
DisCor: Corrective Feedback in Reinforcement
Learning via Distribution Correction

Aviral Kumar, Abhishek Gupta, Sergey Levine
Electrical Engineering and Computer Sciences, UC Berkeley

aviralk@berkeley.edu

Abstract

Deep reinforcement learning can learn effective policies for a wide range of tasks,
but is notoriously difficult to use due to instability and sensitivity to hyperparame-
ters. The reasons for this remain unclear. In this paper, we study how RL methods
based on bootstrapping-based Q-learning can suffer from a pathological interac-
tion between function approximation and the data distribution used to train the
Q-function: with standard supervised learning, online data collection should induce
corrective feedback, where new data corrects mistakes in old predictions. With dy-
namic programming methods like Q-learning, such feedback may be absent. This
can lead to potential instability, sub-optimal convergence, and poor results when
learning from noisy, sparse or delayed rewards. Based on these observations, we
propose a new algorithm, DisCor, which explicitly optimizes for data distributions
that can correct for accumulated errors in the value function. DisCor computes
a tractable approximation to the distribution that optimally induces corrective
feedback, which we show results in reweighting samples based on the estimated
accuracy of their target values. Using this distribution for training, DisCor results in
substantial improvements in a range of challenging RL settings, such as multi-task
learning and learning from noisy reward signals.

1 Introduction

Reinforcement learning (RL) algorithms, when combined with high-capacity deep neural net func-
tion approximators, have shown promise in domains ranging from robotic manipulation [22] to
recommender systems [44]. However, current deep RL methods can be difficult to use: they require
delicate hyperparameter tuning, and exhibit inconsistent performance. While a number of hypotheses
have been proposed to understand these issues [15, 52, 11, 10], and gradual improvements have
led to more stable algorithms in recent years [14, 18], an effective solution has proven elusive. We
hypothesize that one source of instability in reinforcement learning with function approximation and
value function estimation, such as Q-learning [53, 38, 33] and actor-critic algorithms [13, 23], is a
pathological interaction between the data distribution induced by the latest policy, and the errors
induced in the learned approximate value function as a consequence of training on this distribution.

While a number of prior works [1, 10, 29] have provided theoretical examinations of various approxi-
mate dynamic programming (ADP) methods, which include Q-learning and actor-critic algorithms,
prior work has not extensively studied the relationship between the data distribution induced by the
latest value function and the errors in the future value functions obtained by training on this data.
When using supervised learning style procedures to train contextual bandits or dynamics models,
online data collection results in a kind of “hard negative” mining: the model collects transitions that
lead to good outcomes according to the model (potentially erroneously). This results in collecting
precisely the data needed to correct errors and improve. On the contrary, ADP algorithms that use

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

bootstrapped targets rather than ground-truth target values may not enjoy such corrective feedback
with online data collection in the presence of function approximation.

Since function approximation couples Q-values at different states, the data distribution under which
ADP updates are performed directly affects the learned solution. As we will argue in Section 3, online
data collection may give rise to distributions that fail to correct errors in Q-values at states that are
used as bootstrapping targets due to this coupling effect. If the bootstrapping targets in ADP updates
are themselves are erroneous, then any form of Bellman error minimization using these targets may
not result in the correction of errors in the Q-function, leading to poor performance. In this work, we
show that we can explicitly address this by modifying the ADP training routine to re-weight the data
buffer to a distribution that explicitly optimizes for corrective feedback, giving rise to our proposed
method, DisCor. With DisCor, transitions sampled from the data buffer are reweighted with weights
that are inversely proportional to the estimated errors in their target values. Thus, transitions with
erroneous targets are down-weighted. We will show how this simple modification to ADP improve
corrective feedback, and increases the efficiency and stability of ADP algorithms.

The main contribution of our work is to propose a simple modification to ADP algorithms to provide
corrective feedback during the learning process, which we call DisCor. We show that DisCor can
be derived from a principled objective that results in a simple algorithm that reweights the training
distribution based on estimated target value error, so as to mitigate error accumulation. DisCor
is general and can be used in conjunction with modern deep RL algorithms, such as DQN [33]
and SAC [14]. Our experiments show that DisCor substantially improves performance of standard
RL methods, especially in challenging multi-task RL settings. We evaluate our approach on both
continuous control tasks and discrete-action, image-based Atari games. On the multi-task MT10
benchmark [56] and several robotic manipulation tasks, our method learns policies with a final
success rate that is 50% higher than that of SAC.

2 Preliminaries
The goal in reinforcement learning is to learn a policy that maximizes the expected cumulative
discounted reward in a Markov decision process (MDP), which is defined by a tuple (S,A, P,R, γ).
S,A represent state and action spaces, P (s′|s, a) and r(s, a) represent the dynamics and reward
function, and γ ∈ (0, 1) represents the discount factor. ρ0(s) is the initial state distribution. The
infinite-horizon, discounted marginal state distribution of the policy π(a|s) is denoted as dπ(s) and
the corresponding state-action marginal is dπ(s, a) = dπ(s)π(a|s). We define Pπ, the state-action
transition matrix under a policy π as PπQ(s, a) := Es′∼P (·|s,a),a′∼π(a′|s′)[Q(s′, a′)].

Approximate dynamic programming (ADP) algorithms, such as Q-learning and actor-critic methods,
aim to acquire the optimal policy by modeling the optimal state (V ∗(s)) and state-action (Q∗(s, a))
value functions by recursively iterating the Bellman optimality operator, B∗, defined as (B∗Q)(s, a) =
r(s, a) +γEs′∼P [maxa′ Q(s′, a′)]. With function approximation, these algorithms project the values
of the Bellman optimality operator B∗ onto a family of Q-function approximatorsQ (e.g., deep neural
nets) under a sampling or data distribution µ, such that Qk+1 ← Πµ(B∗Qk) and

Πµ(Q)
def
= arg min

Q′∈Q
Es,a∼µ[(Q′(s, a)−Q(s, a))2]. (1)

Q-function fitting is usually interleaved with additional data collection, which typically uses a policy
derived from the latest value function, augmented with either ε-greedy [54, 33] or Boltzmann-
style [14, 45] exploration. For commonly used ADP methods, µ simply corresponds to the on-policy
state-action marginal, µk = dπk (at iteration k) or else a “replay buffer” [14, 33, 27, 28] formed as
a mixture distribution over all past policies, such that µk = 1/k

∑k
i=1 d

πi . However, as we will
show in this paper, the choice of the sampling distribution µ is of crucial importance for the stability
and efficiency of ADP algorithms. We analyze this issue in Section 3, and then discuss a potential
solution to this problem in Section 5.

