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1 Training Setup

In Fig. 1, we compare the training setup for the cross-entropy, self-supervised contrastive and su-
pervised contrastive (SupCon) losses. Note that the number of parameters in the inference models
always stays the same. We also note that it is not necessary to train a linear classifier in the second
stage, and previous works have used k-Nearest Neighbor classification [12] or prototype classifi-
cation to evaluate representations on classification tasks. The linear classifier can also be trained
jointly with the encoder, as long as it doesn’t propagate gradients back to the encoder.
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Figure 1: Cross entropy, self-supervised contrastive loss and supervised contrastive loss: The cross entropy
loss (left) uses labels and a softmax loss to train a classifier; the self-supervised contrastive loss (middle) uses
a contrastive loss and data augmentations to learn representations. The supervised contrastive loss (right) also
learns representations using a contrastive loss, but uses label information to sample positives in addition to
augmentations of the same image. Both contrastive methods can have an optional second stage which trains a
model on top of the learned representations.
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2 Gradient Derivation

In Sec. 3 of the paper, we make the claim that the gradients of the two considered supervised
contrastive losses, £,/ and £;”, with respect to a normalized projection network representation,
z;, have a nearly identical mathematical form. In this section, we perform derivations to show this is
true. It is sufficient to show that this claim is true for EZZf ; and Ef::’; For convenience, we reprint
below the expressions for each.
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We start by deriving the gradient of £” (Eq. 1):

oLy” — _i log Z exp (zi * 2p/7)
0z; 0z; > exp(ziczq/7)
pGP ) a€A(i)
*alo ZCX(Z'Z/T)*GIO ZGX(Z'Z/T)
- azi & i p ¢ @ 6zi & . P ¢ P
a€A(i) pEP(1)
Y. Za€Xp(2i*2a/T) Yo Zpexp(zi+2,/T)
_ laea@ _ Llper@
Y exp(zicza/T) T Y, exp(zi+zp/T)
acA(i) pEP(4)
D Zpexp(zi+zp/T)+ 3 zZnexp(zi+zn/T) > Zpexp (zi+ zp/T)
_ Lper@) neN (i) _ Llper@)
T S exp (2i+ 2a/7) Ty o (= 2/T)
acA(i) pEP(i)
= Z zp( X”I Z zn in (3)
pEP(i) neEN (3)
where we have defined:
_ exp (2, * 2p/7)
P, = 4)
? ZaeA(i) exp (2; 24 /T)
in _  exp(2i*2zp/T)
Xin = 5
> exp(zi-zp/7)

p’'€P(i)

Though similar in structure, P;, and Xf;} are fundamentally different: P;, is the likelihood for z,,
with respect to all positives and negatives, while X fg is that but with respect to only the positives.
P;,, is analogous to P;, but defines the likelihood of z,,. In particular, P, < X ZZ} We now derive



the gradient of Eq. 2:
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Thus, both gradients (Egs. 3 and 6) have a very similar form and can be written collectively as:
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This corresponds to Eq. 4 and subsequent analysis in the paper.

3 Intrinsic Hard Positive and Negative Mining Properties

The contrastive loss is structured so that gradients with respect to the unnormalized projection net-
work representations provide an intrinsic mechanism for hard positive/negative mining during train-
ing. For losses such as the triplet loss or max-margin, hard mining is known to be crucial to their
performance. For contrastive loss, we show analytically that hard mining is intrinsic and thus re-
moves the need for complicated hard mining algorithms.

As shown in Sec. 2, the gradients of both £).7 and £]* are given by Eq. 6. Additionally, note

that the self-supervised contrastive loss, Efe” , 1s a special case of either of the two supervised
contrastive losses (when P(i) = j(i)). So by showing that Eq. 6 has structure that provides hard



positive/negative mining, it will be shown to be true for all three contrastive losses (self-supervised
and both supervised versions).

The projection network applies a normalization to its outputs*. We shall let w; denote the projection
network output prior to normalization, i.e., z; = w;/||w;||. As we show below, normalizing the
representations provides structure (when combined with Eq. 6) to the gradient enables the learning
to focus on hard positives and negatives. The gradient of the supervised loss with respect to w; is
related to that with respect to z; via the chain rule:
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Combining Egs. 6 and 11 thus gives:
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We now show that easy positives and negatives have small gradient contributions while hard pos-
itives and negatives have large ones. For an easy positive (i.e., one against which contrasting the
anchor only weakly benefits the encoder), z; « z,, ~ 1. Thus (see Eq. 13):

(2 — (2 2p)2ill = /1 (20 2,)? = 0 (15)

However, for a hard positive (i.e., one against which contrasting the anchor greatly benefits the
encoder), z; » 2, ~ 0, so:

1(zp = (zi* 2zp)zill = /1 = (zi+2p)2 = 1 (16)

“Note that when the normalization is combined with an inner product (as we do here), this is equivalent
to cosine similarity. Some contrastive learning approaches [1] use a cosine similarity explicitly in their loss
formulation. We decouple the normalization here to highlight the benefits it provides.



