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Abstract

This paper studies two-layers Neural Networks (NN), where the first layer con-
tains random weights, and the second layer is trained using Ridge regularization.
This model has been the focus of numerous recent works, showing that despite its
simplicity, it captures some of the empirically observed behaviors of NN in the over-
parametrized regime, such as the double-descent curve where the generalization
error decreases as the number of weights increases to +∞.
This paper establishes asymptotic distribution results for this 2-layers NN model
in the regime where the ratios p

n and d
n have finite limits, where n is the sample

size, p the ambient dimension and d is the width of the first layer. We show that
a weighted average of the derivatives of the trained NN at the observed data is
asymptotically normal, in a setting with Lipschitz activation functions in a linear
regression response with Gaussian features under possibly non-linear perturbations.
We then leverage this asymptotic normality result to construct confidence intervals
(CIs) for single components of the unknown regression vector.
The novelty of our results are threefold: (1) Despite the nonlinearity induced by
the activation function, we characterize the asymptotic distribution of a weighted
average of the gradients of the network after training; (2) It provides the first
frequentist uncertainty quantification guarantees, in the form of valid (1-α)-CIs,
based on NN estimates; (3) It shows that the double-descent phenomenon occurs
in terms of the length of the CIs, with the length increasing and then decreasing as
d
n ↗ +∞ for certain fixed values of p

n . We also provide a toolbox to predict the
length of CIs numerically, which lets us compare activation functions and other
parameters in terms of CI length.

1 Model, contributions and related works

Random features model as a 2-layers neural network. Given n observations (x1, y1), ...(xn, yn)
with xi ∈ Rp and yi ∈ R for each i = 1, ..., n, the object of study of this paper is the estimate

α̂ = argmin
α∈Rd

( 1

2n

n∑
i=1

(
yi −

d∑
k=1

αkσ(x>i wk)
)2

+
τ

2
‖α‖22

)
, (1)

where σ : R → R is a nonlinear activation function, w1, ...,wd ∈ Rp are vectors of random
weights sampled by the practitioner. This estimate (1) corresponds to a two-layers Neural Network
(NN), with random first layer weights w1, ...,wd, and second layer weights α̂ ∈ Rd trained using
a Ridge regularization penalty. The penalty parameter τ is chosen by τ = (d/p)λ, where λ > 0
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is a fixed parameter, so that the random features model is related to the kernel Ridge regression.
Throughout, we define the matrixA ∈ Rn×d entrywise by Aik = σ(x>i wk). Equivalently, denoting
by σ : Rn×d → Rn×d the entrywise application of σ(·) with a minor abuse of notation, ifW ∈ Rd×p
has rows w>1 , ...,w

>
d , we have in matrix notation

W> = [w1|...|wd], A = σ(XW>), α̂ = argmin
α∈Rd

( 1

2n
‖y −Aα‖22 +

τ

2
‖α‖22

)
. (2)

Alternatively to the description of α̂ as the second layer weights of a two-layers NN, the above
construction is the random features model of [Rahimi and Recht, 2008] where for each observation
(xi, yi), a new feature vector (σ(x>i wk))k=1,...,d of size d is constructed using the random weights
W sampled independently of the data. Then (1) attempts to regress y on the new feature matrix
A = σ(XW>). After training, a mapping f̂ : Rp → R and its gradient are available, given by

f̂(ξ) = σ(ξ>W>)α̂ =
∑d
k=1 σ(ξ>wk)α̂k, (∂/∂ξj)f̂(ξ) = σ′(ξ>W>) diag(α̂)Wej , (3)

where ej ∈ Rp, j ∈ [p] is a canonical basis vector. The notation ξ ∈ Rp used above for the argument
of f̂ is used to avoid confusion with the observed feature vectors x1, ...,xn that are used in the
construction of f̂ . The prediction function (3) can be used, for instance to provide predictions on a
test set {xtest

1 , ...,x
test
ntest} of size ntest.