3 Corrective Feedback in Q-Learning
When learning with supervised regression (i.e., non-bootstrapped objectives) onto the true value
function (e.g., in a bandit setting), active data collection methods will visit precisely those state-action
tuples that have erroneously optimistic values, observe their true values, and correct the errors, by
fitting these true values. However, ADP methods that use bootstrapped target values may not be able
to correct errors this way, and online data collection may not reduce the error between the current

2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10

Iteration 0 Iteration 1

Iteration 2 Iteration 3

States being
updated

Intermediate values of error
(high (L) to low (R) error)

Figure 1: Left: Depiction of a possible run of Q-learning iterations on a tree-structured MDP with on-policy
sampling. The trajectory sampled at each iteration is shown with dotted boundaries. Function approximation
results in aliasing (coupling) of the box-shaped and circle-shaped nodes (i.e., instances of each shape has similar
features values). Updating the values at one circle node affects all other circles, likewise for boxes. Regressing to
erroneous targets at one circle node may induce errors at another circle node, even if the other node has a correct
target, simply because the other node is visited less often. Right: If a distribution that puts higher probability on
nodes with correct target values, i.e. which moves from leaves to nodes higher up, is chosen, then, the effects of
function approximation aliasing are reduced, and correct Q-values can be obtained.

Q-function and Q∗, especially when function approximation is employed to represent the Q-function.
This is because function approximation error can result in erroneous bootstrap target values at some
state-action tuples. Visiting these tuples more often will simply cause the function approximator to
more accurately fit these incorrect target values, rather than correcting the target values themselves.
As we will show, those states that are the cause of incorrect target values at other states can be
extremely infrequent in the data obtained by running the policy. Therefore, their values will not be
corrected, leading to more error propagation.

Didactic example. To build intuition for the phenomenon, consider tree-structured MDP example in
Figure 1. We illustrate a potential run of Q-learning (Alg. 2) with on-policy data collection. Q-values
at different states are updated to match their (potentially incorrect) bootstrap target values under
a distribution, µ(s, a), which, in this case is dictated by the visitation frequency under the current
policy (Equation 1). The choice of µ(s, a), does not affect the resulting Q-function when function
approximation is not used, as long as µ is full-support, i.e., µ(s, a) > 0 ∀ s, a.

However, with function approximation, updates across state-action pairs affect each other. Erroneous
updates higher up in the tree, trying to match incorrect target values, may prevent error correction
at leaf nodes if the states have similar representations under function approximation (i.e., if they
are partially aliased). States closer to the root have higher frequencies (because there are fewer of
them) than the leaves, exacerbating this problem. This issue can compound: the resulting erroneous
leaf values are again used as targets for other nodes, which may have higher frequencies, further
preventing the leaves from learning correct values.

If we can instead train with µ(s, a) that puts higher probability on nodes with correct target values,
we can alleviate this issue. We would expect that such a method would first fit the most accurate
target values (at the leaves), and only then update the nodes higher up, as shown in Figure 1 (right).
Our proposed algorithm, DisCor, shows how to construct such a distribution in Section 5.

Value error in ADP. To more formally quantify, and devise solutions to this issue, we first define
our notion of error correction in ADP in terms of value error:

Definition 3.1. The value error is defined as the error of the current Q-function, Qk to the optimal
Q∗ averaged under the on-policy (πk) marginal, dπk(s, a) : Ek = Edπk [|Qk −Q∗|].

A smooth decrease in value error Ek indicates that effective error correction in the Q-function. If Ek
fluctuates or increases, the algorithm is making poor learning progress. When the value error Ek is
roughly stagnant at a non-zero value, this indicates premature convergence. The didactic example
(Fig. 1) suggests that the value error Ek for ADP may not smoothly decrease to 0, and can even
increase with function approximation.

To analyze this phenomenon computationally, we use the gridworld MDPs from Fu et al. [10] and
visualize the correlations between policy visitations dπk(s, a) and the value of Bellman error after
the ADP update, i.e. |Qk+1 − B∗Qk|(s, a), as well as the correlation between visitations and the
difference in value errors after and before the update, Ek+1(s, a) − Ek(s, a). We eliminate finite

3

sampling error by training on all transitions, simply weighting them by the true on-policy or replay
buffer distribution. Details are provided in Appendix G.1. In Figure 2, we show that, as expected,

0 100 200 300
Iteration

−0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

C
o
rr

e
la

ti
o
n

Ek+1 − Ek
Bellman error

Figure 2: Correlation (y-axis) be-
tween dπk (s, a) and the Bellman
error, |Qk+1 − B∗Qk| (dashed),
and correlation between dπk (s, a)
and change in value error, Ek+1−
Ek (solid), during training with
on-policy data. dπk (s, a) nega-
tively correlates with Bellman er-
ror, but often correlates positively
with an increase in value error.

Bellman error correlates negatively with visitation frequency (dashed
line), suggesting that visiting a state more often decreases its Bellman
error. However, the change in value error Ek+1 − Ek in general does
not correlate negatively with visitation. Value error often increases
in states that are visited more frequently, suggesting that a corrective
feedback mechanism is often lacking.

