A Testbed overview

ey H+LL,_WLH

Figure 6: An overview of our testbed. Each row is a model, and each column is an evaluation setting.
For the corruptions, we display each of the five severities defined in [38]]. We also plot in-memory
and on-disk versions of each corruption as jpeg compression was found to be a confounding factor
in [31]. A few cells are empty due to resource constraints. Testbed code and data is provided at
|https://modestyachts.github.io/imagenet-testbed/.

18

https://modestyachts.github.io/imagenet-testbed/

B How does the amount of training data impact robustness?

As discussed in Section[d.T} multiple models trained on more data achieve positive effective robustness
on dataset shifts. However, this effect is not uniform. Among others, the ResNet101 model trained
on JFT-300M has negligible effective robustness (p = —0.23%) despite being trained on 300 more
data than standard ImageNet models. A possible explanation is that differences in label diversity or
quality play a role in promoting robustness. We investigate the role of data in more detail with two
experiments.

Varying the number of images per class. We start by subsampling the ILSVRC-2012 training set
by factors of {2, 4, 8, 16, 32} and show the impact on accuracy and robustness on ImageNetV2
in Figure[7] While larger training subsets yield higher accuracies, they do not improve effective
robustness, at least for ImageNetV2.

Varying the number of classes. Next, we subsample ImageNet in a more biased way by varying
the set of classes. First, we create three subsets of the ILSVRC training set with 500, 250, and 125
classes and train models on these subsets. We then evaluate all models on the 125 class subset and
show the results in Figure[7} Varying the number of classes again affects accuracies, but does not
impact effective robustness.

Robustness for Subsampling ImageNet Robustness for Subsampling ImageNet
85 e
- y=X Subsample 1/2 L7 95{ === Y =X e 1000 classes ta

80 Linear fit s Subsample 1/4 3 — Linear fit 500 classes

X5 Standard training Subsample 1/8 " o X Standard training e 250classes ~ ”
s o Trained with more data « Subsample 1/16” P o . o Trained with more data « 125 classes 3
o~ 70 0~ -
= des| ® No subsampling Subsample 1/32 o S -
~ S 60 5 Yo

= -~]
Pl %4 o=
T 550 R 23
Z 045 A U Dss
O3 a0 Za 1
[QJ
@ €35 o€ e
£ 330 el Py
—Qa o €2 L i

225 ’ =375

v 201" 0

70
15 al
25 30 35 40 45 50 55 60 65 70 75 80 85 80 85 90 95
ImageNet (iid-subsampled) (top-1, %) ImageNet (class-subsampled) (top-1, %)

Figure 7: To investigate the impact of training data on robustness, we vary the training data along
two axes: the number of images per class (left), and the number of classes (right). Although models
trained on more data provide improvements in effective robustness, we find that subsampling the
training set has no impact on effective robustness. Confidence intervals, axis scaling, and the linear
fit are computed similarly to Figure E}

Our experiments suggest that neither growing the number of images nor classes in an i.i.d. fashion
are effective robustness interventions. Nevertheless, Figure 2] shows that larger datasets can provide
meaningful robustness improvements. This disparity may be due to limitations of emulating dataset
growth by subsampling ILSVRC. For one, our experiments consider only i.i.d. subsets of the training
images or classes. Another possibility is that increases in dataset size may only improve robustness
after the dataset is large enough so that the accuracy on the original distribution is nearly saturated.
Our experiments only observe dataset sizes smaller than ILSVRC, which may fall below this inflection
point. Studying the effect of data on robustness is an important direction for future work.

19

C Relative and effective robustness

C.1 Relative and effective robustness graphical sketch

A central question we address in our paper is whether current methodologies provide meaningful
robustness to natural distribution shifts. We discuss how both relative robustness and effective
robustness are needed to disentangle the confounding effect of original model accuracy. In Figure [§]
we graphically illustrate this notion of relative robustness.

Hypothetical Robustness Intervention

Baseline accuracy)%

1. Standard ResNet50 Flgure 8: Whlle a hypothepcal intervention
» ResNet50, hypothetical robustness intervention” (green), apphed to a baseline model (blue),

70| E1 Negative relative robustness leads to effective robustness (it is above the

Negative effective robustness . .
red line), it reduces the model’s accuracy un-

der distribution shift. Hence it fails to pro-
o- vide relative robustness. An ideal intervention
would place the model in the white quadrant -
positive effective and relative robustness.

ImageNetV2 (top-1, %)
Py P
3 3

w
«

60 65 80 85

70 75
ImageNet (top-1, %)

C.2 Relative and effective robustness for ResNet50 models

We provide additional plots depicting a subset of the models in our testbed. In order to make an equal
comparison, we only plot ResNeet50 variants, models which slightly modify the training data or
architecture of a base ResNet50. The plots in this section thus describe what the relative and effective
robustness properties of various robustness interventions look like on a standard ResNet50. The
models can be directly compared with each other since the base model before intervention is the
same.

For natural dataset shifts, the plots in Figure [J]demonstrate that the only models that have consistently
positive relative and positive effective robustness are models that are trained on more data. However,
the effect is small, and not all models trained on more data are more robust. On YTBB-Robust
specifically, a few data augmentation strategies from ImageNet-C provide significant both effective
and relative robustness: training on greyscale (p = 6.9%, 7 = 1.8%); training on pixelate (p = 5.4%,
7 = 2.0%); training on jpeg compression (p = 5.4%, T = 6.3%); training on gaussian noise,
contrast, motion blur, and jpeg compression (p = 4.8%, 7 = 5.0%); and training on gaussian
noise (p = 3.6%, 7 = 4.0%). However, this performance is not consistent across the natural
distribution shifts. Exploring why these data augmentation strategies are helpful on YTBB-Robust
is an interesting direction for future work. Additionally, while some /,,-adversarially robust models
display significant effective robustness on YTBB-Robust - ¢5 robust ResNet50 (p = 6.4%), lins
robust ResNet50 (p = 6.4%), and ResNet50 smoothed with 0.25 gaussian noise and adversarially
1-step PGD trained (p = 5.0) - in most cases, they fail to provide positive relative robustness.

For natural consistency shifts, the plots in Figure [10| demonstrate that while adversarially robust
models provide effective robustness (average p = 4.3% on ImageNet-Vid-Robust and average
p = 3.9% on YTBB-Robust), they only sometimes provide relative robustness on YTBB-Robust.

For the adversarially filtered shift, the plot in Figure|l 1)demonstrates that robustness interventions
have little impact on ImageNet-A accuracy. Most of the "knee"-like response curve can be explained
as an artifact of the adversarial filtering, with the knee occuring at the ResNet50 model accuracy.

20

Fskéalative and Effective Robustness - ResNet50 Family

Relative and Effective Robustness - ResNet50 Family

‘
_70 o 45 .
X 2y —_ 4
N s ‘_.Z»“' g4 ==
- 5 35 bt
o P Q P
£ + o 30 — s
55 g = 4
o~
4125
z 50 ’ [T} =1
2 o =1 4
Q4 9% 3
© o
£ 40 Ois
35
45 50 5 60 6 75 80 50 55 60 65 70 75 5

5 5 70
ImageNet (top-1, %)

ImageNet (class-subsampled)

80 8
(top-1, %

)

_Relative and Effective Robustness - ResNet50 Family Relative and Effective Robustness - ResNet50 Family

~
a

~
=)

v
o

v
=)

IS

ImageNet-Vid-Robust (pm-0, %

@
S

o
o

@
=)

—

e
.o

85

90 95
ImageNet (class-subsampled) (top-1, %)

65

o
=)

”
o

YTBB-Robust (pm-0, %)

IS
o

90

95
ImageNet (class-subsampled) (top-1, %)

ResNet50 baseline
e Standard resnet50
e Trained with heavy data augmentation °

Linear fit
| Negative relative robustness
Negative effective robustness

Lp adversarially robust
Architecture modification [
Trained with more data

Figure 9: Relative and effective robustness for models that are variants of a ResNet50. Model
accuracies are displayed on the four natural dataset shifts: ImageNetV2 (top left), ObjectNet (top
right), ImageNet-Vid-Robust-anchor (bottom left), and YTBB-Robust-anchor (bottom right). These
plots demonstrate that the only models that have consistently positive relative and positive effective
robustness are models that are trained on more data. However, the effect is small, and not all models
trained on more data are more robust. Confidence intervals, axis scaling, and the linear fit are
computed similarly to Figure 2}

Relative and Effective Robustness - ResNet50 Family

o

»\«Relative and Effective Robustness - ResNet50 Family

o * 4y
o + —_ Il
60 50

7 e 5 .
o .

29 i Y01

7] €45 SE %

2% < e &

g] o&.‘ju}
>

5 3 i |

=2 | 40 D,

> e g ‘ LS ot

40 £ : ‘

@ % Q £

3 £ <t

&35 35

©

E

45 50 55 60 65 70 75

ImageNet-Vid-Robust (pm-0, %)

80 45 65

50 55 60

YTBB-Robust (pm-0, %)
ResNet50 baseline

e Standard resnet50

e Trained with heavy data augmentation °

Linear fit
| Negative relative robustness
Negative effective robustness

Lp adversarially robust
Architecture modification
Trained with more data

Figure 10: Relative and effective robustness for models that are variants of a ResNet50. Model
accuracies are displayed the two consistency shifts: ImageNet-Vid-Robust (left), and YTBB-Robust
(right). These plots demonstrate that while adversarially robust models provide effective robustness,
they do not necessarily provide relative robustness. Confidence intervals, axis scaling, and the linear
fit are computed similarly to Figure El

21

Relative and Effective Robustness - ResNetSQ Family
30 .

25
) 4

[
o u
.

ImageNet-A (top-1, %

65 70 75 80 85 90 95
ImageNet (class-subsampled) (top-1, %)
---------- ResNet50 baseline Lp adversarially robust Linear fit (piecewise)
e Standard resnet50 Architecture modification
e Trained with heavy data augmentation e Trained with more data

| Negative relative robustness
Negative effective robustness

Figure 11: Relative and effective robustness for models that are variants of a ResNet50. Model
accuracies are displayed on ImageNet-A, a dataset adversarially filtered to contain only images
incorrectly classified by a ResNet50 trained on ImageNet. Due to the "knee"-like response curve, an
artifact of the adversarial filtering, effective robustness is defined piecewise around the ResNet50
model accuracy point. The plot demonstrates that robustness interventions have little impact on
ImageNet-A accuracy. However, the effect is small, and not all models trained on more data are more
robust. Confidence intervals, axis scaling, and the linear fit are computed similarly to Figure@

22

D Synthetic vs. natural robustness

D.1 Adversarial attacks vs. ImageNetV2

In Figure we analyze the predictiveness of accuracy under ¢,, adversarial attacks and compare
this metric with effective robustness on ImageNetV2. This plot is similar to Figure[3] but analyzes
¢, attacks instead of image corruptions. The plots show that robustness under £, attacks does not
imply that the corresponding model has effective robustness on ImageNetV2 (the Pearson correlation
coefficient is r = —0.05).

Effective Robustness Scatterplot

Distribution Shift to Lp Attacks

ImageNetV2 Effective Robustness

60 65 85 -15 -10 5 10 15 20 25 30 35 40 45

70 75 80 -5 0
ImageNet (top-1, %) Lp Attacks Effective Robustness

------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 12: Model accuracies under ¢, adversarial PGD attacks. Similar to Figure the left plot shows
the effective robustness for this synthetic distribution shift. Multiple non-standard models achieve
substantial effective robustness, corroborating recent research progress on creating adversarially
robust models. The right plot shows the correlation between the effective robustness for ¢, attacks
and the ImageNetV2 distribution shift (top left in Figure for the non-standard models. ¢, attacks
are only weakly predictive of effective robustness on ImageNetV2: there are several models that
achieve high effective robustness under ¢,, but little to no effective robustness on ImageNetV2.