Linear data generating process with non-linear perturbation. We consider two models for the
data-generating process of (xi, yi), i = 1, ..., n. We will consider the linear model

y = Xβ + ε, (4)

where β ∈ Rp is the unknown regression vector of interest, y ∈ Rn is the observed response with
components y1, ..., yn,X ∈ Rn×p is the feature or design matrix with rows x>1 , ...,x

>
n and ε ∈ Rn

is the additive noise. We will also consider a model with a non-linear perturbation G:

yi = f(xi) + εi, f(xi) = β0 + x>i β +G(xi), (5)

where β ∈ Rp is again the parameter of interest, β0 ∈ R is the intercept and G : Rp → R is a
random non-linear perturbation function independent of (x1, ε1, ...,xn, εn) with mean zero (i.e.,
EG[G(x)] = 0 for all fixed x ∈ Rp). The linear model (4) is obtained as a special case when
there is no intercept or perturbation in (5). We assume Gaussian features and Gaussian noises, with
xij ∼ iid N(0, 1) and εj ∼ iid N(0, θ2ε) mutually independent. The signal-to-noise ratio (SNR) ρ
will be specified in § 2.4.

Asymptotic setting in proportional limits. We consider a high-dimensional asymptotic setting
where n, p, d→ +∞ so that any ratio of two integers among n, p, d has a finite limit, namely

ψp,n := p/n, ψd,n := d/n, lim
n→+∞

ψp,n = ψp, lim
n→+∞

ψd,n = ψd, (6)

where ψp, ψd are positive finite. As will be made precise in the assumptions below, the mean and
variance of each yi, i ∈ [n] are bounded uniformly in n, p, d satisfying (6). The function f(·) in (5)
is weakly differentiable in features xi, with gradients squared integrable, again uniformly in n, p, d.

1.1 Contributions

Asymptotic normality and Confidence Intervals (CIs). We establish Central Limit Theorems
(CLT) for the derivatives of 2-layers NN models in (2) when n, p, d → +∞ in the proportional
asymptotic regime (6). A weighted average of the gradients of the trained NN, up to an explicit
additive correction, is proved to be asymptotically normal, where the variance of the limit can be
estimated explicitly. The asymptotic normality result holds for pure linear models (4) and non-linear
perturbation models (5) for a large class of random perturbations. Based on this asymptotic normality
result, we construct CIs for single components βj of the unknown regression coefficients β of interest,
as well as for linear contrast u>0 β where u0 is a given direction satisfying ‖u0‖2 = 1. Motivated by
recent evidence that the linear coefficients are the only parameters that RF models can learn in this
proportional asymptotic limit [Ghorbani et al., 2019], our CIs are established only for the linear part
β. To our knowledge, this is the first method of frequentist uncertainty quantification, in the form of
1− α CIs, based on NN estimates (1).
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Figure 1: Theoretical squared length V (ψd, ψp, λ, ρ, σ) (see (18) on p. 7) of our CI under various
ψd, ψp (left) and λ (right). In the left the raw Ridge penalty is λ = 0.01. In the right the dimension
ratio is ψp = 1. In both, we set SNR ρ = 2 and activation function σ(x) = max(x, 0).

Double descent for CI length. Mei and Montanari [2019] provided the precise asymptotics of
the test error and the training error for the random features model and the NN estimate (1) in a
setting comparable to ours, providing strong evidence of the double descent phenomenon for the
generalization error. Other works that highlight the double descent phenomenon for the generalization
error are discussed in § 1.2. Using some results from Mei and Montanari [2019], we are able to
characterize the length of our CIs by solving certain quartic equations. This reveals a double descent
phenomenon in the length of CIs: increasing model capacity beyond in the overparametrized regime
decreases CI length (see Figure 2). Surprisingly, we report that the double descent phenomenon for
the length of CIs based on the NN (1) matches the double descent curves from Mei and Montanari
[2019] for the generalization error (see Figure 1): (i) It occurs in the interpolation regime when λ
is small enough and is significant when p/n ≈ ψp is bounded away from 0; (ii) The CI length is
minimized in the infinite width limit (i.e., ψd → +∞) in many cases. This suggests that smaller
generalization error leads to smaller CIs and that wider, overparametrized NN leads to smaller CIs.

