
Supplementary Material364

A Omitted Proofs from Section 3365

A.1 Proof of Lemma 3.2366

Proof of Lemma 3.2. To simplify notation, we will write h(w,x) = 〈w,x〉
‖w‖2

. Note that∇wh(w,x) =367

x
‖w‖2

−〈w,x〉 w
‖w‖32

. We define the “noisy" region S, as follows S = {x ∈ Rd : y 6= sign(〈w∗,x〉)}.368

The gradient of the objective Lσ(w) is then369

∇wLσ(w) = E
(x,y)∼D

[−S′σ (−y h(w,x))∇wh(w,x) y]

= E
(x,y)∼D

[−S′σ (|h(w,x)|) ∇wh(w,x) y]

= E
x∼Dx

[−S′σ (|h(w,x)|) ∇wh(w,x) (1Sc(x)− 1S(x)) sign(〈w∗,x〉)]

= E
x∼Dx

[−S′σ (|h(w,x)|) ∇wh(w,x) (1− 2 · 1S(x)) sign(〈w∗,x〉)] .

Let V = span(w∗,w). Since projections can only decrease the norm of a vector, we have370

‖∇wLσ(w)‖2 ≥ ‖projV∇wLσ(w)‖2 . Without loss of generality, we may assume that ŵ = e2371

and w∗ = − sin θ · e1 + cos θ · e2. Then, we have projV (h(w,x)) = (x1, 0). Using the above and372

the triangle inequality, we obtain373

‖∇wLσ(w)‖2 ≥
∥∥∥∥ E
x∼Dx

[−S′σ (|h(w,x)|) (x1, 0) sign(〈w∗,x〉)]
∥∥∥∥

2︸ ︷︷ ︸
I1

− 2

∥∥∥∥ E
x∼Dx

[−1S(x)S′σ (|h(w,x)|) (x1, 0) sign(〈w∗,x〉)]
∥∥∥∥

2︸ ︷︷ ︸
I2

.

Let R,U be absolute constants from the Definition 1.2. We will first bound from above the term I2,374

i.e., the contribution of the noisy points to the gradient. Using the fact that S′σ(|t|) ≤ e−|t|/σ/σ we375

obtain376

I2 ≤ E
x∼Dx

[
e−|x2|/σ

σ
|x1| 1S(x)

]
≤
√

E
x∼Dx

[1S(x)]

√
E

x∼Dx

[
e−2|x2|/σ

σ2
x2

1

]

≤
√

opt

σ

√
E

x∼(Dx)V

[
e−2|x2|/σ

σ
x2

1

]
,

where the first inequality follows from the Cauchy-Schwarz inequality and for the second we used377

the fact that the set S has probability at most opt. To finish the bound, notice that the remaining378

expectation depends only on x1,x2 and therefore we can use the upper bound t(·) on the density379

function. Using polar coordinates we obtain380

E
x∼(Dx)V

[
e−2|x2|/σ

σ
x2

1

]
≤ 4

∫ ∞
0

∫ π/2

0

r3

σ
cos2(φ)e−2r sin(φ)/σt(r)dφdr

≤ 2

∫ ∞
0

r2t(r)

∫ π/2

0

2r

σ
cos(φ)e−2r sin(φ)/σdφdr

= 2

∫ ∞
0

r2t(r)(1− e−2r/σ)dr ≤ 2

∫ ∞
0

r2 t(r)dr ≤ 2U ,

where for the last inequality we used the fact that 1− e−2r/σ ≤ 1. We thus have I2 ≤
√

2Uopt/σ.381

We now bound I1 from below. Observe that since inner products with w∗, w are preserved when382

we project x to V , we have I1 =
∣∣∣Ex∼(Dx)V [S′σ(|x2|)x1sign(〈w∗,x〉)]

∣∣∣. Now, if we define G =383

{(x1,x2) ∈ R2 : x1sign(〈w∗,x〉) > 0}, using the triangle inequality we have384

I1 ≥ E
x∼(Dx)V

[S′σ(|x2|)|x1|1G(x)]− E
x∼(Dx)V

[S′σ(|x2|)|x1|1Gc(x)] .
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Moreover, using the fact that e−|t|/σ/(4σ) ≥ S′σ(|t|) ≤ e−|t|/σ/σ we get385