D.2 Effective robustness scatterplots

In this section, we further explore to what extent robustness to synthetic distribution shifts predicts
robustness on natural distribution shift. We extend the analysis in Figures [5]and [I2]by computing
effective robustness on all natural distribution shifts and comparingn them against effective robustness
on synthetic distribution shifts.

For natural dataset shifts, the scatter plots in Figure[I3|are weakly correlated (the Pearson correlation
coefficients are » = 0.24, —0.05, —0.01, —0.26, 0.61, 0.30, 0.52, 0.36 in reading order), indicating
that improved robustness to corruptions or adversarial attacks in general does not improve effective
robustness under natural dataset shifts. Of the group, the two strongest correlations are effective
robustness between ImageNet-Vid-Robust and image corruptions (r = 0.61) and between YTBB-
Robust and image corruptions (r = 0.52). While not very strong, the correlations are significant, and
exploring this phenomenon between image corruptions and video anchor frames is an interesting
direction for future work.

For natural consistency shifts, the plots in Figure[T4]are largely uncorrelated, with the exception that
accuracy on adversarial attacks is correlated with effective robustness on consistency shifts for Ip
adversarially models. However, as explored in Appendix effective robustness on these shifts
does not always imply relative robustness.

For the adversarially filtered shift, as seen in Figure[T5] after computing effective robustness piecewise
around the ResNet50 accuracy, there is no observed correlation between the synthetic and natural
robustness measures on ImageNet-A.

23

Effective Robustness Scatterplot Effective Robustness Scatterplot

2 . .

) . . mz . -

a . 0

o . s . . . 1] . %, e .
N% . b . N‘UE, PENECIFEE
le - 331
w_g . oo o . . q,_g . St ol .

. See o % o oo of .

e SUPr e [l s ., . Z PN .. N
o o o o . o ® e o o .
clo TS A S g% L . o
€3 IR PP R . . €2 R %o ae L
£S5 NI AR d EE ¥ d .

D ® %ee o |, L Al

e : . = .

w -1 . W

. .
. .

-5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness
Effective Robustness Scatterplot Effective Robustness Scatterplot
8 B s .
7 7
6 . 6 .
A s ® A s - .
o 4 O i L O 4 P Ll
‘E g o ‘e . . - é 3 ‘-'\
i g o, o - 2 * .
[Tt A T e =] AP TR
zZ3a (AT ST ARET TR Za 1 P S o e .
Te 1 LR R S S ‘s 820 ALY N et
9 2 1 : L0 2 *h
Q -3 Q P
oF 4 °f 3
O -5 . [
D -6 Q -5
=g E -6
w g . w .7
9 81,
-107 ¢] -9 .
-11 : -10 -
-5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness
Effective Robustness Scatterplot Effective Robustness Scatterplot
— . . 13 .
o ﬁ o 12
£ 10 £ 1
s§ s 28
2 c 8 . 2C g
5457 v 54 7 hl
. . .« o -
a3 6 . . Q3) o . o
228 — . ggi . .-
5 4 IR S 4 e e . - R
S 3 - i S 3 e 0 B o
Z 202 . >z s . S .
88! . X 88 1. o : .
(% - D 0 ee ®
FE . 3£ ke ‘
ow 5l ouw o T
g 3 o g 3 o
= -4 L] . £ 2 . .
-5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness
Effective Robustness Scatterplot Effective Robustness Scatterplot
15 . 16 .
i 5
13
—_ w012 — 13
egn Sy
g5 £
2 88 L 9 g
o7 e
29 6 . . %9 [b Y ..
o 3 P LA e . e
o r . o . o v e
22 3 v . . €3> 3 = o e
mG] Ll .z oy 2 o S
2 2 o
; w1 ; w -1 . =
21 8 -2 .
-3 3 °
-4 -4
-5 - -5
-5 . 0 5 10 15 20 -15 -10 -5 0 5 10 15. 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness
» Robustness intervention e Trained with more data

Figure 13: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with respect
to linear fits on the four natural dataset shifts: ImageNetV2 (first row), ObjectNet (second row),
ImageNet-Vid-Robust-anchor (third row), and YTBB-Robust-anchor (fourth row). The measures are
largely uncorrelated, indicating that improved robustness to corruptions or adversarial attacks does
not improve effective robustness under natural dataset shifts.

24

ImageNet-Vid-Robust (pm-10)
Effective Robustness

YTBB-Robust (pm-10)
Effective Robustness

YShbWhbEorNWIRULON®

A GRS O NWSOO N

Effective Robustness Scatterplot

5 0 5 10 15

R 20
Corruptions Averaged Effective Robustness

Effective Robustness Scatterplot

-5 0 5 10 15 20
Corruptions Averaged Effective Robustness

Lp adversarially robust °

ImageNet-Vid-Robust (pm-10)
Effective Robustness
SbhbhbhborNnwsuvmaNon

Effective Robustness
AU bbornwaswaow

YTBB-Robust (pm-10)

Effective Robustness Scatterplot

5 10 15 20 25 30 35

-5 0 40
Lp Attacks Effective Robustness

45

Effective Robustness Scatterplot

-15

-10

Other robustness intervention

5 10 15 20 25 30 35

5 0 40
Lp Attacks Effective Robustness

45

Trained with more data

Figure 14: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with
respect to linear fits on the two consistency shifts: ImageNet-Vid-Robust (first row), and YTBB-
Robust (second row). The measures are largely uncorrelated, with the exception that accuracy on
adversarial attacks is correlated with effective robustness on consistency shifts for lp adversarially
models.

ImageNet-A
Effective Robustness

=

Pt

SoOUNNAWNHORNWANONOOOLN

Effective Robustness Scatterplot

0™ o oo b‘:.'. 3= ,...'c . A
. .

DR

A

-5

0

5

10 15 20

Corruptions Averaged Effective Robustness

Robustness intervention

ImageNet-A
Effective Robustness

Effective Robustness Scatterplot

11 .

N

6 5 10 15 20 25 30 35
Attacks Effective Robustness

-15 -10 40 45

5
Lp

Trained with more data

Figure 15: We compare the effective robustness of models with their accuracy drop due to corruptions
(left column) and adversarial attacks (right column). The effective robustness is computed with
respect to a linear fit on ImageNet-A, the adversarially filtered shift. After computing effective
robustness piecewise around the ResNet50 accuracy, there is no observed correlation between the
synthetic and natural robustness measures.

25

E Corruption robustness

Figure 16: A detailed view of corruption robustness, with cells sampled from the main grid in Figure
Here we present ResNet50s trained on some of the corruptions from the ImageNet-C benchmark,
as well as the best model trained on more data, FixResNeXt101_32x48d_v2, and the best model
trained on just the standard training set, efficientnet-b8-advprop-autoaug.

We have already seen that corruption robustness does not promote effective robustness, or robustness
to real distribution shift. Here, we analyze whether robustness to some corruptions transfers to others,
and what may contribute to corruption robustness. Figure [I6] shows the result of training various
ResNetSOsﬂ on a few corruptions from ImageNet-C.

In line with prior work, this plot here tells us that training against one type of synthetic corruption
or one set of synthetic corruption does not transfer well to other corruptions. There are cases where
transfer does happen, but overall the models are only robust to the corruption they are trained on.

It is also interesting to note (from Figure[6) that PGD models actually see a drop in robustness to low
frequency corruptions such as contrast, a phenomenon also observed in [107].

3Each ResNet50 was trained with a batch size of 256 for 120 epochs, starting with a learning rate of 0.1 and
decaying by a factor of 10 every 30 epochs. For the ResNet50s trained on corruptions, we randomly sample a
corruption and severity for each image. Refer to[F:2] for details on corruptions and severities. We use our custom
fast gpu implementations of these corruptions for training.

26

F Evaluation settings in the testbed

F.1 Natural distribution shifts

For ImageNetV2, we evaluate on the following datasets: imagenetv2-matched-frequency, imagenetv2-
matched-frequency-format-val, imagenetv2-threshold-0.7, imagenetv2-threshold-0.7-format-val,
imagenetv2-top-images, imagenetv2-top-images-format-val. The format-val versions are variants of
the original dataset encoded with jpeg settings similar to the original one. Unless otherwise stated,
results in our paper referring to imagenetv2 are for imagenetv2-matched-frequency-format-val.

For ObjectNet, we obtained a beta version of the dataset through personal correspondance. Each
image in the dataset was then cropped by 2px on each side following the authors’ instructions.
Predictions were taken over only the classes that also appeared in the 1000 classes for the ImageNet
validation set.

For ImageNet-Vid-Robust and YTBB-Robust, we look at the anchor frames in the dataset and evaluate
the benign accuracy for pm0. For pm10, we look at up to 20 nearest frames marked “similar” to the
anchor frame in the dataset and count it as a misclassification if any one of the predictions is wrong.

For ImageNet-A, predictions were taken over only the classes that also appeared in the 1000 classes
for the ImageNet validation set.

F.2 Corruptions

We include 38 different corruption types: greyscale (in memory), gaussian noise (in memory and on
disk), shot noise (in memory and on disk), impulse noise (in memory and on disk), speckle noise (in
memory and on disk), gaussian blur (in memory and on disk), defocus blur (in memory and on disk),
glass blur (on disk), motion blur (in memory and on disk), zoom blur (in memory and on disk), snow
(in memory and on disk), frost (in memory and on disk), fog (in memory and on disk), spatter (in
memory and on disk), brightness (in memory and on disk), contrast (in memory and on disk), saturate
(in memory and on disk), pixelate (in memory and on disk), jpeg compression (in memory and on
disk), elastic transform (in memory and on disk).

For each corruption, we average over the five severities.

We make sure to make the distinction between in memory corruptions, for which we provide custom
fast gpu implementations, and on disk corruptions, for which we use the publicly available ImageNet-
C dataset, since it was reported in [31]] that jpeg compression can have a significant impact on model
accuracies (indeed, as evidenced by Figure [I6).

F.3 Adversarial attacks

‘We run the following 4 pgd attacks one each model with these settings:
pgd.linf.eps0.5 Norm: 0.5/255, Step size: 5.88e-5, Num steps: 100
pgd.linf.eps2 Norm: 2/255, Step size: 2.35e-4, Num steps: 100
pgd.12.eps0.1 Norm: 0.1, Step size: 0.01, Num steps: 100
pgd.12.eps0.5 Norm: 0.5, Step size: 0.05, Num steps: 100

Most of the models were attacked with only 10% of the dataset (in a class-balanced manner) due to
computational constraints. These models are displayed with larger error bars in the plots.

F.4 Stylized Imagenet
We use the stylized imagenet dataset used by [34] as another evaluation dataset.