Comparing activation functions and other parameters in terms of confidence interval length.
In Figure 3 on p. 8, we report the behaviors of

R = R(ψp, λ, ρ, σ) = lim
ψd→+∞

[
lim

n,p,d→+∞ as in (6)

(
nL2

Var(y1)

)]
, L2 =

‖y −Aα̂‖22
(trace(In −H))2

, (7)

where ρ is the signal-to-noise ratio (SNR), σ is the activation function, and L2 is proportional to the
squared length of our 1− α CIs (See § 2.1 and 2.4). § 2.4 explains how to predict numerically the
length L for given values of (ψd, ψp, λ, ρ, σ), and the length in the infinite width limit (ψd →∞) for
given (ψp, λ, ρ, σ). This lets us compare efficiently combinations of (ψd, ψp, λ, ρ, σ) in terms of CI
length, cf. § 3 where some comparisons are discussed. For instance, in the setting of Figure 3 we see
that ReLU activations provide the smallest CI length in the infinite width limit.

1.2 Related literature

Overparametrization and interpolation. A surprising observation about deep neural networks is
the combination of overparametrization (i.e., more weights than observation) and interpolation (zero
or small training error), while performing well in terms of generalization error. Experimental results
in [Zhang et al., 2016] and Belkin et al. [2018b] were the starting points of this line of research on
interpolating learning methods. The good generalization properties of interpolating methods were the
focus of many empirical and theoretical works in recent years, including Belkin et al. [2018a,b,c],
Liang and Rakhlin [2018], Rakhlin and Zhai [2018], Belkin et al. [2019], Geiger et al. [2020],
Muthukumar et al. [2020] among others.

Double descent phenomenon. Classically, models that exactly fit the training data are known to
“over-fit” as exemplified by the bias-variance trade-off that features a U-shape curve. To reconcile the
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performance of modern interpolating learning methods, Belkin et al. [2018a] describes a now well
studied “double descent curve”: as the number of parameters grow, the out-of-sample prediction error
of certain machine learning methods would first increase up until a phase transition after which the
generalization error would decrease. The “double descent” phenomenon refers to the shape of this
curve, where increasing model capacity beyond interpolation leads to better prediction performance.
A closely related phenomenon was discussed by Spigler et al. [2019] and referred to as a “jamming
transition”. Geiger et al. [2019, 2020] provided an empirical observation of this phenomenon for deep
neural networks. Advani and Saxe [2017], Hastie et al. [2019], Bibas et al. [2019], Belkin et al. [2019],
Mitra [2019], Muthukumar et al. [2020] studied the risk of minimum-norm interpolating methods
and confirmed the double descent curve in several overparameterized linear regression models. Mei
and Montanari [2019] computed the precise asymptotics of the test error and the training error for the
random features model of Rahimi and Recht [2008] and showed that their model reproduces all the
qualitative features of the double descent curve without assuming misspecification structures.

Random features model. The random features model can be regarded as a two-layer neural
network with random weightsW in the first layer. Despite its simplicity, the model captures some
properties of deep neural networks. For instance, Hornik [1993] showed that neural networks with as
few as a single hidden layer can uniformly approximate continuous functions in the limit of infinite
width. Neal [1996], Williams [1997] showed that nets with a single hidden layer converge to a
Gaussian process with analytic covariance function and that it is sensible to obtain good predictions
with infinitely wide networks. Works connecting deeper neural networks with Gaussian processes
include [Hazan and Jaakkola, 2015, Lee et al., 2017, Matthews et al., 2018, Novak et al., 2018, Garriga-
Alonso et al., 2018, Yang, 2019]. The original paper Rahimi and Recht [2008] proposed the random
features model as a randomized dimensionality reduction technique, for kernel Ridge regression,
with randomized empirical kernel converging pointwise to the population kernel. Subsequent works
on the random feature model as a kernel method include Bach [2013], Alaoui and Mahoney [2015],
Rudi and Rosasco [2016], Bach [2017], Avron et al. [2017], Li et al. [2018], Zhang et al. [2019].
Kanagawa et al. [2018] reviewed the connections and equivalences between Gaussian processes and
kernel methods. In Ghorbani et al. [2019], the approximation error and the generalization error of the
random features model were studied and compared to that of neural tangent kernel models.