The Q-function value error at state-action pairs that will be used as
bootstrapping targets for other state-action tuples (Q(s0, a1) is used
as target for all states with action a1) is high and the state-action
pair with correct target value, (s3, a0), appears infrequently in the
on-policy distribution, since the policy chooses the other action
a1 with high probability. Since the function approximator couples
together updates across states and actions, the low update frequency
at (s3, a0) and high frequency of state-action tuples with incorrect
targets will cause the Q-function updates to increase value error.
Thus, minimizing Bellman error under the on-policy distribution can
lead to an increase in the error against Q∗ (Also shown in Figure 2

on a gridworld). A more concrete computational example illustrating this phenomenon is described
in detail in Section 4. We can further generalize this discussion over multiple iterations of learning.

Which distributions lead to higher value errors? In Figure 3, we plot value error Ek over the

0 100 200 300

0

5

10

15

E
rr

or
s

(S
ol

id
)

Uniform

On-policy

Tabular

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

R
et

u
rn

(D
as

h
ed

)

Suboptimal Convergence

0 100 200 300

0.0

2.5

5.0

7.5

10.0

E
rr

or
s

(S
ol

id
)

Uniform

Replay Buffer

Tabular

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

R
et

u
rn

(D
as

h
ed

)

Sparse Reward

Figure 3: Value error (Ek) and policy performance (nor-
malized return) for Left: sub-optimal convergence with
on-policy distributions, Right: instabilities in learning
progress with replay buffers. Note that an oracle re-
weighting to a uniform data distribution or complete
removal of function approximation, gives rise to decreas-
ing Ek curve and better policy performance.

course of Q-learning with on-policy and replay
buffer distributions. The plots show prolonged
periods where Ek is increasing or fluctuating.
When this happens, the policy has poor perfor-
mance, with returns that are unstable or stag-
nating (Fig. 3). To study the effects of function
approximation and distributions on this issue,
we can control for both of these factors. When
a uniform distribution Unif(s, a) is used instead
of the on-policy distribution, as shown in Fig. 3
(red), or when using a tabular representation
without function approximation, but with the
on-policy distribution, as shown in with Fig. 3
(brown), we see that Ek decreases smoothly, sug-
gesting that the combination of function approximation and naïve distributions can result in challenges
in value error reduction.

In fact, we can construct a family of MDPs generalizing our didactic tree example, where training with
on-policy or replay buffer distributions theoretically requires at least exponentially many iterations to
converge to Q∗, if at all convergence to Q∗ happens.

Theorem 3.1 (Exponential lower bound for on-policy and replay buffer distributions). There exists
a family of MDPs parameterized by H > 0, with |S| = 2H , |A| = 2 and state features Φ, such
that on-policy or replay-buffer Q-learning requires Ω

(
γ−H

)
exact Bellman projection steps for

convergence to Q∗, if at all convergence happens. This happens even with features, Φ that can
represent the optimal Q-function near-perfectly, i.e., ||Q∗ − Φw||∞ ≤ ε.

The proof is in Appendix D. This suggests that on-policy or replay buffer distributions can induce
very slow learning in certain MDPs. We show in Appendix D.3 that our method, DisCor, which we
derive in the next section, can avoid many of these challenges, in this MDP family.

4 Optimal Distributions for Value Error Reduction
We discussed how, with function approximation and on-policy or replay-buffer training distributions,
the value error Ek may not decrease over the course of training. What if we instead directly optimize
the data distribution at each iteration so as to minimize value error? To do so, we derive a functional
form for this “optimal” distribution by formulating an optimization problem that directly optimizes
the training distribution pk(s, a) at each iteration k, greedily minimizing the error Ek at the end of

4

iteration k. Note that pk(s, a) is now distinct from the on-policy or buffer data distribution denoted
by µ(s, a). We will then show how to approximately solve for pk(s, a), yielding a simple practical
algorithm in Section 5. All proofs are in Appendix A. We can write the optimal pk(s, a) as the
solution to the following optimization problem:

min
pk

Edπk [|Qk −Q∗|] s.t. Qk = arg min
Q

Epk
[
(Q− B∗Qk−1)2

]
,

∑
s,a

pk(s, a) = 1. (2)

Theorem 4.1. The solution pk(s, a) to a relaxation of the optimization in Equation 2 satisfies

pk(s, a) ∝ exp (−|Qk −Q∗|(s, a))
|Qk − B∗Qk−1|(s, a)

λ∗
, (3)

where λ∗ ∈ R+ is the magnitude of Lagrange multiplier for
∑
s,a pk(s, a) = 1 in Problem 2.

Proof sketch. Our proof of Theorem 4.1 utilizes the Fenchel-Young inequality [39] to first upper-
bound Edπk [|Qk −Q∗|] via more tractable terms giving us the relaxation, and then optimizing the
Lagrangian. We We use the implicit function theorem (IFT) [24] to compute implicit gradients of Qk
with respect to pk.

Intuitively, the optimal pk in Equation 3 assigns higher probability to state-action tuples with high
Bellman error |Qk −B∗Qk−1|, but only when the resulting Q-value Qk is close to Q∗. However, this
expression contains terms that depend on Q∗ and Qk, namely |Qk −Q∗| and |Qk −B∗Qk−1|, which
are observed only after pk is chosen. As we will show next, we need to estimate these quantities
using surrogates, that only depend upon the past Q-function iterates in order to use pk in a practical
algorithm. Intuitively, these surrogates exploit the rich structure in Bellman iterations: the Bellman
error at each iteration contributes to the error against Q∗ in a structured manner, as we will discuss
below, allowing us to approximate the value error using a special sum of Bellman errors. We present
these approximations below, and then combine then to derive our proposed algorithm, DisCor.