I1 ≥
1

4
E

x∼(Dx)V

[
|x1|1G(x)e−|x2|/σ/σ

]
− E

x∼(Dx)V

[
|x1|1Gc(x)e−|x2|/σ/σ

]
. (9)

We can now bound each term separately using the fact that the distribution Dx is well-behaved.386

Assume first that θ(w∗, ŵ) = θ ∈ (0, π/2). Then we can express the region G in polar coordinates387

as G = {(r, φ) : φ ∈ (0, θ) ∪ (π/2, π + θ) ∪ (3π/2, 2π)}.388

We denote by γ(x, y) the density of the 2-dimensional projection on V of the marginal distribution389

Dx. Since the integral is non-negative, we can bound from below the contribution of region G on the390

gradient by integrating over φ ∈ (π/2, π). Specifically, we have:391

E
x∼(Dx)V

[
e−|x2|/σ

σ
|x1| 1G(x)

]
≥
∫ ∞

0

∫ π

π/2

γ(r cosφ, r sinφ)r2| cosφ|e
− r sinφ

σ

σ
dφdr

=

∫ ∞
0

∫ π/2

0

γ(r cosφ, r sinφ)r2 cosφ
e−

r sinφ
σ

σ
dφdr

≥ 1

U

∫ R

0

r2dr

∫ π/2

0

cosφ
e−

R sinφ
σ

σ
dφ

=
1

3U
R2
(

1− e−Rσ
)
≥ 1

4U
R2 , (10)

where for the second inequality we used the lower bound 1/U on the density function γ(x, y) (see392

Definition 1.2) and for the last inequality we used that σ ≤ R
8 and that 1− e−8 ≥ 3/4.393

We next bound from above the contribution of the gradient in region Gc. Note that Gc = {(r, φ) :394

φ ∈ Bθ = (π/2− θ, π/2) ∪ (3π/2− θ, 3π/2)}. Hence, we can write:395

E
x∼(Dx)V

[
e−|x2|/σ

σ
|x1| 1Gc(x)

]
=

1

σ

∫ ∞
0

∫
φ∈Bθ

γ(r cosφ, r sinφ)r2 cosφe−
r sinφ
σ dφdr

≤ 2U

σ

∫ ∞
0

∫ π/2

θ

r2 cosφe−
r sinφ
σ dφdr

=
2Uσ2 cos2 θ

sin2 θ
, (11)

where the inequality follows from the upper bound U on the density γ(x, y) (see Definition 1.2).396

Putting everything in (9), we obtain I1 ≥ R2/(16U)−2Uσ2/ sin2 θ. Notice now that the case where397

θ(ŵ,w∗) ∈ (π/2, π − θ) follows similarly. Finally, in the case where θ = π/2, the region Gc is398

empty, and we again get the same lower bound on the gradient. Let A > 0, and set θ = A · σ < π/2,399

and let τ = opt/σ. Since sin(t) ≥ 2t/π for every t ∈ [0, π/2], we have400

I1 − 2I2 ≥
R2

16U
− π2U

2A2
− 2
√

2Uτ .

For τ ≤ R4

215U3 and A ≥ 4
√

2πU/R, it holds I1 − 2I2 ≥ R2/(32U).401

A.2 Proof of Claim 3.4402

Proof. Let S = {x ∈ Rd : y 6= f(x)}, then we have403

errDx
0−1(hu, f) =

∫
Sc
1{hu(x) 6= y}γ(x)dx +

∫
S

1{hu(x) = y}γ(x)dx

=

∫
Rd
1{hu(x) 6= y}γ(x)dx + 2

∫
S

1{hu(x) = y}γ(x)dx−
∫
S

γ(x)dx

= errD0−1(hu) + 2

∫
S

1{hu(x) = y}γ(x)dx− errD0−1(f) .
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Using that
∫
S
1{hu(x) = y}γ(x)dx ≥ 0, the result follows. To prove that errDx

0−1(hu, f) −404

errD0−1(f) ≤ errD0−1(hu), we work as follows405

errDx
0−1(hu, f) =

∫
Sc
1{hu(x) 6= y}γ(x)dx +

∫
S

1{hu(x) = y}γ(x)dx

=

∫
Rd
1{hu(x) 6= y}γ(x)dx +

∫
S

γ(x)dx− 2

∫
S

1{hu(x) 6= y}γ(x)dx

= errD0−1(hu) + errD0−1(f)− 2

∫
S

1{hu(x) 6= y}γ(x)dx .