Asymptotic normality and confidence intervals. To prove the validity of our 1− α confidence
intervals below, we employ techniques from the de-biasing literature for the Lasso in linear regression
started Zhang and Zhang [2014], Van de Geer et al. [2014], Javanmard and Montanari [2014]. The
subsequent work Bellec and Zhang [2019] provides the CLT that we use for our main result.

1.3 Notation

For any integer, [n] = {1, ..., n}. We will use index i to loop/sum over [n], index j to loop over [p]
and k to loop over [d] for clarity. If clear from text, we will write only n→ +∞ or only p→ +∞ to
indicate the asymptotic setting in (6). The big O(·), small o(·) notations and the convergence arrow
→ are endowed with the asymptotic setting (6) unless otherwise stated.

Let 0p denote the zero vector in Rp and Ip denote the identity matrix in Rp×p. For a matrixX , the
column vectorXj denotes the j-th column ofX , and xi denotes the column vector corresponding
to the i-th row. We let ‖xi‖2 denote the Euclidean norm of xi, and let ‖X‖op denote the operator
2-norm (i.e., the spectral norm) ofX . Let Sp−1(r) be the Euclidean sphere in Rp with radius r > 0.

We let ej denote the j-th canonical basis vector in Rp, with 1 in the j-th coordinate and 0 elsewhere.
The intercept is the scalar β0 and βj is the j-th element of β. For any vector x ∈ Rp, the matrix
diag(x) is the diagonal matrix in Rp×p with diagonal elements x1, . . . , xp. We let EG denote the
conditional expectation givenX,W , ε. We let Φ(t) = (2π)−1/2

∫ t
−∞ e−x

2/2dx denote the standard
normal cumulative distribution function.

2 Asymptotic normality and confidence intervals based on NN estimates

Central Limit Theorems (CLT) for derivatives of the trained neural network. Our starting
point is a search for CLT for the gradients of the trained neural network f̂(ξ) in (3) averaged over
the training observations {x1, ...,xn}, i.e., whether for a fixed feature j ∈ [p] the average (or some
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weighted average) of (∂/∂ξj)f̂(xi) has asymptotically normal behavior. If f̂ were independent from
x1, ...,xn this would follow from the classical CLT, however the training observations were used to
construct f̂ and this obvious dependence between f̂ and x1, ...,xn makes it a first glance hopeless
to obtain CLT for averages of (∂/∂ξj)f̂(xi). Our results in Theorems 1 and 2 reveal that although
classical CLT for (∂/∂ξj)f̂(xi) does not hold, a weighted average of (∂/∂ξj)f̂(xi) is asymptotically
normal after an additive correction, in the sense that

n∑
i=1

( 1−Hii

‖y −Aα̂‖2

) ∂f̂
∂ξj

(xi) + [additive correction] ≈ N(0, 1), (8)

where (1−Hii)/‖y −Aα̂‖2 are weights of order 1/
√
n with Hii the diagonal elements of matrix

H = A(A>A+ nτId)
−1A> ∈ Rn×n. (9)

The validity of (8) is explained in the last paragraph preceding § 2.2. A first surprise of our results is
that an asymptotic normality result of the form (8) holds for the derivatives of trained neural network.
As we detail in the following subsections, a second surprise is that (8) can be used to construct CIs
for the linear part of the models (4) and (5), even though neural networks are typically only used for
predictions. A third surprise is that the length of these CIs features a double-descent phenomenon (cf.
§ 2.4 and 3). We make the following assumptions on the linear component of the data-generating
process and the neural network weightsW .