F.5 125 class evaluation

For the 125 subsampled class evaluation, we evaluate on the following classes from ILSVRC:

n01494475 n01630670 n01644373 n01644900 n01669191 n01677366 n01697457
n01742172 n01796340 n01829413 n01871265 n01924916 n01944390 n01978287
n01980166 n02007558 n02009229 n02017213 n02033041 n02037110 n02056570
n02071294 n02085936 n02086079 n02093428 n02093991 n02095314 n02095570
n02096294 n02096437 n02097474 n02100236 n02100583 n02102318 n02105056
n02107574 n02112706 n02113023 n02114855 n02128925 n02134418 n02138441

27

n02165105
n02486261
n02795169
n02895154
n03208938
n03376595
n03670208
n03840681
n03933933
n04099969
n04266014
n04479046

n02219486
n02488291
n02808440
n02948072
n03216828
n03379051
n03673027
n03868242
n04004767
n04125021
n04310018
n04505470

n02226429
n02492035
n02814533
n02951585
n03240683
n03447721
n03692522
n03873416
n04009552
n04141975
n04330267
n07715103

n02264363
n02641379
n02814860
n02977058
n03250847
n03492542
n03710193
n03877845
n04037443
n04149813
n04335435
n07875152

28

n02280649
n02730930
n02837789
n03000247
n03272562
n03527444
n03775071
n03884397
n04041544
n04204238
n04336792
n09256479

n02441942
n02777292
n02859443
n03110669
n03297495
n03535780
n03832673
n03908714
n04067472
n04208210
n04355338
n12620546

n02483708
n02790996
n02892201
n03201208
n03337140
n03642806
n03838899
n03920288
n04074963
n04229816
n04417672

G Models in the testbed

The following list contains all models we evaluated on ImageNet with references and links to the
corresponding source code. Also noted is the model type used to color the plots in the paper.

1.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

BiT-M-R50x1-ILSVRC2012 [49]]. Trained with more data model. https://github.com/google-
research/big_transfer

BiT-M-R50x3-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-
research/big_transfer

. BiT-M-R101x1-ILSVRC2012 [49]]. Trained with more data model. https://github.com/google-

research/big_transfer

BiT-M-R101x3-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-
research/big_transfer

BiT-M-R152x4-ILSVRC2012 [49]. Trained with more data model. https://github.com/google-
research/big_transfer

FixPNASNet [92]. Standard training model. https://github.com/facebookresearch/FixRes

FixResNeXt101_32x48d [92]. Trained with more data model. https://github.com/facebookr
esearch/FixRes

FixResNeXt101_32x48d_v2 [92]. Trained with more data model. https://github. com/faceboo
kresearch/FixRes

FixResNet50 [92]. Standard training model. https://github. com/facebookresearch/FixRes

FixResNet50CutMix [92]. Robustness intervention model. https://github. com/facebookresea
rch/FixRes

FixResNet50CutMix_v2 [92]. Robustness intervention model. https://github.com/facebookr
esearch/FixRes

FixResNet50_no_adaptation [92]. Standard training model. https://github.com/facebookres
earch/FixRes

FixResNet50_v2 [92]. Standard training model. https://github.com/facebookresearch/FixR
es

alexnet [S0]]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

alexnet_lpf2 [[115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

alexnet_lpf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

. alexnet_lpf5 [115]. Robustness intervention model. https://github.com/adobe/antialiased
- cnns

bninception [46]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

bninception-imagenet21k [46]. Trained with more data model. https://github.com/dmlc/mxne
t-model-gallery/blob/master/imagenet-21k-inception.md

cafferesnet101 [37]. Standard training model. https://github.com/Cadene/pretrained-mod
els.pytorch

densenet121 [43]. Standard training model. https://github.com/Cadene/pretrained-models
pytorch

densenet121_1pf2 [115]. Robustness intervention model. https://github. com/adobe/antiali
ased-cnns

densenet121_Ipf3 [[115]. Robustness intervention model. https://github.com/adobe/antiali
ased-cnns

densenet121_Ipf5 [[115]. Robustness intervention model. https://github.com/adobe/antiali
ased-cnns

29

https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/facebookresearch/FixRes
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-21k-inception.md
https://github.com/dmlc/mxnet-model-gallery/blob/master/imagenet-21k-inception.md
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

densenet161 [43]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

densenet169 [43]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

densenet201 [43]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

dpn107 [11]. Trained with more data model. https://github.com/Cadene/pretrained-model
s.pytorch

dpn131 [11]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

dpn68 [11]]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

dpn68b [11]. Trained with more data model. https://github.com/Cadene/pretrained-model
s.pytorch

dpn92 [11]]. Trained with more data model. https://github.com/Cadene/pretrained-models)
pytorch

dpn98 [[11]]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

efficientnet-b0 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

efficientnet-b0-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b0-autoaug [[15]. Standard training model. https://github. com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b1 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

efficientnet-b1-advprop-autoaug [[L00]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b1-autoaug [[15]. Standard training model. https://github. com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b2 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

efficientnet-b2-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b2-autoaug [[15]. Standard training model. https://github. com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b3 [88]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

efficientnet-b3-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b3-autoaug [[15]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b4 [88]]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

efficientnet-b4-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b4-autoaug [[15]]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b5 [88]]. Standard training model. https://github.com/tensorflow/tpu/tree/m
aster/models/official/efficientnet

30

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

efficientnet-b5-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b5-autoaug [[15]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b5-randaug [[16]]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b6-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b6-autoaug [[15]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b7-advprop-autoaug [100]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-b7-autoaug [[15]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b7-randaug [16]. Standard training model. https://github.com/tensorflow/tpu/
tree/master/models/official/efficientnet

efficientnet-b8-advprop-autoaug [100]]. Robustness intervention model. https://github.com/ten
sorflow/tpu/tree/master/models/official/efficientnet

efficientnet-12-noisystudent [102]]. Trained with more data model. https://github.com/rwightm
an/pytorch-image-models

facebook_adv_trained_resnet152_baseline [[101]. Robustness intervention model. https://github
.com/facebookresearch/ImageNet-Adversarial-Training

facebook_adv_trained_resnet152_denoise [101]. Robustness intervention model. https://github
.com/facebookresearch/ImageNet-Adversarial-Training

facebook_adv_trained_resnext101_denoiseAll [101]. Robustness intervention model. https://gith
ub.com/facebookresearch/ImageNet-Adversarial-Training

fbresnet152 [37]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

google_resnet101_jft-300M [82]]. Trained with more data model.

googlenet/inceptionv1 [85]]. Standard training model. https://github.com/pytorch/vision/tr
ee/master/torchvision/models

inceptionresnetv2 [37]. Standard training model. https://github.com/Cadene/pretrained-m
odels.pytorch

inceptionv3 [86]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

inceptionv4 [87]. Standard training model. https://github.com/Cadene/pretrained-models|
pytorch

instagram-resnext101_32x16d [S6]. Trained with more data model. https://github.com/faceb
ookresearch/WSL-Images

instagram-resnext101_32x32d [56]. Trained with more data model. https://github.com/faceb
ookresearch/WSL-Images

instagram-resnext101_32x48d [56]. Trained with more data model. https://github.com/faceb
ookresearch/WSL-Images

instagram-resnext101_32x8d [56]]. Trained with more data model. https://github.com/faceboo
kresearch/WSL- Images

mnasnetO_5 [89]]. Standard training model. https://github.com/pytorch/vision/tree/mas
ter/torchvision/models

mnasnet]_0 [89]. Standard training model. https://github.com/pytorch/vision/tree/mas
ter/torchvision/models

mobilenet_v2 [73]. Standard training model. https://github.com/pytorch/vision/tree/mas
ter/torchvision/models

31

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/facebookresearch/ImageNet-Adversarial-Training
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/facebookresearch/WSL-Images
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

mobilenet_v2_lpf2 [115]]. Robustness intervention model. https://github.com/adobe/antiali
ased-cnns

mobilenet_v2_lpf3 [115]]. Robustness intervention model. https://github.com/adobe/antiali
ased-cnns

mobilenet_v2_lpfS [115]]. Robustness intervention model. https://github.com/adobe/antiali
ased-cnns

nasnetalarge [117]]. Standard training model. https://github.com/Cadene/pretrained-model
s.pytorch

nasnetamobile [[117]. Standard training model. https://github.com/Cadene/pretrained-mod
els.pytorch

pnasnetSlarge [S3]. Standard training model. https://github.com/Cadene/pretrained-model
s.pytorch

polynet [116]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

resnet101 [37]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

resnet101-tencent-ml-images [97]]. Trained with more data model. https://github.com/Tencent
/tencent-ml-images

resnet101_cutmix [108]]. Robustness intervention model. https://github.com/clovaai/CutMi
x-PyTorch

resnet101_Ipf2 [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

resnet101_Ipf3 [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

resnet101_Ipf5 [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

resnet152 [37]]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

resnet]52-imagenet] 1k [99]]. Trained with more data model. https://github. com/tornadomeet
/ResNet

resnet18 [37]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

resnet18-rotation-nocrop_40 [28]. Robustness intervention model. https://github. com/MadryLa
b/spatial-pytorch

resnet18-rotation-random_30 [28]. Robustness intervention model. https://github. com/Madry
Lab/spatial-pytorch

resnetl8-rotation-random_40 [28]]. Robustness intervention model. https://github. com/Madry
Lab/spatial-pytorch

resnetl8-rotation-standard_40 [28]. Robustness intervention model. https://github. com/Madry
Lab/spatial-pytorch

resnetl8-rotation-worst10_30 [28]. Robustness intervention model. https://github. com/Madry
Lab/spatial-pytorch

resnetl8-rotation-worst10_40 [28]. Robustness intervention model. https://github. com/Madry
Lab/spatial-pytorch

resnet18_Ipf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased
- cnns

resnet18_Ipf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased
-cnns

resnet18_lpfS [115]. Robustness intervention model. https://github.com/adobe/antialiased
-cnns

32

https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Tencent/tencent-ml-images
https://github.com/Tencent/tencent-ml-images
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tornadomeet/ResNet
https://github.com/tornadomeet/ResNet
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/MadryLab/spatial-pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.
119.
120.
121.

122.

123.

124.

125.
126.

127.

resnet18_ssl [104]). Trained with more data model. https://github.com/facebookresearch/se
mi-supervised-ImageNet1K-models

resnet18_swsl [104]]. Trained with more data model. https://github.com/facebookresearch/
semi-supervised-ImageNet1K-models

resnet34 [37]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

resnet34_Ipf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet34_Ipf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet34_Ipf5 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet50 [37]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

resnet50-randomized_smoothing_noise_0.00 [13]. Standard training model. https://github.com
/locuslab/smoothing

resnet50-randomized_smoothing_noise_0.25 [13]. Robustness intervention model. https://github
.com/locuslab/smoothing

resnet50-randomized_smoothing_noise_0.50 [13]. Robustness intervention model. https://github
.com/locuslab/smoothing

resnet50-randomized_smoothing_noise_1.00 [13]. Robustness intervention model. https://github
.com/locuslab/smoothing

resnet50-smoothing_adversarial DNN_2steps_eps_512_noise_0.25 [[72]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing_adversarial DNN_2steps_eps_512_noise_0.50 [72]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing_adversarial_DNN_2steps_eps_512_noise_1.00 [72]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing_adversarial_PGD_1step_eps_512_noise_0.25 [72]]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing_adversarial_PGD_1step_eps_512_noise_0.50 [72]]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-smoothing_adversarial_PGD_lstep_eps_512_noise_1.00 [72]]. Robustness intervention
model. https://github.com/Hadisalman/smoothing-adversarial

resnet50-vtab [112]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-exemplar [[112]. Standard training model. https://tfhub.dev/s?publisher=vtab
resnet50-vtab-rotation [[112]]. Standard training model. https://tfhub.dev/s?publisher=vtab

resnet50-vtab-semi-exemplar [[112]. Standard training model. https://tfhub.dev/s7publisher
=vtab

resnet50-vtab-semi-rotation [112]. Standard training model. https://tfhub.dev/s?publisher=v
tab

resnet50_adv-train-free [74]. Robustness intervention model. https://github.com/mahyarnajib
i/FreeAdversarialTraining

resnet50_augmix [41]. Robustness intervention model. https://github.com/google-research
/augmix

resnet50_aws_baseline. Standard training model.

resnet5S0_cutmix [108]]. Robustness intervention model. https://github.com/clovaai/CutMix-
PyTorch

resnet50_cutout [20]. Robustness intervention model. https://github.com/clovaai/CutMix-
PyTorch

33

https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/locuslab/smoothing
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial
https://github.com/Hadisalman/smoothing-adversarial
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://tfhub.dev/s?publisher=vtab
https://github.com/mahyarnajibi/FreeAdversarialTraining
https://github.com/mahyarnajibi/FreeAdversarialTraining
https://github.com/google-research/augmix
https://github.com/google-research/augmix
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch

128.