Surrogate for |Qk − Q∗|. For approximating the error against Q∗, we show that the cumulative
sum of discounted and propagated Bellman errors over the past iterations of training, denoted as ∆k

and shown in Equation 5, are equivalent to an upper bound on |Qk −Q∗|. Specifically, Theorem 4.2
will show that, up to a constant, ∆k forms a tractable upper bound on |Qk −Q∗| constructed only
from prior Q-function iterates, Q0, · · · , Qk−1. We define ∆k as:

∆k =

k∑
i=1

γk−i

k−1∏
j=i

Pπj

 |Qi − (B∗Qi−1)|. (vector-matrix form of∆) (4)

=⇒ ∆k(s, a) = |Qk(s, a)− (B∗Qk−1)(s, a)|+ γ(Pπk−1∆k−1)(s, a). (5)

Here Pπj is the state-action transition matrix under policy πj as described in Section 2. We can then
use ∆k to define an upper bound on the value error |Qk −Q∗|, as follows:

Theorem 4.2. There exists a k0 ∈ N, such that ∀ k ≥ k0 and ∆k from Equation 5, ∆k satisfies the
following inequality, pointwise, for each s, a, as well as, ∆k → |Qk −Q∗| as πk → π∗.

∆k(s, a) +

k∑
i=1

γk−iαi ≥ |Qk −Q∗|(s, a), αi =
2Rmax

1− γ DTV(πi(·|s), π∗(·|s)).

A proof and intermediate steps of simplification can be found in Appendix B. The key insight in this
argument is to use a recursive inequality, presented in Lemma B.1, App. B, to decompose |Qk −Q∗|,
which allows us to show that ∆k +

∑
i γ

k−iαi is a solution to the corresponding recursive equality,
and hence, an upper bound on |Qk − Q∗|. Using an upper bound of this form in Equation 3 may
downweight more transitions, but will never upweight a transition that should not be upweighted.

Estimating |Qk − B∗Qk−1|. The Bellman error multiplier term |Qk − B∗Qk−1| in Equation 3
is also not known in advance. Since no information is known about the Q-function Qk, a viable
approximation is to bound |Qk − B∗Qk−1| between the minimum and maximum Bellman errors
obtained at the previous iteration, c1 = mins,a |Qk−1−B∗Qk−2| and c2 = maxs,a |Qk−1−B∗Qk−2|.
We restrict the support of state-action pairs (s, a) used to compute c1 and c2 to be the set of transitions
in the replay buffer used for the Q-function update, to ensure that both c1 and c2 are finite. This

5

approximation can then be applied to the solution obtained in Equation 3 to replace the Bellman error
multiplier |Qk − B∗Qk−1|, effectively giving us a lower-bound on pk(s, a) in terms of c1 and c2.

Re-weighting the replay buffer µ. Since it is challenging to directly obtain samples from
pk via online interaction, a practically viable alternative is to use the samples from a stan-
dard replay buffer distribution, denoted µ, but reweight these samples using importance weights
wk = pk(s, a)/µ(s, a). However, naïve importance sampling often suffers from high variance, lead-
ing to unstable learning. Instead of directly re-weighting to pk, we re-weight samples from µ to a
projection of pk, denoted as qk, that is still close to µ under the KL-divergence metric, such that
qk = arg minq Eq(s,a)[log pk(s, a)] + τDKL(q(s, a)||µ(s, a)), where τ > 0 is a scalar. The weights
wk are thus given by (derivation in Appendix B):

wk(s, a) ∝ exp

(−|Qk −Q∗|(s, a)

τ

) |Qk − B∗Qk−1|(s, a)

λ∗
(6)

Putting it all together. We have noted all practical approximations to the expression for optimal pk
(Equation 3), including estimating surrogates for Qk and Q∗, and the usage of importance weights
to simply re-weighting transitions in the replay buffer, rather than altering the exploration strategy.
We now put these together to obtain a tractable expression for weights in our method. Due to space
limitations, we only provide a sketch of the proof here, and a detailed derivation is in Appendix C.

We first upper-bound the quantity |Qk−Q∗| by ∆k. However, estimating ∆k requires |Qk−B∗Qk−1|,
which is not known in advance. We utilize the upper bound c2: |Qk−B∗Qk−1|(s, a) ≤ c2, and hence
use γPπk−1∆k−1(s, a) + c2 as an estimator for |Qk −Q∗| in Equation 6. For the final Bellman error
term outside the exponent, we can lower bound it with c1, where |Qk − B∗Qk−1| ≥ c1. Simplifying
constants c1, c2 and λ∗, the final expression for this tractable approximation for wk is:

wk(s, a) ∝ exp

(
−γ [Pπk−1∆k−1] (s, a)

τ

)
. (7)

This expression gives rise to our practical algorithm, DisCor, described in the next section.

A concrete demonstration. To illustrate the effectiveness of DisCor and the challenges with naively
chosen distributions in RL, we present a simple computational example in Figure 4 that illustrates that,
even in a simple MDP, error can increase with standard Q-learning but decreases with our distribution
correction approach, DisCor, that is based on the idea of first attempting to minimize value error at
states-action tuples that will serve as target-values for other states. Our example is a 5-state MDP,
with the starting state s0 and the terminal state sT (marked in gray). Each state has two available
actions, a0 and a1, and each action deterministically transits the agent to a state marked by arrows in
Figure 4. A reward of 0.001 is received only when action a0 is chosen at state s3 (else reward is 0).
The Q-function is a linear function over pre-defined features φ(s, a), i.e.,Q(s, a) = [w1, w2]Tφ(s, a),

s0 s1 s2 s3 sT

γ = 0.999

a0, 0 a0, 0 a0, 0 a0

1e-3

a1, 0 a1, 0

a1, 0

a1, 0

Figure 4: A simple MDP showing the effect of on-policy
distribution and function approximation on learning dynamics
of ADP algorithms.

where φ(·, a0) = [1, 1] and φ(·, a1) =
[1, 1.001] (hence features are aliased across
states). Computationally, we see that when
minimizing Bellman error starting from
a Q-function with weights [w1, w2] =
[0, 1e-4], under the on-policy distribu-
tion of the Boltzmann policy, π(a0|·) =
0.001, π(a1|·) = 0.999, in the absence of
sampling error (using all transitions but
weighted), the error against Q∗ still in-

creases from 7.177e-3 to 7.179e-3 in one iteration, whereas with DisCor error decreases to 5.061e-4.
With uniform the error also decreases, but is larger: 4.776e-3.