Assumption 1 (data-generating process) The entries of X and ε are mutually independent with
xij ∼iid N(0, 1) and εi ∼iid N(0, θ2ε). The limiting magnitude of the signal ‖β‖22 → θ2β and the
magnitude of the noise θ2ε are fixed constants independent of n, d, p.

Assumption 2 (NN estimation) The activation function σ : R → R is L-Lipschitz so that the
derivative σ′ : R → R exists almost everywhere. The weight matrixW is independent withX, G, ε
and satisfies (i) ‖W ‖op is bounded uniformly over the asymptotic setting (6), or (ii) the entries ofW
are wkj ∼iid N(0, 1/p).

Assumption 2(i) is implied by Assumption 2(ii) with high-probability (c.f., Corollary 7.3.3 in
Vershynin [2018]). For practical purposes, Assumption 2(i) is satisfied if the weight matricesW are
trained on datasets (ỹ,X̃) ∈ Rn′ × Rn′×p independent of (y,X) with ‖W ‖op = 1 (Arjovsky et al.
[2015], Miyato et al. [2018]); or trained with respect to certain weight regularized loss function, e.g.,

W = argminW ′∈Rd×p

{
1
n′L(ỹ, X̃,W ′) + κ

2

∥∥W ′∥∥2
∗

}
, κ > 0, (10)

where the penalty norm ∗ is either the Frobenius norm (Krogh and Hertz [1992]) or the spectral norm
(Yoshida and Miyato [2017]), provided that (1/n′)L(ỹ, X̃,0d×p) are uniformly bounded in large
probability, for e.g., through the magnitude of (1/n′)‖ỹ‖22.

2.1 Asymptotic normality and confidence intervals in the linear model

Definition 1 Following (2) and § 1.3, we define

ζL(ej) = X>j (y −Aα̂)− trace [T 0(ej) + T 1(ej) + TL(ej)] , (11)

whereH is given in (9) and

T 0(ej) = −(In −H) diag
(
σ′(XW>) diag(α̂)Wej

)
,

T 1(ej) = −A(nτId +A>A)−1 diag(Wej)σ
′(WX>) diag(y −Aα̂),

TL(ej) = (In −H)β>ej .

(12)

Theorem 1 Let t ∈ R. Under model (4), Assumption 1 and 2 with notation in Definition 1,

max
j∈Jp

∣∣∣P( ζL(ej)

‖y −Aα̂‖2
≤ t
)
− Φ(t)

∣∣∣→ 0 (13)

for some Jp ⊂ [p] satisfying |Jp|/p ≥ 1− log(p)/p→ 1.
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Figure 2: Simulated boxplots for squared length nL2 and theoretical limit V (ψd, ψp, λ, ρ, σ) (left).
Quantile-Quantile plot for ζL(e1)/ ‖y −Aα̂‖2 (right). Data are generated in a random quadratic
model (Example 1), with dimensions ψp = 1/3, p = 100, n = 300, Ridge raw penalty λ = 10−3,
signal-noise level θ20 = 0, θ2β = 2/3, θ2NL = 1/6, θ2ε = 1/6 thus SNR ρ = 2, activation function
σ(x) = max(x, 0), signal β ∼ Unif(Sp−1(θβ)) and the weights wkj ∼ iid N(0, 1/p). The boxplots
are each based on 300 data points. The QQ-plot has sample size 300.

Theorem 1 provides the asymptotic normality result in the linear model (4). Asymptotic normality is
confirmed in simulations with QQ-plots such as that in Figure 2. Asymptotic normality holds for a
subset Jp ⊂ [p] that contains “most covariates” in the sense except for at most log p indices in [p],
the quantity ζL(ej) is asymptotically normal.

This main theorem provides us an asymptotically normal quantity ζL(ej)/ ‖y −Aα̂‖2 affine in βj
for most j ∈ [p],

ζL(ej)

‖y −Aα̂‖2
= − trace(In −H)

‖y −Aα̂‖2
βj +

X>j (y −Aα̂)− trace [T 0(ej) + T 1(ej)]

‖y −Aα̂‖2
≈ N(0, 1).