Thus, for the gradient of £;,” (where X;;, = X/7):
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For the gradient of £;,{ (where X;, = X7*")

out

I(zp = (zi* 2p)zil [Pip — X3

ip
~ . out
~ | Plp Xip

1 1

X exp(zitzd/T) [P0

a€A(i)
B 1 1

> exp(ziczp/T)+ 3 exp(zi-zn/T) |P(i)

P EP(3) neN (i)
o Z exp (z;+ 2z, /7T) + Z exp (2 zpr /T) — | P(1)] (18)

neN (i) p’€P(3)

where 3, n ;) €xP(2i+2,/T) > 0 (assuming z;-z,, < 0)and 3 p(;) €xp(24°2p /T)—|P(i)[ = 0
(assuming z; » 2,y > 0). We thus see that for either £} and £"? the gradient response to a hard
positive in any individual training step can be made larger by increasing the number of negatives.

Additionally, for £, it can also be made larger by increasing the number of positives.

Thus, for weak positives (since z; » z,, = 1) the contribution to the gradient is small while for hard
positives the contribution is large (since z;+z, ~ 0). Similarly, analysing Eq. 14 for weak negatives
(z; * 2z, = —1) vs hard negatives (z; « z,, =~ 0) we conclude that the gradient contribution is large
for hard negatives and small for weak negatives.

In addition to an increased number of positives/negatives helping in general, we also note that
as we increase the batch size, we also increase the probability of choosing individual hard posi-
tives/negatives. Since hard positives/negatives lead to a larger gradient contribution, we see that a
larger batch has multiple high impact effects to allow obtaining better performance, as we observe
empirically in the main paper.

Additionally, it should be noted that the ability of contrastive losses to perform intrinsic hard pos-
itive/negative data mining comes about only if a normalization layer is added to the end of the
projection network, thereby justifying the use of a normalization in the network. Ours is the first
paper to show analytically this property of contrastive losses, even though normalization has been
empirically found to be useful in self-supervised contrastive learning.

4 Triplet Loss Derivation from Contrastive Loss

In this section, we show that the triplet loss [ 1] is a special case of the contrastive loss when the
number of positives and negatives are each one. Assuming the representation of the anchor (¢) and
the positive (p) are more aligned than that of the anchor and negative (n) (i.e., z; » 2, > z; * z,),



we have:
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which has the same form as a triplet loss with margin o« = 27. This result is consistent with empirical
results [1] which show that contrastive loss performs better in general than triplet loss on represen-
tation tasks. Additionally, whereas triplet loss in practice requires computationally expensive hard
negative mining (e.g., [0]), the discussion in Sec. 3 shows that the gradients of the supervised con-
trastive loss naturally impose a measure of hard negative reinforcement during training. This comes
at the cost of requiring large batch sizes to include many positives and negatives.

S Supervised Contrastive Loss Hierarchy

The SupCon loss subsumes multiple other commonly used losses as special cases of itself. It is
insightful to study which additional restrictions need to be imposed on it to change its form into that
of each of these other losses.

For convenience, we reprint the form of the SupCon loss.
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Here, P(i) is the set of all positives in the multiviewed batch corresponding to the anchor i. For
SupCon, positives can come from two disjoint categories:

e Views of the same sample image which generated the anchor image.

e Views of a sample image different from that which generated the anchor image but having
the same label as that of the anchor.

The loss for self-supervised contrastive learning (Eq. 1 in the paper) is a special case of SupCon
when P(3) is restricted to contain only a view of the same source image as that of the anchor (i.e.,
the first category above). In this case, P(i) = j(¢), where j(i) is the index of view, and Eq. 19
readily takes on the self-supervised contrastive loss form.
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A second commonly referenced loss subsumed by SupCon is the N-Pairs loss [7]. This loss, while
functionally similar to Eq. 20, differs from it by requiring that the positive be generated from a
sample image different from that which generated the anchor but which has the same label as the
anchor (i.e., the second category above). There is also no notion of temperature in the original
N-Pairs loss, though it could be easily generalized to include it. Letting k(z) denote the positive
originating from a different sample image than that which generated the anchor 7, the N-Pairs loss
has the following form:
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It is interesting to see how these constraints affect performance. For a batch size of 6144, a ResNet-
50 encoder trained on ImageNet with N-Pairs loss achieves an ImageNet Top-1 classification accu-
racy of 57.4% while an identical setup trained with the SupCon loss achieves 78.7%.