5 Distribution Correction (DisCor) Algorithm

In this section, we present the our full, practical algorithm, which uses the weightswk from Equation 7
to re-weight the Bellman backup in order to better correct value errors. Pseudocode for our approach,
called DisCor (Distribution Correction), is presented in Algorithm 1, with the main differences from
standard ADP methods highlighted in red. In addition to a standard Q-function, DisCor trains another
parametric model, ∆φ, to estimate ∆k(s, a) at each state-action pair. The recursion in Equation 5 is
used to obtain a simple approximate dynamic programming update rule for the parameters φ (Line

6

8). We need to explicitly estimate this error term ∆φ because it is required to compute the weights
described in Equation 7. The second change is the introduction of a weighted Q-function backup
with weights wk(s, a), as shown in Equation 7 on Line 7. Since DisCor simply introduces a change
to the training distribution, this change can be applied to popular ADP algorithms such as DQN [33]
or SAC [14], as shown in Algorithm 3, Appendix F.

Algorithm 1 DisCor (Distribution Correction)
1: Initialize Q-values Qθ(s, a), initial distribution p0(s, a),

a replay buffer µ, and an error model ∆φ(s, a).
2: for step k in {1, . . . , N} do
3: CollectM samples using πk, add them to replay buffer

µ, sample {(si, ai)}Ni=1 ∼ µ
4: Evaluate Qθ(s, a) and ∆φ(s, a) on samples (si, ai).
5: Compute target values for Q and ∆ on samples:

yi = ri + γmaxa′ Qk−1(s′i, a
′)

âi = arg maxaQk−1(s′i, a)

∆̂i = |Qθ(s, a)− yi|+ γ∆k−1(s′i, âi)
6: Compute wk using Equation 7.
7: Minimize Bellman error for Qθ weighted by wk.

θk+1 ← argmin
θ

1
N

∑N
i wk(si, ai)(Qθ(si, ai)− yi)2

8: Minimize ADP error for training φ.
φk+1 ← argmin

φ

1
N

∑N
i=1(∆φ(si, ai)− ∆̂i)

2

9: end for

Using the weights wk in Equation 7 for
weighting Bellman backups possesses a
very clear and intuitive explanation. Note
that (Pπk−1∆k−1)(s, a) corresponds to
the estimated upper bound on the error of
the target values for the current transition,
due to the backup operator Pπk−1 , as de-
scribed in Equation 7. Intuitively, this im-
plies that weights wk downweight those
transitions for which the bootstrapped tar-
get Q-value estimate has a high estimated
error to Q∗, effectively focusing the learn-
ing on samples where the supervision (tar-
get value) is estimated to be accurate,
which are precisely the samples that we
expect maximally improve the accuracy of
the Q function.

6 Related Work
Prior work has pointed out a number of issues arising when dynamic programming is used with
function approximation. [35, 36, 8, 43, 26, 42] focused on analysing error induced in Bellman
projections, under the assumption of an abstract error model. Convergent backups [47, 46, 32]
were developed. However, divergence is rarely observed to be an issue with deep Q-learning
methods [10, 52]. In contrast to these works, which mostly focus on convergence of the Bellman
backup, we focus on the interaction between the ADP update and the data distribution µ. Prior work
on Q-learning and stochastic approximation analyzes time-varying µ, but either without function
approximation [53, 49, 5], or when fully online [50], unlike our setting, that uses replay buffer data.

While generalization effects of deep neural nets with ADP updates have been studied [1, 10, 30, 25],
often under standard NTK [21] assumptions [1], the high-level idea in these prior works has been to
suppress any coupling effects of the function approximator, effectively obtaining tabular behavior. In
contrast, DisCor solves an optimization problem for the distribution pk that maximally reduces value
error, and does not explicitly suppress coupling effects, as these can be important for generalization
in high dimensions. [41] studies the effect of data distribution on multi-objective policy gradient
methods and reports a pathological interaction between the data distribution and optimization. [9]
shows the existence of suboptimal fixed points with on-policy TD learning as we observed empirically
in Figure 3 (left). DisCor re-weights the transition in the buffer based on an estimate of their error to
the true optimal value function. This scheme resembles learning with noisy labels via “abstention”
from training on labels that are likely to be inaccurate [48]. Prioritized sampling has been used
previously in ADP methods to instead prioritize transitions with higher Bellman error [40, 17, 20, 19].
We show in Section 7 that this approach is less effective than DisCor experimentally. Recent work [6]
has attempted to use a distribution-checking oracle to control the amount of exploration performed.
DisCor, instead, re-weights the data distribution without requiring any oracles.

7 Experimental Evaluation of DisCor

The goal of our empirical evaluation is to study the following questions: (1) Does DisCor lead to
a decrease in value error, mitigating the issues raised in Section 3?, (2) How do approximations
from Section 4 affect the efficacy of DisCor in ensuring value error reduction? (3) How does DisCor
compare to prior methods, including those that also reweight the data in various ways?, (4) Can
DisCor attain good performance in challenging settings, such as multi-task RL, robotic manipulation
or Atari games? We start by presenting an analysis on tabular MDPs with function approximation,
and then study six robotic manipulation tasks and multi-task RL, and three Atari games [3].

7

0.0M 1.0M 2.0M 3.0M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

pull with stick

DisCor

PER

SAC

0.0M 1.0M 2.0M 3.0M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0
push with wall

DisCor

PER

SAC

0.0M 1.0M 2.0M 3.0M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

turn dial

DisCor

PER

SAC

0.0M 0.5M 1.0M 1.5M 2.0M
Environment Steps

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

hammer

DisCor

PER

SAC

0.0M 1.0M 2.0M 3.0M
Environment Steps

0.0

0.2

0.4

0.6

0.8

push with stick

DisCor

PER

SAC

0.0M 1.0M 2.0M 3.0M
Environment Steps

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

insert peg side

DisCor

PER

SAC

Figure 5: Evaluation success of DisCor, unweighted SAC and PER on six MetaWorld tasks. From left to right:
pull stick, push with wall, push stick, turn dial, hammer and insert peg side. Note that DisCor achieves better
final success rates or learns faster on most of the tasks and is the only method that learns on one task.