To finish the proof, note that
∫
S
1{hu(x) 6= y}γ(x)dx ≥ 0.406

A.3 Proof of Lemma 3.5407

Proof. Let R,U be the absolute constants from the Definition 1.2. If we set ρ = R2

32U , by Claim 3.4,408

to guarantee errDx
0−1(hw̄, f) ≤ σ it suffices to show that the angle θ(w̄,w∗) ≤ O(σ) =: θ0. Using409

(the contrapositive of) Lemma 3.2, if the norm squared of the gradient of some vector w ∈ Sd−1 is410

smaller than ρ, then w is close to either w∗ or −w∗ – that is, θ(w,w∗) ≤ θ0 – or θ(w,−w∗) ≤ θ0.411

Therefore, it suffices to find a point w with gradient ‖∇wLσ(w)‖2 ≤ ρ. From Lemma 3.3, after412

T = O( d
σ4ρ4 log(1/δ)) steps, the norm of the gradient of some vector in the list (w(0), . . . ,w(T ))413

will be at most ρ with probability 1 − δ. Therefore, the required number of iterations is T =414

poly(U/R) · d log(1/δ)
σ4 . Note that one of the hypotheses in the list that is returned by Algorithm 1 is415

σ-close to the true w∗. From Claim 3.4, we have that there exists a ŵ ∈ L such that errD0−1(hŵ) ≤416

opt +O(σ) = opt +O(σ).417

A.4 Proof of Theorem 1.3418

Proof of Theorem 1.3. Let R,U be the absolute constants from Definition 1.2. and let C =419

215U3/R4. We will do binary search to find the correct value of σ using a grid of size O(1/ε).420

In particular, we consider σ ∈ {Cε, (C + 1)ε, . . . , C}. We now analyze our binary search over this421

grid. We have three cases. We first assume that ε ≤ opt ≤ C. Let Lk be the list of candidates output422

by Algorithm 1 for σ = k · ε. Note that there is a value of k such that opt < Cσ and opt > Cσ − ε.423

Then we have that there exists ŵ ∈ Lk such that err0−1(hŵ) ≤ opt +O(σ) = O(opt) + ε. To find424

the right value of k, we do binary search in the O(1/ε)-sized grid of possible values and check each425

time if we obtained a weight vector that decreased the overall error. Thus, we will overall construct426

poly(R/U) · log(1/ε) lists. Finally, to evaluate all the vectors from the list, we need a small number427

of samples from the distribution D to obtain the best among them, i.e., the one that minimizes the428

zero-one loss. The maximum size of each list of candidates is poly(U/R) ·d log(1/δ)
ε4 , Therefore, from429

Hoeffding’s inequality, it follows that O(log(d/(εδ))/ε2) samples are sufficient to guarantee that the430

excess error of the chosen hypothesis is at most ε with probability at least 1− δ. Similarly, in the case431

where opt ≤ ε we have that for σ = Cε, by running Algorithm 1, we obtain a list L1 of candidates.432

From Lemma 3.5, we get that there is a vector ŵ ∈ L1, such that err0−1(hŵ) ≤ opt +O(σ) ≤ O(ε).433

If opt ≥ C then any halfspace will have error err0−1(hŵ) ≤ poly(R/U) = O(opt). We conclude434

that the total number of samples will be Õ(d log(1/δ)/ε4). This completes the proof.435

B Omitted Proofs from Section 4436

In this section, we show that optimizing convex surrogates of the zero-one loss cannot get error437

O(opt) + ε, even under Gaussian marginals. Recall that we consider objectives of the form438