The only unobserved term in the above display is βj . Consequently 1− α CIs for βj are obtained
based on the α

2 -th quantile and the 1− α
2 -th quantile of the standard normal distribution, i.e.,

max
j∈Jp

∣∣∣∣P( ζL(ej)

‖y −Aα̂‖2
∈
[
Φ−1(α/2),Φ−1(1− α/2)

])
− (1− α)

∣∣∣∣→ 0. (14)

Those CIs for βj have squared length in proportional to L2 := ‖y −Aα̂‖22/(trace(In −H))2.

Theorem 1 implies (8). By (3), the weighed average in (8) is equal to− trace[T 0(ej)]/ ‖y −Aα̂‖2
in Theorem 1. The term [additive correction] in (8) includes traces of T 1,TL and the first term in
(11), thus the validity of (8) follows by Theorem 1.

2.2 Asymptotic normality for model under non-linear perturbation.

This section provides similar the asymptotic normality results for the model (5) under non-linear
perturbation G(·). We require the following assumptions on the nonlinear perturbation G(·) in (5).

Assumption 3 As n, p, d→∞, the intercept β0 → θ0 and E
[
(G(x))2

]
→ θ2NL for x ∼ N(0p, Ip).

Here, θ0, θNL are fixed constant independent of n, d, p. For any realization of the random function
G, G is weakly differentiable in x with mean zero and with squared integrable gradient uniformly
bounded, i.e.,EG[G(x)] = 0 and E[‖∇G(x)‖22] = O(1).

Assumption 4 The nonlinear perturbation G is generated once and for all and is the same for every
i = 1, ..., n so that conditionally on G, the observations (xi, yi)i=1,...,n are iid. The nonlinear
perturbation G is a centered random process indexed by x ∈ Rp, satisfying

EG [G(x)] = 0, EG [G(x1)G(x2)] = Σp(x
>
1 x2/p), (15)

for all x1,x2 ∈ Rp. The covariance function Σp satisfies for some δ > 0,
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(i) Σ′′p(x) exists for x in (1− δ, 1 + δ) and (−δ, δ). Σ′′p(x) is L2-Lipschitz in (1− δ, 1 + δ) and
(−δ, δ) for some constant L2 > 0 independent of n, d, p.

(ii) limp→+∞ Σ′p(0) = 0 and max
(∣∣Σ′p(1)

∣∣ , ∣∣Σ′′p(0)
∣∣ , ∣∣Σ′′p(1)

∣∣) = O(1).

The above assumption ensures that the covariance function Σp is smooth enough in a neighborhood
of 1 and 0. Similar locally smooth conditions are discussed in El Karoui [2010] to study the largest
eigenvalue of kernel random matrices of the form g(XX>/p) for locally smooth g. The reason
that we introduce such local smoothness is to allow a Taylor expansion of Σp around 1 and 0.
The above assumptions include a large class of non-linear perturbations. A simple example is the
following random quadratic perturbation model considered in Mei and Montanari [2019], which has
Σp(t) = θ2NL(t2 − 1/p).

Example 1 (random quadratic model) We assume that for i ∈ [n],

yi = β0 + x>i β +G(xi) + εi, G(xi) = (θNL/p)
[
x>i Gxi − trace(G)

]
, (16)

whereG ∈ Rp×p has standard normal entries gj1,j2 ∼iid N(0, 1), independent of (X,W , ε).

Under these assumptions, the following asymptotic normality result holds.

Theorem 2 Let t ∈ R. Under model (5), Assumption 1, 2, 3 and 4 and Definition 1,

max
j∈Jp

∣∣∣∣P( ζL(ej)

‖y −Aα̂‖2
≤ t
)
− Φ(t)

∣∣∣∣→ 0 (17)

for some Jp ⊂ [p] satisfying |Jp|/p ≥ 1− log(p)/p→ 1.

The above theorem provides us the CI in § 2.1. When we assume no intercept nor perturbation,
Theorem 1 is obtained as a special case of Theorem 2.