7.1 Analysis of DisCor on Tabular Environments

Figure 6: Value Error Ek/ return for
two runs of DisCor (blue) and DisCor
(oracle) (red) in exact (top) and sam-
pled (bottom) settings. Note (i) DisCor
achieves similar performance as Dis-
Cor (oracle), (ii) Ek generally decreases
with both methods.

We first use the tabular domains from Section 3, described in
detail in Appendix G.1, to analyze error correction induced
by DisCor and evaluate the effect of the approximations used
in our method, such as the upper bound estimator ∆k, both
when the algorithm is provided with Fig. 12). all transitions
in the replay buffer and simply chooses a weighting on them
(no sampling error) and when the algorithm collects its own
transitions via exploration. In both settings, in Figure 6, value
error Ek decreases smoothly with DisCor. An oracle version
of the algorithm (DisCor (oracle); Equation 6), which uses
the true error |Qk − Q∗| in place of ∆k, is somewhat better
than DisCor (Fig. 7, red vs blue), but DisCor still outperforms
on-policy and replay buffer schemes (green and pink), which
often fail to reduce Ek as shown in Section 3. While Dis-
Cor (oracle) consistently performs better than DisCor, as we
would expect, the approximate DisCor algorithm still attains
better performance than naïve uniform weighting and priori-
tization similar to PER. This shows that the principle behind
DisCor is effective when applied exactly, and that even the
approximation that we use in practice improves performance.

7.2 Continuous Control Experiments

Figure 7: Performance of DisCor,
DisCor (oracle) and other distribu-
tions averaged across tabular do-
mains with and without sampling
error.. DisCor is generally compa-
rable to DisCor (oracle), and both
of them generally outperform all
other distributions.

We next perform a comparative evaluation of DisCor on several
continuous control tasks, using six robotic manipulation tasks from
the Meta-World suite (pull stick, hammer, insert peg side, push
stick, push with wall and turn dial) (these are shown in Figure 15
in Appendix G). These domains were chosen because they are
challenging for state-of-the-art RL methods, such as SAC [14].
We applied DisCor to these tasks by modifying the weighting of
samples in SAC. DisCor does not alter any hyperparameter from
SAC, and requires minimal tuning. There is only one additional
temperature hyperparameter, which is also automatically chosen.
More details are presented in Appendix F.2.

We compare DisCor to standard SAC without weighting, as well
as prioritized experience replay (PER) [40], which uses weights
based on the last Bellman error. The results in Figure 5 show that
DisCor outperforms prior methods on these tasks. DisCor learns substantially faster on most of the
tasks. We also performed comparisons on the more conventional gym benchmarks, where we see
a small but consistent benefit from DisCor reweighting. Since prior methods, such as SAC already

8

solve these tasks easily, and have been tuned well for them, the room for improvement is very small.
We include these results in Appendix G.3 for completeness. We also evaluate on a stochastic reward
variant of gym, where we observe an improvement trend. However, on tasks that have not been tuned
as extensively or exhibit challenging properties, such as multi-task learning or complex manipulation
tasks, current RL methods can perform poorly.

7.3 Multi-Task Reinforcement Learning

0.0M 1.0M 2.0M 3.0M
Environment Steps

0.0

0.2

0.4

0.6

S
u

cc
es

s
R

at
e

MT-10 Multi Task Benchmark

DisCor

SAC

(a) Success rate (b) Per-task return
Figure 8: Performance of DisCor (blue) and unweighted SAC
(green) on the MT10 benchmark. We observe that: (1) DisCor
outperforms unweighted SAC by a factor of 1.5 in terms success
rate; (2) DisCor achieves a non-trivial return on 7/10 tasks after
500k environment steps, as compared to 3/10 for unweighted SAC.

Another challenging setting for cur-
rent RL methods is the multi-task RL
setting. This is known to be difficult,
to the point that often times learn-
ing completely separate policies for
each of the tasks is actually faster,
and results in better performance, than
learning the tasks together [56, 41].
We evaluate on the MT10 MetaWorld
benchmark [56], which consists of
ten robotic manipulation tasks to be
learned jointly. We follow the proto-
col from [56], and append task ID to the state. As shown in Figure 8(a), DisCor outperforms SAC
by a large margin, achieving 50% higher success rates compared to SAC, and a high overall return
(Fig 18). Figure 8(b) shows that DisCor makes progress on 7/10 tasks, as compared to 3/10 for SAC.
We further evaluate DisCor and SAC on the more challenging MT50 benchmark [56], shown in
Figure 19, and observe a similar benefit as compared to MT10, where the baseline algorithm tends to
plateau suboptimally for about 4M environment steps, whereas DisCor keeps learning, and achieves
asymptotic performance faster.

7.4 Arcade Learning Environment

0 50 100 150

Environment Steps (x 1M)

−20

−10

0

10

20
Pong

DQN

DisCor

0 50 100 150

Environment Steps (x 1M)

0

50

100

150

200

250

Breakout

DQN

DisCor

0 50 100

Environment Steps (x 1M)

1000

2000

3000

4000

Asterix

DQN

DisCor

Figure 9: DQN vs DisCor on Atari. Note that DisCor generally improves
learning speed and asymptotic performance.

Our final experiments were
aimed at testing the efficacy of
DisCor on stochastic, discrete-
action, image-observation envi-
ronments. To this end, we evalu-
ated DisCor on three commonly
reported tasks from the Atari
suite – Pong, Breakout and As-
terix. We compare to the base-
line DQN [33], all our implementations are built off of Dopamine [4], and use the evaluation protocol
with sticky actions [31]. We build DisCor on top of DQN by simply replacing the standard replay
buffer sampling scheme in DQN with the DisCor weighted update. We show in Figure 9 that DisCor
usually outperforms unweighted DQN in learning speed and performance.