C(w) = E
x,y∼D

[`(−y 〈x,w〉)] , (12)

where `(·) is a convex loss function. Notice that by considering the population version of the439

objective in Equation (2), we essentially rule out the possibility of sampling errors to be the reason440

that the minimizer of the convex objective did not achieve low classification error. With standard441

tools from empirical processes, one can readily get the same result for the empirical objective442
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(1/N)
∑N
i=1 `(−y(i)

〈
x(i),w

〉
) assuming that the sample sizeN is sufficiently large. We now restate443

the main result of this section that allows us to show Theorem 1.4.444

Theorem B.1. Fix Z > 0, θ ∈ (0, π/8), and let Dx be a radially symmetric distribution on R2 such445

that446

1. For all t > 0 it holds Prx∼Dx [‖x‖2 ≥ t] > 0.447

2. Ex∼Dx [1{‖x‖2 ≥ Z} ‖x‖2] > 24θ Ex∼Dx [‖x‖2].448

Then there exists a distribution D on R2 × {±1} and a halfspace w∗ such that errD0−1(w∗) ≤449

Prx∼Dx [‖x‖2 ≥ Z], the x-marginal of D is Dx, and for every convex, non-decreasing, non-constant450

loss `(·) and every w such that θ(w,w∗) ≤ θ it holds∇wC(w) 6= 0, where C is defined in Eq. (2).451

Proof. We start by constructing the noisy distributionD. Fix any unit vector w∗ and let w̃ be a vector452

such that θ(w∗, w̃) = θ2, where 2θ ≤ θ2 ≤ π/4. Denote by w̃⊥ the vector that is perpendicular453

with w̃ and satisfies
〈
w∗, w̃⊥

〉
≥ 0. We now define the regions C, S that will help us define the parts454

of the distribution where we will introduce noise by flipping the y-labels, see also Figure 1.455

C =
{
x : 〈w∗,x〉 〈w̃,x〉 ≥ 0 and

〈
w̃⊥,x

〉
≤ 0
}

S = {x : ‖x‖2 ≥ Z} .

We are now ready to define our noisy distribution D: we flip the labels of all points in the set S \ C.456

Observe that errD0−1(w∗) ≤ Prx∼Dx [‖x‖2 ≥ Z]. Take any w such that θ1 = θ(w,w∗) ≤ θ. We457

are going to bound from below the norm of the gradient of C at w. The gradient of C(w) is458

∇wC(w) = E
(x,y)∼D

[−yx `′(−y 〈x,w〉)].

Without loss of generality, we may assume that w = ρe2, where ρ = ‖w‖2 > 0. We have that the459

first coordinate of the gradient is460

〈∇w(C(w), e1〉 = E
(x,y)∼D

[−yx1 `
′(−yρ x2)] . (13)

In what follows, we are going to use polar coordinates (r, φ) with the standard relation to Cartesian461

(x1,x2) = (r cosφ, r sinφ). Now assume that we want to compute the contribution of a specific462

region A = {r ∈ [r1, r2], φ ∈ [φ1, φ2]} to the gradient of Equation (13). We denote the 2-463

dimensional density of the radially symmetric distribution Dx as γ(r). We have464

E
(x,y)∼D

[−yx1 `
′(−yx2)1A(x)] =

∫ r2

r1

rγ(r)

∫ φ2

φ1

−yr cosφ `′(−yρ r sinφ)dφdr

=
1

ρ

∫ r2

r1

rγ(r)

∫ φ2

φ1

(`(−yρr sinφ))′dφdr =
1

ρ

∫ r2

r1

rγ(r)(`(−yρr sinφ2)− `(−yρr sinφ1))dr .

(14)

Without loss of generality, we consider the two cases shown in Figure 1. We start with the465

first case, where w lies between w∗ and w̃. We first compute the contribution to the gradi-466

ent in Sc, i.e., the points where y = sign(〈w∗,x〉). Since the distribution is radially symmet-467

ric, we have E(x,y)∼D[−yx1 `′(−yx2)1Sc(x)] = 2E(x,y)∼D[−yx1 `′(−yx2)1R1
(x)], where468

R1 = {r ∈ [0, Z], φ ∈ [θ1, π + θ1]}. From Equation (14), we obtain that469

ISc = E
(x,y)∼D

[−yx1 `
′(−yx2)1Sc(x)] =

2

ρ

∫ Z

0

rγ(r)(`(ρr sin θ1)− `(−ρr sin θ1)dr .