129.

130.

131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.
153.
154.
155.
156.
157.
158.

159.

resnet50_deepaugment [40]. Robustness intervention model. https://github. com/hendrycks/i
magenet-r

resnet50_deepaugment_augmix [40]]. Robustness intervention model. https://github. com/hendr
ycks/imagenet-r

resnet50_feature_cutmix [108]. Robustness intervention model. https://github.com/clovaai/C
utMix-PyTorch

resnet50_imagenet_100percent_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_125_classes_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_1_of_16_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_1_of_2_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_1_of 32_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_1_of_4_batch64_original_images. Standard training model.

resnet50_imagenet_subsample_1_of_8_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_250_classes_batch64_original_images. Standard training model.
resnet50_imagenet_subsample_500_classes_batch64_original_images. Standard training model.

resnet50_12_eps3_robust [27]. Robustness intervention model. https://github. com/MadryLab/
robustness

resnet50_linf_eps4_robust [27]]. Robustness intervention model. https://github.com/MadryLab/
robustness

resnet50_linf_eps8_robust [27]]. Robustness intervention model. https://github.com/MadryLab/
robustness

resnet50_Ipf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet50_Ipf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet50_Ipf5 [115]. Robustness intervention model. https://github.com/adobe/antialiased

-cnns

resnet50_mixup [113]. Robustness intervention model. https://github.com/clovaai/CutMix-
PyTorch

resnet50_ssl [104]. Trained with more data model. https://github.com/facebookresearch/se
mi-supervised-ImageNet1K-models

resnet50_swsl [104]]. Trained with more data model. https://github.com/facebookresearch/
semi-supervised-ImageNet1K-models

resnet50_trained_on_SIN [34]]. Robustness intervention model. https://github.com/rgeirhos/
texture-vs-shape

resnet50_trained_on_SIN_and_IN [34]. Robustness intervention model. https://github.com/rge
irhos/texture-vs-shape

resnet50_trained_on_SIN_and_IN_then_finetuned_on_IN [34]. Robustness intervention model. http
s://github.com/rgeirhos/texture-vs-shape

resnet50_with_brightness_aws. Robustness intervention model.
resnet50_with_contrast_aws. Robustness intervention model.
resnet50_with_defocus_blur_aws. Robustness intervention model.
resnet50_with_fog_aws. Robustness intervention model.
resnet50_with_frost_aws. Robustness intervention model.
resnet50_with_gaussian_noise_aws. Robustness intervention model.

resnet50_with_gaussian_noise_contrast_motion_blur_jpeg_compression_aws. Robustness interven-
tion model.

resnet50_with_greyscale_aws. Robustness intervention model.

34

https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/clovaai/CutMix-PyTorch
https://github.com/clovaai/CutMix-PyTorch
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape

160.
161.
162.
163.
164.
165.
166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

resnet50_with_jpeg_compression_aws. Robustness intervention model.
resnet50_with_motion_blur_aws. Robustness intervention model.
resnet50_with_pixelate_aws. Robustness intervention model.
resnet50_with_saturate_aws. Robustness intervention model.
resnet50_with_spatter_aws. Robustness intervention model.
resnet50_with_zoom_blur_aws. Robustness intervention model.

resnext101_32x16d_ssl [104]]. Trained with more data model. https://github.com/facebookr
esearch/semi-supervised-ImageNet1K-models

resnext101_32x4d [103]. Standard training model. https://github.com/Cadene/pretrained

+models.pytorch

resnext101_32x4d_ssl [104]]. Trained with more data model. https://github.com/facebookres
earch/semi-supervised-ImageNet1K-models

resnext101_32x4d_swsl [[104]. Trained with more data model. https://github.com/facebookr
esearch/semi-supervised-ImageNet1K-models

resnext101_32x8d [[103]]. Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

resnext101_32x8d_deepaugment_augmix [40]. Robustness intervention model. https://github.c
om/hendrycks/imagenet-r

resnext101_32x8d_ssl [104]]. Trained with more data model. https://github. com/facebookres
earch/semi-supervised-ImageNet1K-models

resnext101_32x8d_swsl [[104]. Trained with more data model. https://github.com/facebookr
esearch/semi-supervised-ImageNet1K-models

resnext101_64x4d [103]. Standard training model. https://github.com/Cadene/pretrained

+models.pytorch

resnext50_32x4d [103]. Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

resnext50_32x4d_ssl [104]. Trained with more data model. https://github.com/facebookres
earch/semi-supervised-ImageNet1K-models

resnext50_32x4d_swsl [104]. Trained with more data model. https://github. com/facebookres
earch/semi-supervised-ImageNet1K-models

se_resnet101 [42]. Standard training model. https://github.com/Cadene/pretrained-model
s.pytorch

se_resnet152 [42]. Standard training model. https://github.com/Cadene/pretrained-model
s.pytorch

se_resnet50 [42]. Standard training model. https://github.com/Cadene/pretrained-models,
pytorch

se_resnext101_32x4d [42]. Standard training model. https://github.com/Cadene/pretrained

+models.pytorch

se_resnext50_32x4d [42]]. Standard training model. https://github.com/Cadene/pretrained

+~models.pytorch

senet154 [42]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

shufflenet_v2_x0_5 [54]). Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

shufflenet_v2_x1_0 [54]]. Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

squeezenetl 0 [45]. Standard training model. https://github.com/Cadene/pretrained-mod
els.pytorch

squeezenetl_1 [45]]. Standard training model. https://github.com/Cadene/pretrained-mod
els.pytorch

35

https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/imagenet-r
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

vggll [[78]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

vggll_bn [78]. Standard training model. https://github.com/Cadene/pretrained-models,
pytorch

vggl3 [78]. Standard training model. https://github. com/Cadene/pretrained-models.pyto
rch

vggl3_bn [78]. Standard training model. https://github.com/Cadene/pretrained-models)
pytorch

vggl6 [[78]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

vggl6_bn [78]. Standard training model. https://github.com/Cadene/pretrained-models,
pytorch

vggl6_bn_lpf2 [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

vggl6_bn_lpf3 [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

vggl6_bn_lpfS [115]. Robustness intervention model. https://github.com/adobe/antialias
ed-cnns

vggl6_lpf2 [115]. Robustness intervention model. https://github.com/adobe/antialiased-c
nns

vggl6_lpf3 [115]. Robustness intervention model. https://github.com/adobe/antialiased-c
nns

vggl6_lpf5 [[115]. Robustness intervention model. https://github.com/adobe/antialiased-c
nns

vggl9 [[78]. Standard training model. https://github.com/Cadene/pretrained-models.pyto
rch

vggl9_bn [78]. Standard training model. https://github.com/Cadene/pretrained-models,
pytorch

wide_resnet101_2 [109]. Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

wide_resnet50_2 [109]]. Standard training model. https://github.com/pytorch/vision/tree
/master/torchvision/models

xception [12]. Standard training model. https://github.com/Cadene/pretrained-models.py
torch

36

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/adobe/antialiased-cnns
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch

H Model accuracies

Table 1: Top-1 model accuracies on ImageNet validation set, effective robustness as calculated with
respect to ImageNetV2, an average over all the corruptions, and an average over all the pgd attacks.
Note that since we take an average of many attacks, the PGD column can no longer be considered a
worst-case attacker for the model (look to for specific attacks).

Model accuracies

Model ImageNet ImageNetV2 Avg. corr. Avg. PGD
accuracy eff. robust. accuracy accuracy
efficientnet-12-noisystudent 88.32 1.11
FixResNeXt101_32x48d_v2 86.36 0.97 65.65
FixResNeXt101_32x48d 86.26 0.95 65.56
instagram-resnext101_32x48d 85.44 1.26 65.53 24.1
efficientnet-b8-advprop- 85.37 0.51 71.85
autoaug
BiT-M-R152x4-ILSVRC2012 85.18 -0.31 67.26
efficientnet-b7-advprop- 85.09 0.66 68.92
autoaug
instagram-resnext101_32x32d 85.09 1.54 64.77 24.4
BiT-M-R101x3-ILSVRC2012 84.78 -1.35 63.44
efficientnet-b6-advprop- 84.76 0.75 68.65 50.67
autoaug
efficientnet-b7-randaug 84.73 0.11 69.12
efficientnet-b7-autoaug 84.33 0.32 62.77
efficientnet-b5-advprop- 84.3 0.51 67.76 50.17
autoaug
resnext101_32x8d_swsl 84.29 1.19 63.17 23.22
instagram-resnext101_32x16d 84.18 1.51 63.22 29.19
BiT-M-R50x3-ILSVRC2012 84.15 -0.76 60.23
efficientnet-b6-autoaug 84.13 0.14 63.42 34.29
FixPNASNet 83.7 -0.0 61.35 22.8
efficientnet-b5-autoaug 83.63 0.25 62.3 32.43
efficientnet-bS-randaug 83.53 0.08 63.35 34.41
resnext101_32x4d_swsl 83.23 1.41 60.09 21.73
efficientnet-b5 83.11 0.17 60.28 35.18
pnasnetSlarge 82.74 0.21 61.76 29.46
instagram-resnext101_32x8d 82.69 1.59 60.81 30.13
efficientnet-b4-advprop- 82.69 0.42 64.88 50.72
autoaug
efficientnet-b4-autoaug 82.55 0.17 59.59 34.24
BiT-M-R101x1-ILSVRC2012 82.52 -0.42 58.28
nasnetalarge 82.51 0.48 61.74 36.99
efficientnet-b4 82.23 -0.64 572 37.06
resnext50_32x4d_swsl 82.18 1.26 56.38 21.09
resnext101_32x16d_ssl 81.84 0.3 58.63 22.34
resnext101_32x8d_ssl 81.63 0.73 57.96 20.82
senet154 81.3 -0.07 54.11 30.65
resnet50_swsl 81.18 1.35 53.95 21.39
efficientnet-b3-advprop- 81.09 0.29 60.6 51.09
autoaug
efficientnet-b3-autoaug 81.05 0.17 55.5 31.76
resnext101_32x4d_ssl 80.93 0.48 55.65 20.54
polynet 80.86 0.36 54.02 23.05
BiT-M-R50x1-ILSVRC2012 80.4 -0.63 52.21 125
resnext50_32x4d_ssl 80.33 0.44 52.57 19.75
inceptionresnetv2 80.27 0.32 56.85 34.85
se_resnext101_32x4d 80.24 0.47 52.26 28.77
efficientnet-b3 80.21 -0.48 53.31 34.22
inceptionv4 80.08 0.5 55.52 28.02
resnext101_32x8d_deepaugme 79.9 0.25 65.56
nt_augmix
resnet101_cutmix 79.83 -0.39 50.15 25.6
efficientnet-b2-autoaug 79.78 0.17 535 30.93