8 Discussion, Future Work and Open Problems
In this work, we show that deep RL algorithms are unable to correct errors in the value function in
scenarios with naïve online data collection. This results in a number of problems during learning,
including slow convergence, inability to convergence and oscillation. We propose a method to
compute the optimal data distribution to obtain value error correction, and design a practical algorithm,
DisCor, that applies this correction by re-weighting the transitions in the replay buffer based on an
estimate of the accuracy of their target values. DisCor yields improvements across a wide range of
RL problems, including challenging robotic manipulation tasks, multi-task reinforcement learning
and Atari games and can be easily combined with a variety of ADP algorithms.

This suggests several exciting directions for future work. First, a characterization of the learning
dynamics and their interaction with corrective feedback and data distributions in ADP algorithms
will lead to even better and more stable algorithms. Second, we could study how we might directly
modify the exploration policy to change which transitions are collected, so as to more directly alter
the training distribution. Third, the general theme of re-weighting and reorganizing experience with
the goal of significantly simplifying optimization in ADP methods is likely to be fruitful in devising
better algorithms. If we can devise RL methods that are guaranteed to enjoy corrective feedback then
RL algorithms can be reliably scaled to large open-world settings.

9

Broader Impact

Approximate dynamic programming methods are a key ingredient in modern deep reinforcement
learning algorithms, which have had successes on a number of practical problems. However, re-
inforcement learning algorithms are still limited by problems such as instability and sensitivity to
hyperparameters. In this work, we analyzed one such issue, which we called “corrective feedback”,
that afflicts modern ADP algorithms: the interaction between online data distributions and function
approximation may not be able to correct errors in the Q-function. By optimizing for the distribution
to maximize corrective feedback, our proposed method, DisCor, significantly improves RL problems
in several challenging reinforcement learning and multi-task reinforcement learning settings, across a
wide range of domains. DisCor is simple, intuitive, and admits a principled derivation, and can be
applied with a number of modern deep RL algorithms.

The broad theme behind this work is to identify and address problems that arise with deep reinforce-
ment learning algorithms. Reinforcement learning algorithms often enjoy provable guarantees with
tabular representations, but it is unclear how to extend these to deep networks. Instead we could take
an alternate approach: optimize for quantities of interest (such as in our case, corrective feedback)
directly. We believe that this general principle can help scale end-to-end learning autonomous
decision-making based approaches to real-life problems, such as robotics, software systems and
autonomous driving.

Machines that can reason and perform autonomous decision-making have a wide range of applications,
in a wide range of domains, and like any other technological innovations that mankind has seen,
effective autonomous decision-making has both positive and negative societal effects. While effective
autonomous decision-making can have considerable positive economic effects, such as by automating
manufacturing lines, and other positive effects, that enhance human life quality, it can have complex
economic effects due to changing economic conditions (e.g., changing job requirements, loss of jobs
in some sectors and growth in others, etc.). Such implications apply broadly to technologies that
enable automation agnostic of data-driven learning or reinforcement learning, and are largely not
unique to this specific work.

Acknowledgements and Funding Disclosures

We thank Xinyang Geng and Aurick Zhou for helpful discussions. We thank Vitchyr Pong, Greg
Kahn, Xinyang Geng, Aurick Zhou, Avi Singh, Nicholas Rhinehart, and Michael Janner for feedback
on an earlier version of this paper, and all the members of the RAIL lab for their help and support. We
thank Tianhe Yu, Kristian Hartikainen, and Justin Yu for help with debugging and setting up various
tasks and implementations. This research was supported by: the National Science Foundation, the
Office of Naval Research, and the DARPA Assured Autonomy program. We thank Google, Amazon
and NVIDIA for providing compute resources.

References
[1] Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep

q-learning. ArXiv, abs/1903.08894, 2019.
[2] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding

the impact of entropy on policy optimization. In Proceedings of the 36th International Con-
ference on Machine Learning. PMLR, 2019. URL http://proceedings.mlr.press/
v97/ahmed19a.html.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. J. Artif. Int. Res., 47(1):253–279, May
2013. ISSN 1076-9757.

[4] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Belle-
mare. Dopamine: A Research Framework for Deep Reinforcement Learning. 2018. URL
http://arxiv.org/abs/1812.06110.

[5] Adithya M. Devraj and Sean P. Meyn. Zap q-learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 2232–2241, Red Hook,
NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

10

http://proceedings.mlr.press/v97/ahmed19a.html
http://proceedings.mlr.press/v97/ahmed19a.html
http://arxiv.org/abs/1812.06110

[6] Simon Du, Yuping Luo, Ruosong Wang, and Hanrui Zhang. Provably efficient q-learning with
function approximation via distribution shift error checking oracle. In NeurIPS, 06 2019.

[7] Simon S. Du, Sham M. Kakade, Ruosong Wang, and Lin F. Yang. Is a good representation
sufficient for sample efficient reinforcement learning? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=r1genAVKPB.

[8] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approxi-
mate policy and value iteration. In Advances in Neural Information Processing Systems (NIPS),
2010.

[9] D. Farias and B. Roy. On the existence of fixed points for approximate value iteration and
temporal-difference learning. Journal of Optimization Theory and Applications, 105:589–608,
06 2000. doi: 10.1023/A:1004641123405.

[10] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In Proceedings of the 36th International Conference on Machine Learning.
PMLR, 2019. URL http://proceedings.mlr.press/v97/fu19a.html.

[11] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International Conference on Machine Learning (ICML), pages
1587–1596, 2018.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In Proceedings of the 36th International Conference on Machine Learning,
2019.