Observe that since `(·) is non-decreasing we have ISc ≥ 0. Next we compute the contribution470

of region S to the gradient. Recall that S contains S \ C, i.e., the region we flipped the labels,471

y = −sign(〈w∗,x〉), see Figure 1. Using again the fact that the distribution is radially symmetric472

and Equation (13) for the region R2 = {r ∈ [Z,+∞), φ ∈ [π/2− θ2, 3π/2− θ2]}, we obtain473

IS = E
(x,y)∼D

[−yx1 `
′(−yx2)1S(x)] =

2

ρ

∫ ∞
Z

rγ(r)
(
`(ρr sin(

3π

2
− θ2))− `(ρr sin(

π

2
− θ2)

)
dr

=
2

ρ

∫ ∞
Z

rγ(r)(`(−ρr cos θ2)− `(ρr cos θ2)dr .
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Similarly to the previous case, the fact that `(·) is non-decreasing implies that IS ≤ 0.474

Now we are going to use the facts that `(·) is convex and non-decreasing. Since both θ1, θ2 ≤ π/4,475

we have that cos θ2 ≥ sin θ1 and therefore, from the convexity of `(·), we obtain476

`(ρr sin(θ1))− `(−ρr sin θ1)

2ρr sin θ1
≤ `(ρr cos θ2)− `(−ρr sin θ1)

ρr cos(θ2) + ρr sin(θ1)
.

Since `(·) is also non-decreasing, we have that `(ρr cos θ2) − `(−ρr sin θ1) ≤ `(ρr cos θ2) −477

`(−ρr cos θ2) and therefore,478

`(ρr sin θ1)− `(−ρr sin θ1) ≤ 2 sin θ1

cos θ2 + sin θ1
(`(ρr cos θ2)− `(−ρr cos θ2)) .

To simplify notation, we define the functions ¯̀(r) = `(ρr cos θ2) and h(r) = ¯̀(r)− ¯̀(−r). Observe479

that ¯̀(·) enjoys exactly the same properties as `(·), that is ¯̀(·) is convex, non-decreasing, and480

non-constant. Moreover, observe that h(r) is non-negative and non-decreasing. Using the above481

inequalities, we obtain that482

ρ 〈∇wC(w), e1〉 = ρ(IS + ISc) ≤
4 sin θ1

cos θ2 + sin θ1

∫ Z

0

rγ(r)h(r)dr︸ ︷︷ ︸
I2

−2

∫ ∞
Z

rγ(r)h(r)dr︸ ︷︷ ︸
I1

. (15)

We will now show that instead of dealing with every convex and increasing ¯̀(·), we can restrict our483

attention to simple piecewise-linear convex and increasing functions. First, we observe that without484

loss of generality we may assume that the convex function ¯̀(r) is constant for all r ≤ −Z, since485

that part only increases I1. To construct s(·), we use the supporting lines of ¯̀(·) at −Z and 0, and486

the secant line from 0 to Z. We will first assume that ¯̀′(Z) > 0. Let a0 be a subgradient of ¯̀(·) at487

0. Then the secant from 0 to Z is some line a1r − a0Z0 for some a1 ∈ [a0, ¯̀′(Z)]. Then, for every488

convex and non-decreasing ¯̀(·), the following piecewise-linear function s(r) makes the ratio I1/I2489

smaller. In what follows, Z0 ∈ [−Z, 0] is the intersection point of the supporting line a0r − a0Z0490

and the constant supporting line at −Z.491

s(r) = b+


0, r ≤ Z0

a0r − a0Z0, Z0 < r ≤ 0

a1r − a0Z0, 0 < r

.

We have492

h(r) =

{
(a1 + a0)r, 0 ≤ r ≤ −Z0,

a1r − a0Z0 −Z0 < r
.

493

I1 = a1

∫ ∞
Z

r2γ(r)dr − a0Z0

∫ ∞
Z

rγ(r)dr ≥ a1

∫ ∞
Z

r2γ(r)dr .