Table continues onto next page

37

Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr. Avg. PGD
accuracy eff. robust. accuracy accuracy
FixResNet50CutMix_v2 79.76 -1.21 43.44 18.19
dpn107 79.75 -0.47 52.37 30.64
FixResNet50CutMix 79.74 -1.22 43.39 18.14
efficientnet-b2-advprop- 79.6 -0.25 55.17 46.33
autoaug
dpn131 79.43 -0.2 52.06 30.38
dpn92 79.4 -0.65 49.29 25.69
resnext101_32x8d 79.31 -0.34 49.68 25.38
resnet50_ssl 79.23 0.52 50.15 20.57
dpn98 79.22 0.08 51.82 30.14
google_resnet101_jft-300M 79.2 -0.23 53.49 26.84
FixResNet50_v2 79.1 -0.62 43.31 15.38
se_resnext50_32x4d 79.08 0.27 50.65 24.74
FixResNet50 79.0 -0.67 43.25 15.3
resnext101_64x4d 78.96 -0.2 52.06 23.57
efficientnet-b2 78.89 -0.39 50.05 33.88
wide_resnet101_2 78.85 -0.87 48.2 25.24
xception 78.82 0.06 51.7 26.32
efficientnet-b1-autoaug 78.72 -0.07 51.19 30.69
se_resnet152 78.66 0.45 50.94 28.42
resnet50_cutmix 78.6 -1.1 447 26.46
efficientnet-b1-advprop- 78.54 -0.23 53.7 46.54
autoaug
wide_resnet50_2 78.47 -0.61 46.23 26.13
se_resnet101 78.4 0.43 50.12 28.2
resnet152 78.31 0.27 47.81 22.48
resnet101-tencent-ml-images 78.25 0.04 47.77
resnet50_feature_cutmix 78.21 -0.42 4433 25.36
resnext101_32x4d 78.19 -0.13 50.96 22.38
resnet101_Ipf3 78.12 -0.27 46.52 22.48
efficientnet-b1 77.91 -0.24 47.07 31.33
resnet101_Ipf5 77.91 0.1 46.54 23.13
resnet101_Ipf2 77.8 0.3 46.06 22.01
se_resnet50 77.64 0.08 48.11 27.55
resnext50_32x4d 77.62 0.1 45.56 22.52
resnet50_augmix 77.54 -0.53 50.78 26.01
resnet50_mixup 77.47 -0.54 48.2 21.95
fbresnet152 77.39 0.02 49.98 234
resnet101 77.37 0.01 46.06 21.85
inceptionv3 77.32 0.29 49.83 25.72
densenet161 77.14 0.13 49.36 22.22
efficientnet-bO-advprop- 77.08 0.21 499 4431
autoaug
resnet50_cutout 77.07 -0.65 43.81 19.8
FixResNet50_no_adaptation 77.04 -0.02 44.68 20.61
dpn68b 77.03 -0.28 45.67 18.7
resnet50_lpf5 77.03 -0.53 43.54 22.03
densenet201 76.9 -0.12 47.63 23.95
efficientnet-b0-autoaug 76.84 -0.39 45.27 30.66
resnet50_Ipf3 76.82 -0.12 433 21.83
resnet50_lpf2 76.79 -0.25 42.22 20.91
resnet50_trained_on_SIN_and 76.72 -0.04 43.96 22.78
_IN_then_finetuned_on_IN
resnet50_deepaugment 76.66 0.73 53.91 29.65
efficientnet-b0 76.53 -0.79 43.84 31.05
resnet50-vtab-rotation 76.5 -0.49 41.93
cafferesnet101 76.2 0.08 4483 25.54
resnet152-imagenet] 1k 76.18 2.09 47.33 30.64
resnet50_aws_baseline 76.14 -0.36 42.13 21.46
resnet50 76.13 -0.77 41.59 21.24

Table continues onto next page

38

Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr. Avg. PGD
accuracy eff. robust. accuracy accuracy
resnet50_imagenet_100percent 75.98 -0.56 41.61 21.89
_batch64_original_images
dpn68 75.87 -0.56 45.46 17.71
resnet50_deepaugment_augmix 75.82 -0.08 58.29 33.73
resnet50-randomized_smoothi 75.69 0.31 41.75 21.32
ng_noise_0.00
densenet169 75.6 0.19 46.67 21.79
resnet50-vtab 75.54 0.22 43.61
resnetS0_with_brightness_aws 75.28 -0.28 43.9 22.78
resnet50_with_spatter_aws 75.21 -0.29 42.81 22.45
densenet121_lpf3 75.14 -0.35 40.48 20.01
densenet121_lpf5 75.03 0.13 41.84 21.13
densenet121_lpf2 75.03 0.41 41.24 20.82
resnet50_with_saturate_aws 74.89 -0.27 424 20.46
resnet50_trained_on_SIN_and 74.59 0.55 4791 22.96
IN
resnet34_lpf2 74.48 0.15 41.54 20.96
densenet121 74.43 0.13 43.54 20.01
resnet34_1pf3 74.34 0.25 42.22 20.97
vggl9_bn 74.22 0.18 37.94 16.51
resnet34_Ipf5 74.19 0.46 41.22 21.09
resnet50-vtab-exemplar 74.1 0.3 44.73
nasnetamobile 74.08 -0.29 44,78 22.89
vggl6_bn_lpf5 74.04 -0.4 36.19 18.91
vggl6_bn_lIpf2 74.01 0.13 36.06 17.81
vggl6_bn_lpf3 73.92 0.5 36.33 18.33
resnet50_with_frost_aws 73.78 0.29 42.39 20.96
resnet50_with_jpeg _compressi 73.63 -0.21 41.76 38.34
on_aws
bninception 73.52 1.0 40.59 21.27
mnasnet]l_0 73.46 -0.47 36.42 18.78
vggl6_bn 73.36 -0.09 35.69 16.19
resnet34 73.31 0.12 40.48 21.23
resnet18_swsl 73.29 1.74 39.95 18.79
resnet50_with_gaussian_noise 72.97 0.21 45.56 43.88
aws
resnet50_with_gaussian_noise 72.72 0.05 51.8 2291
_contrast_motion_blur_jpeg_c
ompression_aws
mobilenet_v2_Ipf2 72.62 -0.56 34.46 17.46
resnet18_ssl 72.6 1.24 39.51 19.19
mobilenet_v2_Ipf3 72.57 -0.23 34.78 17.6
mobilenet_v2_Ipf5 72.51 -0.1 34.9 17.73
vggl9 72.38 -0.01 32.43 20.65
vggl6_lpfs 72.33 0.15 31.89 19.86
vggl6_Ipf3 72.19 -0.19 32.18 19.37
vggl6_lpf2 72.16 -0.2 31.98 19.13
resnetS0_with_contrast_aws 72.0 -0.42 40.85 17.29
mobilenet_v2 71.88 -0.13 33.96 17.49
resnet50_with_fog_aws 71.76 -0.83 37.9 17.19
resnet18_lpf3 71.68 -0.43 36.84 20.17
vggl6 71.59 -0.33 31.3 20.14
vggl3_bn 71.59 0.01 31.76 15.16
resnet18_lpf2 71.39 -0.09 36.88 19.8
resnet18_lpf5 71.39 -0.51 36.86 20.22
resnet18-rotation-standard_40 71.28 -0.05 36.46 20.26
vggll_bn 70.37 -0.1 31.7 18.05
resnet50-randomized_smoothi 70.29 0.28 40.66 63.94
ng_noise_0.25
vggl3 69.93 -0.27 28.53 19.32
googlenet/inceptionv 1 69.78 1.01 38.84 21.85

Table continues onto next page

39

Model accuracies (continued from previous page)

Model ImageNet ImageNetV2 Avg. corr. Avg. PGD

accuracy eff. robust. accuracy accuracy
resnet18 69.76 0.46 35.01 19.51
shufflenet_v2_x1_0 69.36 -0.48 30.87 16.66
resnet18-rotation-worst10_30 69.13 0.72 34.06 22.51
vggll 69.02 -0.33 28.61 22.38
resnet18-rotation-random_30 68.88 0.19 32.88 18.63
resnet]8-rotation-worst10_40 68.6 -0.05 32.24 22.65
resnet50_with_pixelate_aws 68.5 1.17 39.58 18.85
resnet]8-rotation-random_40 68.35 0.73 31.87 17.89
facebook_adv_trained_resnext 68.33 -0.11 40.86 41.42
101_denoiseAll
resnet50-smoothing_adversaria 67.87 -0.31 40.57 62.89
1_DNN_2steps_eps_512_noise
_0.25
mnasnet0_5 67.6 -0.37 27.9 17.39
resnet50_with_motion_blur_aws 67.46 1.49 38.71 15.34
resnet18-rotation-nocrop_40 65.37 1.23 30.1 20.5
facebook_adv_trained_resnetl 65.32 0.38 37.97 39.48
52_denoise
bninception-imagenet21k 65.24 1.78 32.8 30.3
resnet50-randomized_smoothi 64.24 0.04 39.8 61.41
ng_noise_0.50
resnet50_with_greyscale_aws 63.33 0.49 28.33 18.16
resnet50_linf_eps4_robust 62.42 0.53 32.37 60.3
facebook_adv_trained_resnetl 62.34 0.58 35.77 37.63
52_baseline
resnet50-smoothing_adversaria 62.19 -0.04 39.14 59.26
1_DNN_2steps_eps_512_noise
_0.50
resnet50-vtab-semi-exemplar 61.62 0.98 33.85
resnet50_with_zoom_blur_aws 61.25 1.22 33.27 13.01
resnet50-vtab-semi-rotation 60.92 0.94 26.38
shufflenet_v2_x0_5 60.55 -0.27 23.58 16.08
resnet50_adv-train-free 60.49 -0.03 29.41 57.42
resnet50-smoothing_adversari 60.47 -0.45 37.21 58.49
al_PGD_1step_eps_512_noise
_0.25
resnet50_trained_on_SIN 60.18 1.4 39.42 19.25
squeezenetl_1 58.18 0.12 20.18 16.08
squeezenetl_0 58.09 -0.26 20.17 18.06
resnet50_12_eps3_robust 57.9 0.33 31.83 56.25
alexnet_Ipf2 57.23 -0.38 22.54 29.09
alexnet_Ipf3 56.89 -0.41 22.77 30.67
alexnet_lpf5 56.58 -0.41 22.77 31.71
alexnet 56.52 -0.28 21.55 24.08
resnet50-smoothing_adversari 54.66 -0.31 35.7 53.09
al_PGD_1step_eps_512_noise
_0.50
resnet50-randomized_smoothi 53.12 0.12 34.93 52.11
ng_noise_1.00
resnet50-smoothing_adversaria 51.87 0.23 34.43 50.95
1_DNN_2steps_eps_512_noise
_1.00
resnet50_linf eps8_robust 4791 1.35 23.93 46.97
resnet50-smoothing_adversari 44.28 0.2 29.84 43.57
al_PGD_l1step_eps_512_noise
_1.00
resnet50_with_defocus_blur_a 31.9 1.3 18.18 9.29
wS

End of table

40

I Synthetic robustness correlation with natural robustness

In this section, we investigate which individual synthetic robustness measures are most predictive of
natural distribution shift. For each of the synthetic shifts in our testbed, we compute the effective
robustness for each model and measure the Pearson correlation coefficients against the effective
robustness under each of the natural distribution shifts in our testbed.