[13] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning (ICML),
2017.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

[15] Hado van Hasselt. Double q-learning. In Proceedings of the 23rd International Conference on
Neural Information Processing Systems - Volume 2, 2010.

[16] Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. 2019. URL https://arxiv.org/pdf/1812.02690.pdf.

[17] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[19] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van
Hasselt, and David Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933,
2018. URL http://arxiv.org/abs/1803.00933.

[20] Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with
prioritized experience replay. In 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 316–321. IEEE, 2017.

[21] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31.
2018.

[22] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. In CoRL,
2018.

[23] Vijaymohan Konda and John N. Tsitsiklis. Actor-Critic Algorithms. PhD thesis, USA, 2002.
AAI0804543.

11

https://openreview.net/forum?id=r1genAVKPB
http://proceedings.mlr.press/v97/fu19a.html
http://arxiv.org/abs/1801.01290
https://arxiv.org/pdf/1812.02690.pdf
http://arxiv.org/abs/1803.00933

[24] Steven G. Krantz and Harold R. Parks. The implicit function theorem: History, theory, and
applications. 2002.

[25] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. 2019. URL http://arxiv.org/abs/1906.00949.

[26] Boris Lesner and Bruno Scherrer. Tight performance bounds for approximate modified policy
iteration with non-stationary policies. ArXiv, abs/1304.5610, 2013.

[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
International Conference on Learning Representations (ICLR), 2015.

[28] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[29] Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. In 2018
56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE,
2018.

[30] Vincent Liu, Raksha Kumaraswamy, Lei Le, and Martha White. The utility of sparse rep-
resentations for control in reinforcement learning. CoRR, abs/1811.06626, 2018. URL
http://arxiv.org/abs/1811.06626.

[31] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. J. Artif. Int. Res., 61(1):523–562, January 2018. ISSN 1076-9757.

[32] Hamid R. Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and
Richard S. Sutton. Convergent temporal-difference learning with arbitrary smooth function
approximation. In Proceedings of the 22nd International Conference on Neural Information
Processing Systems, 2009.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, feb 2015. ISSN 0028-0836.

[34] Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the Twentieth
International Conference on International Conference on Machine Learning, ICML’03, page
560–567. AAAI Press, 2003. ISBN 1577351894.

[35] Rémi Munos. Error bounds for approximate value iteration. In AAAI Conference on Artificial
intelligence (AAAI), pages 1006–1011. AAAI Press, 2005.

[36] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9(May):815–857, 2008.

[37] Theodore J. Perkins and Doina Precup. A convergent form of approximate policy iteration.
NIPS’02, 2002.

[38] Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural
reinforcement learning method. In European Conference on Machine Learning, pages 317–328.
Springer, 2005.

[39] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series. Princeton University
Press, Princeton, N. J., 1970.

[40] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
International Conference on Learning Representations (ICLR), 2015.

[41] Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source
of plateaus in deep reinforcement learning. CoRR, abs/1904.11455, 2019. URL http:
//arxiv.org/abs/1904.11455.

[42] Bruno Scherrer. Approximate policy iteration schemes: A comparison. In Proceedings of the
31st International Conference on International Conference on Machine Learning - Volume 32,
ICML’14, page II–1314–II–1322. JMLR.org, 2014.

12

http://arxiv.org/abs/1906.00949
http://arxiv.org/abs/1811.06626
http://arxiv.org/abs/1904.11455
http://arxiv.org/abs/1904.11455

[43] Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.
Approximate modified policy iteration and its application to the game of tetris. Journal of
Machine Learning Research, 16(49):1629–1676, 2015. URL http://jmlr.org/papers/
v16/scherrer15a.html.

[44] Guy Shani, David Heckerman, and Ronen I Brafman. An mdp-based recommender system.
Journal of Machine Learning Research, 6(Sep):1265–1295, 2005.

[45] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Sara A. Solla, Todd K.
Leen, and Klaus-Robert Müller, editors, Advances in Neural Information Processing Systems
12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4, 1999].

[46] Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In International Conference on Machine Learning (ICML),
2009.

[47] Richard S. Sutton, Hamid Reza Maei, and Csaba Szepesvári. A convergent o(n) temporal-
difference algorithm for off-policy learning with linear function approximation. In Advances in
Neural Information Processing Systems (NeurIPS), 2009.

[48] Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff Bilmes, Gopinath Chennupati, and Jamal Mohd-
Yusof. Combating label noise in deep learning using abstention. In Proceedings of 35th
International Conference on Machine Learning, 05 2019.

[49] John N. Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine Learning,
16(3):185–202, Sep 1994. ISSN 1573-0565. doi: 10.1007/BF00993306. URL https:
//doi.org/10.1007/BF00993306.

[50] John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning with
function approximation. Technical report, IEEE Transactions on Automatic Control, 1997.

[51] Kristian Hartikainen George Tucker Sehoon Ha Jie Tan Vikash Kumar Henry Zhu Abhishek
Gupta Pieter Abbeel Tuomas Haarnoja, Aurick Zhou and Sergey Levine. Soft actor-critic
algorithms and applications. Technical report, 2018.

[52] Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. ArXiv, abs/1812.02648, 2018.

[53] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.
[54] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis, King’s

College, Cambridge, UK, May 1989. URL http://www.cs.rhul.ac.uk/~chrisw/
new_thesis.pdf.

[55] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[56] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/
abs/1910.10897.

[57] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

13

http://jmlr.org/papers/v16/scherrer15a.html
http://jmlr.org/papers/v16/scherrer15a.html
https://doi.org/10.1007/BF00993306
https://doi.org/10.1007/BF00993306
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

	Introduction
	Preliminaries
	Corrective Feedback in Q-Learning
	Optimal Distributions for Value Error Reduction
	Distribution Correction (DisCor) Algorithm
	Related Work
	Experimental Evaluation of DisCor
	Analysis of DisCor on Tabular Environments
	Continuous Control Experiments
	Multi-Task Reinforcement Learning
	Arcade Learning Environment

	Discussion, Future Work and Open Problems