494

I2 = (a1 + a0)

∫ −Z0

0

r2γ(r)dr + a1

∫ Z

−Z0

r2γ(r)dr − a0Z0

∫ Z

−Z0

rγ(r)dr

≤ 2(a1 + a0)

∫ Z

0

r2γ(r)dr ≤ 4a1

∫ Z

0

r2γ(r)dr .

Using the above bounds in Equation (15), we obtain495

〈∇wC(w), e1〉 ≤
2a1

ρ

(
8 sin θ1

cos θ2 + sin θ1

∫ Z

0

r2γ(r)dr −
∫ ∞
Z

r2γ(r)dr

)
.

Removing the positive quantity sin θ1 of the denominator and replacing θ1 by its upper bound θ, we496

obtain the claimed bound. Since cos θ2 is decreasing in [0, π/2], we may choose θ2 = 2θ. Our final497

bound is then498

〈∇wC(w), e1〉 ≤
2a1

ρ

(
8 tan(2θ)

∫ Z

0

r2γ(r)dr −
∫ ∞
Z

r2γ(r)dr

)

≤ 2a1

ρ

(
24θ E

x∼Dx

[‖x‖2]− E
x∼Dx

[1{‖x‖2 > Z} ‖x‖2]

)
,
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where for the last inequality we used the fact that tan(2θ) ≤ 3θ for all θ ∈ [0, π/8). In the case499

where `′(ρZ cos θ2) = 0, the above bound vanishes. We fist assume that this is not the case. Then,500

using Assumption 2 of our theorem, we obtain that 〈∇wC(w), e1〉 6= 0 and therefore∇wC(w) 6= 0.501

In the case where `′(ρZ cos θ2) = 0, we observe that ISc vanishes. To finish the proof, we need to502

bound from above and away from zero the integral IS . Since ¯̀(·) is non-constant, there exists a point503

Z ′ > Z with ¯̀′(Z) > 0. Convexity of ¯̀(·) implies h(r) ≥ ¯̀′(Z)r. Using this fact, we get504

IS ≤ −¯̀′(Z ′)

∫ ∞
Z′

r2γ(r)dr .

Using Assumption 1 of our theorem, we again get that∇wC(w) 6= 0.505

Next we handle the case where the candidate w lies out of the cone formed by w∗ and w̃. In that506

case, similarly to before, we compute the contribution to the gradient of the noisy samples S and the507

non-noisy Sc.508

ISc = E
(x,y)∼D

[−yx1 `
′(−yx2)1Sc(x)] =

2

ρ

∫ Z

0

rγ(r)(`(−ρr sin θ1)− `(ρr sin θ1)dr .

and509

IS = E
(x,y)∼D

[−yx1 `
′(−yx2)1S(x)] =

2

ρ

∫ ∞
Z

rγ(r)(`(−ρr cos θ2)− `(ρr cos θ2)dr .

In contrast to the previous case, we now observe that since `(·) is non-decreasing, both IS and ISc510

have the same sign, i.e., they are both non-positive. From Assumption 1, and the fact that `(·) is511

non-constant, we obtain that IS + ISc < 0, which in turn implies that∇wC(w) 6= 0.512

We are now ready to give the proof of Theorem 1.4, which we restate below for convenience.513

Theorem 1.4. Let Dx be the standard normal distribution on Rd. There exists a distribu-514

tion D on Rd × {±1} such that for every convex, non-decreasing loss `(·), the objective515

C(w) = Ex,y∼D[`(−y 〈x,w〉)] is minimized at some halfspace h with error errD0−1(h) =516

Ω(opt
√

log(1/opt)). Moreover, there exists a log-concave marginal Dx (resp. s-heavy tailed517

marginal) such that errD0−1(h) = Ω(opt log(1/opt)) (resp. errD0−1(h) = Ω(opt1−1/s)).518

Proof. Since all the examples that we are going to consider will be radially invariant distributions,519

we note that the “disagreement” error of two halfspaces with normal vectors v,u is θ(v,u)/π.520

From Claim 3.4, we have that the classification error of any candidate w is lower bounded by521