2.3 Asymptotic normality in general directions

The functions T 0,T 1,TL, ζL in (11) and (12) are linear in ej . As explained in the supplement,
our asymptotic normality results still hold if one replaces ej with a direction u0 ∈ Rp satisfying
‖u0‖2 = 1 in (13), (11), (12) and (17). The convergence will then be uniform over u0 ∈ Sp
where Sp is a subset of the unit sphere Sp−1(1) ⊂ Rp satisfying, in terms of relative volume,
|Sp|/|Sp−1(1)| → 1 as n, p, d→ +∞. Hence we can construct CIs for the unknown parameter u>0 β
instead of βj , for most direction u0 in the unit sphere. We stick to canonical basis vectors ej and βj
as the unknown parameter in the main text in order to keep notation reasonably self-contained.

2.4 Predicting CI length given (ψp, ψd) and the large width limit (ψd →∞)

Let L2 := ‖y −Aα̂‖22/(trace(In −H))2 denote the squared length of our CIs with confidence
level 1 − α = P(|N(0, 1)| ≤ 1/2) ≈ 0.383. This quantile is chosen for convenience; different α
leads to a length proportional to L up to a constant depending on α only. As a consequence of the
characterization of the generalization and training error for the NN estimate (1) in Mei and Montanari
[2019], we find, as explained in the supplement, that under either (a) the linear model (4) with
Assumption 1 and Assumption 2(ii), i.e., under iid normal entries ofW , or (b) the setting of Mei and
Montanari [2019] which is comparable to ours,

Var(y1) →
n→+∞

θ2β + θ2ε + θ2NL,
nL2

Var(y1)

P→
n→+∞

V, lim
ψd→+∞

V = R, (18)

where V := V (ψd, ψp, λ, ρ, σ) and R := R(ψp, λ, ρ, σ) are non-random functions, the signal-to-
noise ratio (SNR) is ρ := θ2β/(θ

2
ε + θ2NL), and where σ represents the choice of activation function.

The quantities V and R are calculated by solving quartic polynomial equations. The specific forms
of the quartic equations, which can be deduced from [Mei and Montanari, 2019], are given in the
supplement. These equations can be solved numerically, with the code also found in the supplement.
These predicted values for V and R obtained by solving the quartic equations reliably predict the
observed squared lengths of our CIs in simulations as shown on the left of Figure 2. Solving these
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quartic equations let us quickly predict the average CI length as shown in Figures 1 and 3. This
enables comparing choices of λ, ρ, ψd and activation function σ in terms of the resulting CI length.
For instance, it lets us answer which of several activation functions produces the smallest CIs.

We should note that Mei and Montanari [2019] assumes that the random xi,wk are distributed
uniformly on spheres of radius

√
p and 1 respectively, and that the random process G(x) is a centered

Gaussian process satisfying additional mild conditions. Since random vectors uniformly distributed
on the sphere Sp−1(

√
p) are close to standard normal vectors (e.g., in the sense of § 3.3.3 in Vershynin

[2018]), we expect the results of Mei and Montanari [2019] to be valid for Gaussian xi,wk as well.
The supplement provides a sketch of proof of the validity of the limits in (18) under the linear
model (4) with Gaussian wkj ∼ iid N(0, 1/p) and xij ∼ iid N(0, 1).

3 Numerical results and some observations

With the notation for L, V,R in § 2.4, we display several numerical plots: Figure 1 on p. 3 which
highlights the double-descent phenomenon for CI lengths as ψd increases for fixed (ψp, λ, ρ, σ);
Figure 2 on p. 6 which highlights asymptotic normality and the accuracy of the numerical prediction
for the CI length; and Figure 3 below which displays the squared length R of CIs in the infinite width
limit for several activation functions.

A common feature of these plots is the double-descent phenonemon in terms of CI length, suggesting
that the length of CIs mimic the generalization error of the corresponding estimate (1). The fact that
CI lengths would feature double-descent curves was a surprise to us.