Table [2] provides a full list of the correlation numbers, and Figures [T7]to 23] show scatter plots of
the two highest correlated synthetic shifts for each natural distribution shift. We find that some of
the synthetic shifts are more predictive than others, but none have high correlation with all of the
natural shifts. For instance, £,,-robustness has the highest correlation with consistency shifts, but only
low correlation with dataset shifts. On the other hand, some image corruptions such as brightness,
gaussian blur, defocus blur, and saturate have higher correlation with the dataset shifts. It is worth
nothing our testbed indicates that these synthetic measures are not causal, i.e., models trained on
brightness, gaussian blur, defocus blur, or saturate do not have significant positive effective robustness
on dataset shifts. Further analyzing these fine-grained connections between synthetic and natural
forms of distribution shift is an important direction for future work.

Table 2: Pearson correlation coefficients between all synthetic and natural distribution shifts in
our testbed. For each distribution shift, effective robustness was calculated using a linear fit on the
standard models. The correlation between synthetic and natural effective robustness was then only
computed after filtering out the standard models.

Pearson correlation coefficients
Synthetic shift ~ ImageNetV2 ObjectNet ImageNetVid YTBB ImageNetVid YTBB ImageNet-

(pm-0) (pm-0) (pm-10) (pm-10) A
avg_corruptions 0.25 0.06 0.6 0.5 0.65 0.52 0.02
avg_pgd -0.04 -0.19 0.3 0.35 0.84 0.7 -0.12
brightness_in- 0.34 0.11 0.32 0.3 0.29 0.23 0.13
memory
brightness_on- 0.56 0.48 0.56 0.39 0.22 0.15 0.16
disk
contrast_in- 0.15 0.07 0.14 0.04 -0.61 -0.5 0.14
memory
contrast_on- 0.26 0.28 0.17 0.05 -0.61 -0.54 0.15
disk
defocus_blur_in- 0.27 -0.04 0.66 0.56 0.43 0.27 -0.05
memory
defocus_blur_on 0.39 0.39 0.65 0.49 0.28 0.17 0.12
disk
elastic_transform 0.14 -0.12 0.49 0.42 0.75 0.63 -0.15
memory
elastic_transform 0.3 0.21 0.57 0.41 0.65 0.58 0.01
disk
fog_in- 0.14 0.07 -0.04 -0.07 -0.59 -0.56 0.02
memory
fog_on-disk 0.28 0.31 0.04 -0.03 -0.64 -0.6 0.04
frost_in- 0.15 -0.12 0.42 0.44 0.54 0.42 -0.02
memory
frost_on-disk 0.32 0.15 0.53 0.45 0.44 0.36 0.08
gaussian_blur_in 0.27 -0.07 0.67 0.57 0.47 0.33 -0.05
memory
gaussian_blur_or 0.41 0.4 0.65 0.48 0.26 0.16 0.13
disk
gaussian_noise_i -0.01 -0.13 0.41 0.38 0.68 0.51 -0.04
memory
gaussian_noise_¢ 0.08 0.0 0.4 0.34 0.71 0.62 0.07
disk
glass_blur_on- 0.24 0.17 0.56 0.45 0.61 0.53 -0.0
disk
greyscale 0.3 0.17 0.11 0.29 0.09 -0.06 0.04
impulse_noise_ir -0.06 -0.1 0.35 0.34 0.65 0.45 -0.05
memory

Table continues onto next page

41

Pearson correlation coefficients (continued from previous page)

Synthetic shift ~ ImageNetV2 ObjectNet ImageNetVid YTBB ImageNetVid YTBB ImageNet-

(pm-0) (pm-0) (pm-10) (pm-10) A
impulse_noise_o 0.04 0.0 0.34 0.31 0.72 0.6 0.03
disk
jpeg_compressio 0.04 -0.11 0.43 0.41 0.8 0.62 -0.01
memory
jpeg_compressio 0.09 0.01 0.44 0.4 0.8 0.65 0.03
disk
motion_blur_in- 0.2 -0.02 0.51 0.43 0.56 0.41 -0.08
memory
motion_blur_on- 0.32 0.25 0.58 0.43 0.39 0.31 0.07
disk
pgd.12.eps0.1 -0.03 -0.01 0.18 0.25 0.64 0.44 -0.33
pgd.12.eps0.5 -0.05 -0.22 0.31 0.34 0.71 0.63 -0.11
pgd.linf.eps0.5 -0.05 -0.23 0.28 0.33 0.84 0.7 -0.13
pgd.linf.eps2 0.01 -0.18 0.3 0.31 0.76 0.69 0.05
pixelate_in- 0.27 0.03 0.61 0.48 0.66 0.53 0.05
memory
pixelate_on- 0.31 0.16 0.62 0.46 0.63 0.54 0.12
disk
saturate_in- 0.35 0.08 0.4 0.43 0.38 0.27 0.12
memory
saturate_on- 0.55 0.43 0.46 0.41 0.26 0.16 0.13
disk
shot_noise_in- -0.01 -0.14 0.41 0.39 0.69 0.51 -0.05
memory
shot_noise_on- 0.07 -0.01 0.4 0.35 0.71 0.62 0.06
disk
snow_in- 0.26 0.02 0.39 0.35 0.61 0.55 0.04
memory
snow_on-disk 0.33 0.14 0.5 0.43 0.6 0.51 0.04
spatter_in- 0.09 -0.06 0.36 0.36 0.8 0.66 -0.08
memory
spatter_on- 0.26 0.08 0.5 0.43 0.75 0.63 -0.04
disk
speckle_noise_in 0.0 -0.13 0.43 0.39 0.71 0.55 -0.04
memory
speckle_noise_o1 0.08 -0.02 0.42 0.36 0.74 0.66 0.02
disk
stylized_imagene 0.32 0.24 0.31 0.3 0.44 0.31 -0.02
zoom_blur_in- 0.21 0.23 0.45 0.35 0.45 0.36 -0.01
memory
zoom_blur_on- 0.26 0.21 0.55 0.41 0.49 0.39 0.0
disk

End of table

42

Distribution Shift to Brightness (o’n—disk) Effective Robustness Scatterplot

@
o

o o N N
S G o U

ImagetNetV2
Effective Robustness

"3
=)

Brightness (on-disk) (top-1, %)
-

S
S

60 65 70 75 80 85 5 K i B
ImageNet (top-1, %) Brightness (on-disk) Effective Robustness
Distribution Shift to Saturate (on-disk) Effective Robustness Scatterplot
—~380 e 5t
B . .
2
,_l; 75 ﬁ L.
Q .
-8 70 o~ E .
65 P!
—_ o} B
B 60 =93
o -4
<55 oW,
Lso EE] R
o) =0
4 45 Q °
© = °.
540 w -1 0
© *
835
60 65 70 75 80 85 5 [} 5 10
ImageNet (top-1, %) Saturate (on-disk) Effective Robustness
»»»»»» y=X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 17: Plots of the two synthetic distribution shifts with the highest correlation with ImageNetV?2,
compared similarly to FigureE}

Distribution Shift to Contrast (on-disk) Effective Robustness Scatterplot
S . T i 8 .
----- 7
wn 6 .
g i coy et
S 3 S e e
‘(IJ)JJ;Z .‘.'.'.',3.-' .
I . L AV
02 1 e e vl . .
s 2 — e .
a9 3
o2 4
g :
57 .
-9 " ©
10 : .
ET) .
60 65 70 75 80 85 15 -0 5 0 B 10 15 20 25
ImageNet (top-1, %) Contrast (on-disk) Effective Robustness
Distribution Shift to Fog (on-disk) Effective Robustness Scatterplot
. . <
7
6
8 s
v 4 .
g 3
- 2 .
235 - : :
=, 3
gea "o
a9 3
o2 4
g -
g .
+ -9 ® :
-10 3 .
Et) N
60 65 70 75 80 85 -25 -20 -15 -10 -5 0 5 10 15 20 25
ImageNet (top-1, %) Fog (on-disk) Effective Robustness
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 18: Plots of the two synthetic distribution shifts with the highest correlation with ObjectNet,
compared similarly to Figure 3]

43

3 Distribution Shift to Gaussian Blur (on-disk) Effective Robustness Scatterplot
S + — 1 .
60 @ 1
§ss Ea%
) o
] 758 0
é a5 3% 6 ° S e
° oQ s ‘e]
g T2 4 e
S35 Ty 3
5 30 4>1' 2 i
@ 280
€25 e 1.
. g“-‘-‘ 2{ e
n
-3
% 20 § I
O 60 65 70 75 80 85 -10 5 0 5 10 . 15 20
ImageNet (top-1, %) Gaussian Blur (on-disk) Effective Robustness
= Distribution Shift to Defocus Blur (on-disk) Effective Robustness Scatterplot
60 I 1 S 2 *
= @ n
5% € 10
O 50 v 9
£ oA
s 0S5 - *
X 30n . .
B 40 83°¢ -
5 . .
2 35 x o A . .
c -4 .
S30 T3
- 202
325 ot Y -
o é’ 3o
220 o 1
3 e 5
15 E - Tl .
o 60 65 70 75 80 85 -10 -5 0 5 10 15 20 25 30
ImageNet (top-1, %) Defocus Blur (on-disk) Effective Robustness
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 19: Plots of the two synthetic distribution shifts with the highest correlation with ImageNet-
Vid-Robust pm-0, compared similarly to Figure

= Distribution Shift to Defocus Blur (on-disk) Effective Robustness Scatterplot
60 - ki 15
~ 14
s 13
Q —~ 12
O 50 Qg1
s €51
i~ &t 3
w40 =37 .
o a3 6 e — .
c Qs . . N e o 0
S30 cw 4 .) .
= < > 3 wro s out B —
2 gt»‘:{ PR Y, Py S .
v o ‘e L
920 ;E% . ':'»!-." .
[v] PRP]
o -3 S .
@15 . J
o 60 65 70 75 80 85 -10 -5 0 5 10 15 20 25 30
ImageNet (top-1, %) Defocus Blur (on-disk) Effective Robustness
3 o . X Effective Robustness Scatterplot
o Distribution Shift to Defocus Blur (in-memory) 15
— 8 Pt . 14
. “ 13
1) ~Wni12
S§gn
g£clo
09
29 s
2 7
80 6 .
3 s I
cw 4 R n .
€23 ‘
oo . P
891
= = .
o Sk 3
g 3
I+ 4
o -5 .
“q_) 60 65 70 75 80 85 -10 -5 0 5 10 15 20 ?5 30 35 40
[a] ImageNet (top-1, %) Defocus Blur (in-memory) Effective Robustness
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 20: Plots of the two synthetic distribution shifts with the highest correlation with YTBB-Robust
pm-0, compared similarly to Figure/5]