θ(w,w∗)/π − opt. We will construct a distribution D such that there is some w∗ that achieves error522

opt, but at the same time C(w) is minimized at some halfspace such that θ(w,w∗) = ω(opt). This523

means that the minimizer of C has classification error ω(opt).524

We assume first that Dx is the standard normal and without loss of generality work in two dimensions.525

Recall that the density function in this case is radially invariant, i.e., γ(x1,x2) = 1
2π e
−‖x‖22/2. If `526

is a constant function, any halfspace would minimize it and therefore, this case is trivial. Clearly,527

Assumption 1 of Theorem B.1 holds in this case. We now show that we can pick Z > 0 such that the528

probability of all points with flipped label is O(opt) and make Assumption 2 of Theorem B.1 true.529

Since the distribution is Gaussian, we have that for Z = Θ(
√

log(1/opt)) it holds Pr[‖x‖2 ≥ Z] ≤530

opt. Since the distribution is isotropic, we have Ex∼Dx [‖x‖2] ≤
√

Ex∼Dx [‖x‖22] = 1. Moreover,531

we have that532

E
x∼Dx

[1{‖x‖2 ≥ Z} ‖x‖2] =

∫ ∞
Z

r2e−r
2/2dr ≥ e−Z

2/2Z = Θ(opt
√

log(1/opt)) .

Now we can fix some θ = Ω(opt
√

log(1/opt)) < π/8 and observe that Assumption 2 of The-533

orem B.1 is satisfied. Therefore, we have that for any halfspace with normal vector w with534

θ(w,w∗) ≤ θ = Ω(opt
√

log(1/opt)) it holds that ∇wC(w) 6= 0, and therefore it cannot be a535

minimizer of C(w).536

For the log-concave marginals the argument is similar. We work again in two dimensions and pick537

γ(x) = 6
π e
−2
√

3‖x‖2 . This distribution is isotropic log-concave. We have that forZ = Θ(log(1/opt))538
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it holds that Pr[‖x‖2 ≥ Z] ≤ opt. Moreover, we have Ex∼Dx [1{‖x‖2 ≥ Z} ‖x‖2] ≥539

(
√

3/(2π))e−2
√

3ZZ = Ω(opt log(1/opt)).540

Now we can fix some θ = Ω(opt log(1/opt)) < π/8 and observe that Assumption 2 of Theorem B.1541

is satisfied. Therefore, we have that for any halfspace with normal vector w with θ(w,w∗) ≤ θ =542

Ω(opt log(1/opt)) it holds that∇wC(w) 6= 0, and as a result it cannot be a minimizer of C(w).543

For the heavy tailed marginals, the argument is similar. We work again in two dimensions, and for544

any s > 2 we pick545

γ(x) =
bs(

‖x‖2
as

+ 1
)2+s ,

where the constants as, bs depend only on s > 2 and are appropriately picked so that the distribution546

is isotropic. Using polar coordinates, we have547

Pr[‖x‖2 ≥ Z] = 2π

∫ ∞
Z

rbs(
r
as

+ 1
)2+s dr =

2πbs
s(1 + s)

as + (s+ 1)Z

(as + Z)1+s
.

Therefore, for Z = Θ((1/opt)1/s) it holds that Pr[‖x‖2 ≥ Z] ≤ opt. Moreover, we have548

E
x∼Dx

[1{‖x‖2 ≥ Z} ‖x‖2] = 2π

∫ ∞
Z

r2bs(
r
as

+ 1
)2+s dr =

bs
(
2a2
s + 2as(s+ 1)Z + s(s+ 1)Z2

)
s (s2 − 1) (as + Z)s+1

.

Therefore, for Z = Θ((1/opt)1/s) it holds Ex∼Dx [1{‖x‖2 ≥ Z} ‖x‖2] = Ω(opt1−1/s). We can549

now fix some θ = Ω(opt1−1/s) < π/8 and observe that Assumption 2 of Theorem B.1 is satisfied.550

Therefore, we have that for any halfspace with normal vector w with θ(w,w∗) ≤ θ = Ω(opt1−1/s)551

it holds that ∇wC(w) 6= 0, and as a result it cannot be a minimizer of C(w).552
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