The right plot in Figure 1 highlights the advantage of interpolation (small λ): for large networks (large
ψd), the CI length is smaller for small λ. To our knowledge, this is a first instance of observing the
advantage of interpolating methods for uncertainty quantification in the form of confidence intervals.

Pennington and Worah [2017] proposed a special class of activation functions satisfying γ1 :=
E [σ′(Z)] = 0 for Z ∼ N(0, 1). They showed that those activation functions maintain approximate
isometry at initialization, that is, the eigenvalues of the data covariance matrix are unchanged in
distribution after passing through a single nonlinear layer of the network. They conjectured that
activation functions with γ1 = 0 would improve the training time and performance.
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
λ = 10−3, ρ = 2

ReLU

leaky ReLU

Swish

softplus

tanh

sigmoid

γ1 = 0

0.01 0.1 1 10 100
ψp ≈ p/n

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
λ = 10−3, ρ = 0.5

ReLU

leaky ReLU

Swish

softplus

tanh

sigmoid

γ1 = 0

Figure 3: The indicator R(ψp, λ, ρ, σ) (see (18) on p. 7) of the squared length in the infinite width.
The activation functions are ReLU max(x, 0), leaky ReLU max(x, 0.05x), Swish x

1+e−x , softplus

ln(1 + exp(x)), tanh ex−e−x

ex+e−x and sigmoid 1
1+e−x . Activation functions σ(x) with γ1 := E [σ′(Z)] =

0 for Z ∼ N(0, 1) have limit R = 1 always. We consider Ridge penalty parameter λ = 10−3 and
signal-to-noise ratio ρ ∈ {2, 0.5}, corresponding to the high SNR interpolating regime (left) and low
SNR interpolating regime (right).

Figure 3 shows that the activation functions with γ1 = 0 maintain the constant limit R(ψp, λ, ρ, σ) =
1 for all ψp, λ, ρ. The activation functions commonly used in practice (e.g., ReLU, leaky ReLU,
softplus) enable small R < 1 in the high SNR interpolating regime (SNR� 1, small λ); furthermore
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ReLU activations consistently produce smaller CI lengths than other choices of σ. In the low
SNR and interpolating regime (SNR � 1, small λ), R can be larger than 1 for commonly used
activation functions: here activation functions with γ1 = 0 perform better in terms of CI lengths. The
supplement provides further comparisons in terms of CI lengths, and plots comparable to Figures 1
and 3 in different regimes.

Conclusion. We have provided an explicit construction of valid 1−α CIs based on the NN estimate
(1), as well as a toolbox to numerically predict the length of this CIs. More comparisons, in terms of
CI length, can be easily plotted for different values of the parameters ψp, ρ, λ and different activation
functions using the code provided in the supplement. We hope that this toolbox will enable more
insights on the role of activation functions and other network parameters for uncertainty quantification
purposes.

Broader Impact

Our work provides a first step towards frequentist uncertainty quantification, in the form of confidence
intervals, for the NN estimate (1). Uncertainty quantification and confidence intervals are important
for decision making in society, where decisions with long-lasting effects are made based on summary
statistics computed on characteristics of individual human beings. As two concrete examples, consider
the GPA awarded by Universities to their undergraduate students, or the credit score assigned to
individuals in the US regarding their capacity to manage their debts. Graduate schools would refuse
admissions to student applying with a GPA under a fixed threshold, and banks would refuse loans to
individuals with a credit score under a threshold. In order to make fairer decisions, graduate schools
and banks ought to consider the uncertainty of these summary statistics, for instance by comparing
the admission threshold to some confidence interval [GPA − STD, GPA + STD] that takes into account
the uncertainty of computing the GPA summary statistic. Similarly, banks should take into account
confidence intervals when making loan decisions about an individual based on their credit score
summary statistic. Although the neural network model (1) studied in the present paper is admittedly
simple and far from the state-of-the-art networks used for predictions in practice, we hope that our
results will provide useful ideas and inspire new results of frequentist uncertainty quantification
for machine learning tools that are implemented in societal decision making and praised for their
prediction properties, but, so far, lack provable uncertainty quantification guarantees.
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