44

Distribution Shift to PGD (Linf Eps0.5) Effective Robustness Scatterplot

70 T o 8
Lo o= e - 7
00 i Epe
55177 4 SR
Q.50 = + -9 N o
Qas .] 4 - o
40 - pTTwe 23 3 . * g
i 357, R ’: ‘cf o o.gi :. M Lo
o 30 % ; R 3 X Y o) ° .
Q.25 L et o ° o 0 .4':.. " R
. P25 S, te 3iaow,
« 20 y//, . ‘é = JECHIN,
_ +3 2 + + +4 D3l e oo, o °
3 T A et sEa
Q.. | et “4/:§ SHATITE T T %w"“ Slle e %
433 fa -
Q S { L) £ o
/ - gLl
60 65 70 75 80 85 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55
ImageNet (top-1, %) PGD (Linf Eps0.5) Effective Robustness
Distribution Shift to Spatter (in-memory) Effective Robustness Scatterplot
X 80 T s S s
R L 7
—
i 75
Iy Enpe
S0 Sos
R “ £
36 F g3
o 60) _8 2
€55 Tl
9] T B ¢
£ 50 S>a
T (=1
c 45 w2
a0 225
s E e
[} Q-4
35 D gl
© ©
Q 30 £ 6
& £ 7 .o
60 65 70 75 80 85 -10 -5 0 5 10 15 20 25
ImageNet (top-1, %) Spatter (in-memory) Effective Robustness
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 21: Plots of the two synthetic distribution shifts with the highest correlation with ImageNet-
Vid-Robust pm-10, compared similarly to FigureEl

7 Distribution Shift to PGD (L2 Eps0.5) Effective Robustness Scatterplot
% ‘
6
5! sSw
i =g -
E e
8%s ce L.
£ 2 N
3% .
2 .ug) 0 . +
R .
£ £ 2 . .
w
3 B
-4 ..
60 65 70 75 80 85 0 5 10 15 20 25 30 35 40 45 50 55 60
ImageNet (top-1, %) PGD (L2 Eps0.5) Effective Robustness
9 Distribution Shift to 'Speckle Noise (on-disk)) Effective Robustness Scatterplot
370 : 7
=~ 6
CHE :
£G4 :
235, Y
o9 .
n o2 .
2%,
o ¢ 1
o | . .
2
2 =5
9 4 o
J-" 60 65 70 75 80 85 -10 -5 0 5 }0 15 20_ 25 30 35
ImageNet (top-1, %) Speckle Noise (on-disk)) Effective Robustness
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 22: Plots of the two synthetic distribution shifts with the highest correlation with YTBB-Robust
pm-10, compared similarly to Figure El

45

Distribution Shift to Contrast (on-disk) Effective Robustness Scatterplot
60 e - 2, N - y %)]

ru0

- o, .o

ImageNet-A
Effective Robustness

60 65 85 -15 -10 -5 0 5 10 15 20 25

70 75 80
ImageNet (top-1, %) Contrast (on-disk) Effective Robustness
Distribution Shift to Contrast (in-memory) Effective Robustness Scatterplot

P
®oorN
.

ImageNet-A
Effective Robustness

SbblahbbwlborvwsnoN

Contrast

60 65 85 -15 -10 -5 0 5 10 15 20 25 30

70 75 80
ImageNet (top-1, %) Contrast (in-memory) Effective Robustness

—————— y=x Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 23: Plots of the two synthetic distribution shifts with the highest correlation with ImageNet-A,
compared similarly to FigureEl

46

J Information on our main figures

J.1 Constructing beta 3

For each distribution shift, we construct the baseline accuracy function § by analyzing the linear
relationship between model performance on the original and shifted distributions. In particular, when
constructing 8 we only include "standard models," models that had not been designed with any
robustness properties in mind or have not been trained on any data other than the standard 1,000-class
ImageNet training set. Before constructing the predictor, model accuracies are then transformed
according to the logit distribution; this transform assigns greater mass at the tails and experimentally
provided the best linear fits. 3 is then simply the linear predictor of the shifted distribution based on
the independent variable (the original distribution), computed in this scaled space.

J.2 Ablations on our main figures

Here we provide various versions of the main figures in the main text. In each plot, we use logit scaling
to demonstrate that gains in performance at higher accuracies represent greater progress. The 95%
confidence intervals were empirically computed from the bootstrapped samples. The bootstrapping
was performed by computing 1,000 linear fits by sampling the models with replacement.

47

Distribution Shift to ImageNetV2 Distribution Shift to ObjectNet

75
50 |
".' 340
Ses Q35
£ S
S
g 60 %,:30
9} =
Z 55 0 »
5y 9]
‘20
‘_é’so o
45 15
60 65 70 75 80 85 55 60 65 70 75 80 85
ImageNet (top-1, %) ImageNet (class-subsampled) (top-1, %)
Distribution Shift to ImageNet-Vid-Anchors Distribution Shift to YTBB-Anchors

®
3

o

&

2 @ N N
g8 & 3 &

YTBB-Robust (pm-0, %)

o)
3

ImageNet-Vid-Robust (pm-0, %)

93 94 95 96 97 98 99 95 96 97 98 99
ImageNet (class-subsampled) (top-1, %) ImageNet (class-subsampled) (top-1, %)

Distribution Shift to YTBB-Robust

1
>

4

Distribution Shift to ImageNet-Vid-Robust

o

&
w
&

PN LY
s & o 3
w P
& & 3

w
YTBB-Robust (pm-10, %)
N
8

w
S
w
S

ImageNet-Vid-Robust (pm-10, %)

80 45 50 55 60
YTBB-Robust (pm-0, %)

55 60 65 70 75
ImageNet-Vid-Robust (pm-0, %)

40

Distribution Shift to Imagenet-A

L

p-1, %

ImageNet-A (to

80 90 95 96 97
ImageNet (class-subsampled) (top-1, %)

------ y=X Standard training Linear fit

Figure 24: Only standard models are shown in these plots. Otherwise, they are identical to the main
plots in the main text. This is done to better illustrate the quality of the linear fit.

48

Distribution Shift to ImaggNetVZ

Distribution Shift to ObjectNet

80 e + - Y
:’\%75
i
%70
=
o 65
>
=
@ 60
z
gss
©
Eso
45
60 65 70 75 80 85 60 65 70 75 80 85
ImageNet (top-1, %) ImageNet (top-1, %)
Distribution Shift to ImageNet-Vid-Anchors Distribution Shift to YTBB-Anchors
e 4 4

®
&

N N @
S & 8

o
&

YTBB-Robust (pm-0, %)

@
o

w
S

ImageNet-Vid-Robust (pm-0, %)

60 65 70 75 80 85 60 65 70 75 80 85
ImageNet (top-1, %) ImageNet (top-1, %)

3 Distribution Shift to ImageNet-Vid-Robust Distribution Shift to YTBB-Robust
°© - 65 T
S . L e
I R0 - L
S ss e . i et
I e *
g_so e
:‘;':AS P = 2%
=]
-g 40
-4 ¥
m 35 I8 T
o] 4 s
S0l o
- 50 55 60 65 70 75 80 85 90 45 50 55 60 65
ImageNet-Vid-Robust (pm-0, %) YTBB-Robust (pm-0, %)
Distribution Shift to Imagenet-A _
80 e
P —
Rgo| e P
50 .
& 40 .
S3 —
< 20 + ..
o °
2o +
9 - 3§
g ° Fa SRS ST i
15 ST - it
- SRt T
3
60 70 80
ImageNet (top-1, %)
------ y =X Robustness intervention Linear fit
Standard training Trained with more data

Figure 25: The x-axes are not subsampled in these plots (they are performance on the full ImageNet
validation set). Otherwise, they are identical to the main plots in the main text. This is done to clarify
that subsampling the axes does not skew the discussed results.

49

Distribution Shift to ImageNetV2 Distribution Shift to ObjectNet

;@ss
T80
Q
o
75
9 70
@
% 65
gso b
£ 55
= 50

45

60 65 70 75 80 85 55 60 65 70 75 80 85 920
ImageNet (top-1, %) ImageNet (class-subsampled) (top-1, %)

— Distribution Shift to ImageNet-Vid-Anchors Distribution Shift to YTBB-Anchors
X -
=) T = e
& T S e
= O R
g = £l -
95 - § 95
5 o
an 2
o ;
[} o
=% @
Sh E
©
&l

9394 95 96 97 98 99 95 96 97 9

8 99
ImageNet (class-subsampled) (top-1, %) ImageNet (class-subsampled) (top-1, %)
Distribution Shift to ImageNet-Vid-Robust i} Distribution Shift to YTBB-Robust

50 55 80 5 90

60 65 70 75 8!
ImageNet-Vid-Robust (pm-0, %)

Distribution Shift to Imagenet-A

ImageNet-A (top-1, %)

80

90 95 96 97 98 99
ImageNet (class-subsampled) (top-1, %)

------ y =X Robustness intervention Linear fit
Standard training Trained with more data

Figure 26: The full y=x line is shown here in these plots. Otherwise, they are identical to the main
plots in the main text. This is done to illustrate the performance gap due to distribution shift for each
of the natural shifts.

50

K Example images of distribution shifts in our testbed

K.1 Natural distribution shift images

Figure 28: Consistency shifts. Sequences of video frames from ImageNet-Vid-Robust (top) and

YTBB-Robust (bottom).

Figure 29: Adversarial shifts. Examples from ImageNet-A.

51

K.2 Synthetic distribution shift images

' {..
%

(c) contrast

(j) greyscale

(h) gaussian blur (i) gaussian noise

=3 % ~

(q) snow (r) spatter (s) speckle noise (t) stylized imagenet

(u) zoom blur (v) €p-attack

Figure 30: Sample demonstration of the synthetic distribution shifts in our testbed. Note: This list is
not complete. See Appendixﬂfor a complete list.

52

L Additional discussion of related work

L.1 Relationship to other areas in machine learning

Domain adaptation / transfer learning. Our work is focused on generalizing to out-of-distribution
data without fine-tuning on the target distribution. A complementary approach uses data from the
target domain in order to improve generalization on that particular domain [64]. Depending on
the scenario, robustness (without fine-tuning) or domain adaptation may be more appropriate. For
instance, it may be challenging to record data from the distribution shift, which would prevent
fine-tuning before deployment. In some scenarios, we also expect our model to generalize without
extra data (e.g., because humans can do so [[77]]). Concurrent work by Djolonga et al. [21]] studies
connections between robustness to distribution shifts and transfer learning. Investigating our testbed
from the perspective of transfer learning is an interesting direction for future research.

Domain generalization. Out-of-distribution generalization as measured in our robustness testbed
is closely related to domain generalization [6} 60]. In domain generalization, the training algorithm
has access to samples drawn from multiple different distributions (domains). At test time, the model
is evaluated on samples from a new domain that was not present in training. The idea is that having
explicit knowledge of multiple domains at training time may help generalization to a new domain at
test time.

Several papers have proposed algorithms for domain generalization; we refer to Gulrajani & Lopez-
Paz [36]] for a comprehensive survey. Our testbed currently does not contain any algorithms explicitly
following the domain generalization paradigm (though pre-training on a different distribution and
then fine-tuning on ImageNet has similarities to domain generalization). A recent meta-study of
domain generalization found that standard empirical risk minimization performs as well or better
than the eight domain generalization algorithms they compared to [36]]. This result of Gulrajani &
Lopez-Paz [36]] has similarities to our finding that robustness interventions currently rarely improve
over the trend given by standard (ERM) models trained without a robustness intervention. Evaluating
domain generalization approaches on the distribution shifts in our testbed may yield new insights into
the performance characteristics of these algorithms.

Distributionally robust optimization. Distributionally robust optimization (DRO) is another re-
cently proposed technique to increase robustness to distribution shift [22| 23]]. The DRO objective
minimizes the worst case risk over all distributions close to the data distribution (or in the group
DRO setting, the worst case risk over all defined groups). DRO has been used to train adversarially
robust models [[79]], vision models with higher worst-group accuracies [71]], models less reliant on
spurious correlations [81]], and many others [24}162]. For a more thorough discussion on DRO and
related work, we refer the reader to [22]. We are currently unable to include DRO models as we are
not aware of any pre-trained DRO models for ImageNet. We will add DRO models to our testbed as
they become available.

