factor. O

4 Convex Objectives Do Not Work

In this section we show that optimizing convex surrogates of the zero-one loss cannot get error
O(opt) + €. We first recall the agnostic PAC learning setting that we assume here. Given a
distribution D, on R? and a halfspace w*, we can define a noiseless instance D on R? x {£1} by
setting the label of each point x to y = sign((w*, x)). In this setting, w* achieves 0 classification
error. To get a distribution where w* achieves error opt > 0, we can simply flip the labels of an opt
fraction of points x. We now restate our theorem and give a sketch of its proof. The full proof can be
found in the supplementary material.



Theorem 4.1. Let Dy be a standard Normal distribution on R There exist a distribu-
tion D on R? x {£1} such that for every convex, non-decreasing, loss {(-) the objectiv

C(w) = Exypll(—y(x,w))], is minimized at some halfspace h with error err |(h) =
Q(opt+/log(1/opt)). Moreover, if the marginal Dy is allowed to be log-concave (resp. s-heavy
tailed, s > 2) the error of any minimizer is Q(opt log(1/opt)) (resp. Q(opt'=1/#)).

Proof Sketch. Since all the examples that we are going to consider will be radially invariant dis-
tribution, we note that the “disagreement” error of two halfspaces with normal vectors v, u is
erry, (v,u) = (v, u) /7. From Claim we have that the classification error of any candidate w
is lower bounded by 6(w, w*)/m — opt. We will construct a distribution D such that there is some
w* that achieves error opt but at the same time C(w) is minimized at some halfspace that is in angle
O(w,w*) = w(opt). This means that the minimizer of C has classification error w(opt).

For this sketch, we assume that Dy is a standard Normal and without loss of generality work in
2 dimensions, for the other cases see the Supplementary Material. It’s density function is radially
invariant, i.e. y(x1,%3) = %e‘“"”g/ 2, If ¢ is a constant function any halfspace would minimize it
and therefore, this case is trivial.

Take any w such that §; = (w, w™*) < . We are going to lower bound the norm of the gradient of C
at w. The gradient of C(w) is VC(W) = E(x )~p[—yx £'(—y (x,w))]. We start by constructing
the noisy distribution D. Fix any unit vector w* and let w be a vector such that (w™*, w) = 5, where
26 < 65 < 7/4. Denote by w the vector that is perpendicular with w and satisfies (w*, w=) > 0.
We now define the region C, S that will help us define the parts of the distribution where we will
introduce noise by flipping the y-labels, see also Figure

C={x: (w"x)(w,x)>0and <v~vJ‘,x> <0} S={x: ||x|l, > Z}.

We are now ready to define our noisy distribution D: we flip the labels of all points in the set S \ C.
Observe that err)’ | (w*) < Prxp, [[|x]|, > Z]. This means that for the Gaussian we need to pick
Z = 4/2log(1/opt) to have optimal error less than opt. Take any w such that ¢; = 0(w, w*) < 6.
To simplify notation, we assume that the length of w is 1 and w = e3. We have that the first
coordinate of the gradient is

(Vw(C(w),e1) = E [—yxi V'(—yx2)]. %)
(x,y)~D

We consider here the more interesting case where w lies between w* and w as shown in Figure
We first compute the contribution to the gradient in S¢, i.e., the points where y = sign((w*,x)).
Since the distribution is radially symmetric, one can use polar coordinates to compute

Z

Ige = ( E)} D[fyxl U(—yx2)lge(x)] = 2/ ry(r)(U(r sinfy) — €(—r sinf))dr . (6)
x,y)~ 0

Observe that since ¢(+) is non-decreasing we have Igc > 0. Next we compute the contribution
of region S to the gradient. Recall, that S contains S \ C, i.e. the region we flipped the labels,
y = —sign((w*, x)), see Figure[1] We have

Is = ( ]*)] D[fyxl U(—yx2)lg(x)] = 2/ ry(r)(€(—r cosby) — L(r cosb)dr. (7)
X,y )~ A
Similarly, to the previous case the fact that £(-) is non-decreasing implies that Is < 0.

Now, we are going to crucially use the convexity of ¢(-). Since both 61,05 < 7/4, we have that
cos B2 > sin 67 and therefore, from convexity of £(-), we obtain

L(rsinfy) — £(—rsin ) < £(r cosBz) — £(—rsinby)
2rsin 0 - rcosfy + rsin b, '

Since £(-) is also non-decreasing, we have that £(r cos 02) —€(—rsin 01) < £(r cos 02) —€(—r cos 2)
and therefore,

2sinf
Ursingy) — O(—rsindy) < — 7L (p(r cos By) — £(—1 cos b)) -

cos B9 + sin 64



To simplify notation, we define the functions ¢(r) = £(r cos 62) and h(r) = £(r) — £(—r). Observe
that £(-) enjoys exactly the same properties as £(+), that is £(-) is convex, non-decreasing, and non-
constant. Moreover, note that h(r) is non-negative and non-decreasing. Using Inequalities (@), (7),
the fact that #; < 6 and setting §; = 26, we obtain that

Z 0
(VwC(w),e1) =Is+ Ise <O(0) /0 ry(r)h(r)dr —/Z ry(r)h(r)dr . (8)
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Recall now that Z = /2 log(1/opt). If for that Z, we can show that I5/I; = Q(opt/log(1/opt)),

then we can pick § = Q(I5/I;) and have that the gradient of any halfspace w with angle smaller
than € with w* is non-zero and therefore these vectors are not minimizers of C. To finish the sketch,
we observe that the worst case convex and non-decreasing function £(-) so that the ratio I5/I; is

minimized is simply a shifted ReLU function, i.e. £(r) = amax(r — rg) + /3 for some constants
a, 3, 0. For this £(-) the ratio is indeed Q(opt/log(1/opt)) under the Gaussian density. O

Broader Impact

Our work fits within the broader agenda of designing efficient robust learners in the presence of noisy
data. The practical significance of learning linear classifiers is well-established. In most use-cases, the
labels of the examples are noisy, e.g., a non-spam email is incorrectly labeled as spam and vice versa.
Machine learning algorithms are now used more than ever having applications in social networks,
auctions, advertising, etc. Therefore, having erroneous results due to noise can have far reaching
consequences. The goal of our work is to develop robust machine learning algorithms that have
theoretical performance guarantees and, at the same time, are easy to implement and use in practice.

Since the primary focus of our work is theoretical, we do not expect our results to have immediate
societal impact. Nonetheless, we believe that our algorithm is practical and provides interesting
insights that could be useful in practice. We show that one can use a simple black-box optimization
routine (Stochastic Gradient Descent) on a simple objective function and learn an accurate linear
classifier, even if a small constant fraction of the labels is chosen adversarially. Moreover, while many
of the linear classification methods currently used in practice rely on optimizing convex surrogate
objectives, our work shows that such methods may achieve significantly sub-optimal results, even
under very benign distributions. Our method outperforms the error guarantee of any method relying
on optimizing convex losses.
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