Adversarial filtering. One of the distribution shifts in our testbed was obtained via adversarial
filtering (ImageNet-A, [39]). Architectures introduced after the model used to filter ImageNet-A
made quick progress in closing the accuracy gap (see Sectiond.I). A similar phenomenon occurred
in natural language processing. Zellers et al. [111] introduced Swag, an adversarially filtered test for
grounded commonsense inference, a combination of natural language inference and commonsense
reasoning. At the time of publication, the best model achieved 59% accuracy, while a human expert
achieved 85%. Two months later, Devlin et al. [19] introduced the BERT model which achieves 86%
accuracy on Swag. This provides further evidence that adversarial filtering can create test sets that
are only hard for a specific (existing) class of models.

In the context of training sets, adversarial filtering is similar to hard negative mining, which is often
used to generate training data for detection models [17, 30,169, 183]]. Bras et al. [8] propose AFLite,
an adversarial filtering algorithm for both refining training sets and creating harder test sets. They
evaluate AFLite on natural language inference tasks and ImageNet classification. An interesting
question is whether combining their algorithm with a ResNet-50 and evaluating later models leads to
similar phenomena as on ImageNet-A [39] and Swag [111]].

Fairness in machine learning. Mitchell et al. [59] proposed model cards to document the perfor-
mance of machine learning models in a variety of conditions. Their focus is on human-centered
models and distribution shifts arising from demographic groups (race, gender, etc.). Our focus here is
on ImageNet due to the large number of available models and distribution shifts, but the underlying

53

problem is similar: machine learning models are often brittle under distribution shift. We remark that
ImageNet is known to have geo-diversity deficiencies [[75], among other issues [[14,25]. In the context
of Openlmages [51]], researchers have proposed the Inclusive Image dataset [1]. Adding OpenImages
and Inclusive Images to our testbed and comparing these distribution shifts to our existing examples
is an interesting direction for future work.

Further domains. Our work is focused on the domain of image classification. There is a long line
of work considering robustness (either natural or synthetic) on other domains [26} 152|158 180, 106]. In
the context of natural language processing, Belinkov & Bisk [4] explore language model robustness
to synthetic versus natural one-word substitutions and reach similar high-level results, finding there is
limited robustness transfer between the two distributions.

L.2 ImageNet-R & ImageNet-Sketch

Recently, Hendrycks et al. [40]] studied robustness of classifiers to a new dataset that measure
distribution shift, ImageNet-R, along with a new data augmentation method, DeepAugment. The
authors make a number of comparisons in relation to an earlier version of this manuscript [90]. In
order to provide more clarity, we integrate the ImageNet-R dataset and the DeepAugment models
into our testbed in this paper.

Distribution Shift to ImageNet-R Distribution Shift to ImageNet-Sketch

80 — 601 - =

75 E
R g%
= &45
765 S0 o Rt
Q £ -, L
o 60 =3 -
55 — <o
[L *i; + 30 o {ﬁ:,ﬁ
a5 B = : %, % v AT
g : Aﬁ @20 A % Zﬁ,#
g 35 * ,; et i — T «*jf
€ 30 . = :?ij*" 215 W

e = == e
25 4 £ & #
el 108 e
80 85 90 95 60 65 70 75 80 85
ImageNet (class-subsampled) (top-1, %) ImageNet (top-1, %)
------ y =X Lp adversarially robust Trained with more data
Standard training Other robustness intervention Linear fit

Figure 31: Model accuracies on two datasets: ImageNet-R (left), and ImageNet-Sketch (right).
Both datasets create a distribution shift by selectively sampling images of renditions or sketches,
respectively. Evaluations on these distribution shifts are similar to each other and follow the high-level
trends of the other natural dataset distribution shifts in our testbed, with models trained on extra data
providing the most robustness (though the effect is not uniform). On the left plot, DeepAugment
models are highlighted in dark brown squares, and ImageNet classes were subsampled to match the
class distribution of ImageNet-R; the ImageNet-Sketch class distribution already matches ImageNet.
Confidence intervals, axis scaling, and the linear fit are computed similarly to Figure@

ImageNet-R. In Figure we plot model accuracies on ImageNet-R(endition) [40] and a similar
dataset of sketches, ImageNet-Sketch [95]. We find that a few of the models trained on more
data substantially outperform the rest. The top-right green cluster on both plots consists of several
ResNet and ResNeXt models trained on 1 billion Instagram images [56 92| [104] and EfficientNet-L2
(NoisyStudent) trained on the JFT-300M dataset of 300 million images [102].

However, as with the other dataset shifts, not all models trained on more data follow this trend.
Several ResNet models trained on either the YFCC 100 Million images dataset [104] or the full
ImageNet 21k-class dataset [49] have close to zero or negative effective robustness.

When interpreting the results of models trained on more data, a caveat is that the extra training data
may contain renditions that do not occur in ImageNet. To clarify this point, we have reached out
to the authors of [56] to obtain more information about the Instagram dataset. We will update our
paper when sufficient data becomes available to estimate the relative frequency of renditions in the
Instagram dataset. In the meantime, we note that the performance of the Instagram-trained models
gives an answer to a question between the following two extremes: (i) How much performance on
ImageNet-R do current models gain from a large, uncurated set of social media images that contains

54

Effective Robustness Scatterplot Effective Robustness Scatterplot

ImageNet-R
Effective Robustness
ImageNet-R
Effective Robustness

23 .\:!'. e, _ % o
ol
- o >
2¢ s
. i .
-5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45
Corruptions Averaged Effective Robustness Lp Attacks Effective Robustness

Lp adversarially robust » Other robustness intervention Trained with more data

Figure 32: We compare the effective robustness of models with their accuracy drop due to corruptions
(left) and adversarial attacks (right). The effective robustness is computed with respect to the linear
fit on ImageNet-R. The measures are weakly correlated, indicating that improved robustness to
corruptions or adversarial attacks does not in general improve effective robustness under ImageNet-R.

renditions? (ii) How much robustness to ImageNet-R do current models gain from a large, uncurated
set of social media images that contains little to no renditions?

Interestingly, we also find that a number of £,,-adversarially robust models provide substantial effective
and relative robustness on both datasets. The top-left cluster of three yellow points on both plots are
feature denoising models trained by Xie et al. [101]]. These results suggest that adversarial robustness
and denoising blocks can be viable approaches for distribution shift comprised of renditions or
sketches.

A natural follow-up question is whether synthetic robustness is correlated with ImageNet-R robustness.
Similar to Appendix [D.2] in Figure 32) we compare effective robustness on synthetic distribution shifts
against effective robustness on ImageNet-R. The scatter plots are weakly correlated (the Pearson
correlation coefficients are r = 0.35, 0.30), indicating that improved robustness to corruptions or
adversarial attacks in general does not improve effective robustness on ImageNet-R. However, there
does appear to be a strong trend for the brown points in the left plot. Indeed, the correlation coefficient
computed for only the “other robustness intervention” models is r = 0.76, suggesting that for this
category of models, image corruptions robustness is well correlated with ImageNet-R robustness.

DeepAugment. Hendrycks et al. [40] also introduce a new data augmentation method, DeepAugment,
which generates data augmentations by distorting the weights and activations of an image-to-image
translation network. As seen in Figure [31] the DeepAugment+Augmix models, the top two dark
brown squares on the left plot, have higher effective robustness on ImageNet-R than most other
models (p = 11.2% for ResNeXt101 and p = 10.2% for ResNet50).

As mentioned above, some of the models trained on the large Instagram and JFT-300M datasets
outperform all other approaches on ImageNet-R including DeepAugment, but it is unclear how many
images of renditions these datasets contain. Among the other models trained only on ImageNet,
the comparison between ¢,,-adversarial robustness and DeepAugment is nuanced. The ¢,-robust
model of [[101] has higher effective robustness but reduces standard ImageNet accuracy. The highest
accuracy on ImageNet-R is also achieved by a model with an /,-based robustness intervention
(an AdvProp model [[100]), but the model is derived from EfficientNet [88]] which achieves higher
standard accuracy than the wide ResNeXt model [103]] used in DeepAugment. An interesting question
for future work is how and why £,,-robustness helps on ImageNet-R, e.g., by training a ResNeXt
model with AdvProp.

On the anchor frames of ImageNet-Vid-Robust and YTBB-Robust, DeepAgument provides effective
robustness comparable to models trained on multiple synthetic perturbations (e.g., a combination
of Gaussian noise, contrast, motion blur, and JPEG compression). On ImageNetV2 and ObjectNet,
DeepAugment does not provide effective robustness.

For ImageNet-C corruptions [38]], the combination of DeepAugment and AugMix offers substantial
robustness. Excluding ¢,,-adversarially robust models in the low accuracy regime, the two models

55

with highest effective robustness to ImageNet-C corruptions are DeepAugment- and Augmix- trained
ResNet50 (p = 14.2%) and ResNeXt101 (p = 13.2%). To put this in context, a ResNet50 trained
directly on four of the ImageNet-C corruptions (Gaussian noise, contrast, motion blur, and JPEG
compression) achieves an effective robustness of p = 13.3%.

L.3 Video robustness

In the context of video robustness, Gu et al. [35] have previously measured the performance of image
classifiers on video sequences from the YouTube-BoundingBoxes(YT-BB) dataset [67]]. They find
that video robustness is strongly correlated with accuracy on color corruptions such as brightness,
hue, and saturation, with correlation coefficients r near 0.95. There are two potential reasons our
testbed finds these measures to be only weakly correlated with robustness on YTBB-Robust and
ImageNet-Vid-Robust (r ranging from 0.1 to 0.5 - full table in Appendix [):

Standard accuracy as a confounder. The analysis in [35] does not account for standard accuracy as
a confounder. The authors consider video robustness as accuracy within k frames of an anchor frame
given that the anchor frame was correctly classified. While this definition does somewhat account
for models with higher standard accuracies, it is natural to expect that models with higher standard
accuracy are still more likely to predict the neighboring frames correctly given that the anchor frame
was predicted correctly. Thus, standard accuracy will be correlated with video robustness. Moreover,
our testbed reveals that standard accuracy is also correlated with corruption accuracy, and hence
corruption accuracy will be correlated with video robustness as well.

Additionally, it is worth noting that correlation does not mean that robustness to color corruptions
cause robustness on videos. For instance, our testbed contains a model trained on saturation as
data augmentation. While this model is highly robust to saturation (exhibiting only a 1% drop from
standard accuracy to accuracy under saturations, compared to a baseline model exhibiting a 12%
drop), it is no more video robust than a baseline without the saturation training (the saturation-trained
model still experiences an 18% video robustness drop, compared to a baseline model exhibiting a 19%
drop). This example further shows the need for our measure of effective robustness as it explicitly
corrects for the confounding effect of standard accuracy.

Differences in data preparation. Gu et al. [35] split the full YT-BB dataset into training, validation,
and testing splits, and evaluate ImageNet models on sequences from the test split. In contrast, Shankar
et al. [76]] derive datasets from ImageNet-Vid and Youtube-BB through a rigorous cleaning process:
inspecting and annotating each sequence with human experts to check that subjects appear in frame
throughout the sequence, match the correct class, and are not very blurry. This cleaning process
indicates the derived datasets (ImageNet-Vid-Robust and YTBB-Robust) are better calibrated to
measuring classification performance.

56