Finally, as discussed in Sec. 4, triplet loss is a special case of the SupCon loss (as well as that of
the self-supervised and N-Pairs losses) when the number of positives and negatives are restricted to
both be one.

6 Effect of Temperature in Loss Function

Similar to previous work [!, 8], we find that the temperature 7 used in the loss function has an
important role to play in supervised contrastive learning and that the model trained with the optimal
temperature can improve performance by nearly 3%. Two competing effects that changing the
temperature has on training the model are:

1. Smoothness: The distances in the representation space used for training the model have
gradients with smaller norm (|[VL|| o 1); see Section 2. Smaller magnitude gradients
make the optimization problem simpler by allowing for larger learning rates. In Section
3.3 of the paper, it is shown that in the case of a single positive and negative, the contrastive
loss is equivalent to a triplet loss with margin o< 7. Therefore, in these cases, a larger
temperature makes the optimization easier, and classes more separated.

2. Hard positives/negatives: On the other hand, as shown in Sec 3, the supervised contrastive
loss has structure that cause hard positives/negatives to improve performance. Addition-
ally, hard negatives have been shown to improve classification accuracy when models are
trained with the triplet loss [0]. Low temperatures are equivalent to optimizing for hard
positives/negatives: for a given batch of samples and a specific anchor, lowering the tem-
perature relatively increases the value of P;, (see Eq. 4) for samples which have larger inner
product with the anchor, and reduces it for samples which have smaller inner product.

We found empirically that a temperature of 0.1 was optimal for top-1 accuracy on ResNet-50; results
on various temperatures are shown in Fig. 4 of the main paper. We use the same temperature for all
experiments on ResNet-200.

7 Effect of Number of Positives Iy 3 5 7 9  Nocap(13)
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We run ablations to test the effect of the num- ] -
ber of positives. Specifically, we take at most Table 1 Comparlson_ of Top-1 accuracy v_a.rlablhty as
k positives for each sample, and also remove 2 function of the maximum number of positives | P()|

them from the denominator of the loss func- varies from 1 to no cap . Adding more positives bene-
tion so they are not considered as a negative fits the final Top-1 accuracy. Note that with 1 positive,

. . . . this is equivalent to the self-supervised approach of [1]
We tr?lln Wlt,h a batch size of .6144’ so with- where the positive is an augmented version of the same
out this capping there are 13 positives in expec-  sgmple.

tation(6 positives, each with 2 augmentatioins,

plus other augmentation of anchor image). We

train for 350 epochs. Table 1 shows the steady benefit of adding more positives for a ResNet-50
model trained on ImageNet with supervised contrastive loss. Note that for each anchor, the number
of positives always contains one positive which is the same sample but with a different data aug-
mentation; and the remainder of the positives are different samples from the same class. Under this
definition, self-supervised learning is considered as having 1 positive.

8 Robustness

Along with measuring the mean Corruption Error (mCE) and mean relative Corruption Error [4]
on the ImageNet-C dataset (see paper, Section 4.2 and Figure 3), we also measure the Expected
Calibration Error and the mean accuracy of our models on different corruption severity levels. Table
2 demonstrates how performance and calibration degrades as the data shifts farther from the training
distribution and becomes harder to classify. Figure 2 shows how the calibration error of the model
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Figure 2: Expected Calibration Error and mean top-1 accuracy at different corruption severities on ImageNet-
C, on the ResNet-50 architecture (top) and ResNet-200 architecture (bottom). The contrastive loss maintains
a higher accuracy over the range of corruption severities, and does not suffer from increasing calibration error,
unlike the cross entropy loss.

increases as the level of corruption severity increases as measured by performance on ImageNet-C

[4].

Model Test 1 2 3 4 5
Loss Architecture ECE
Cross Entro ResNet-50 0.039 0.033 0.032 0.047 0.072 0.098
Py ResNet-200  0.045 0.048 0.036 0.040 0.042 0.052
Supervised ResNet-50 0.024 0.026 0.034 0.048 0.071 0.100
Contrastive ResNet-200  0.041 0.047 0.061 0.071 0.086 0.103

Top-1 Accuracy
ResNet-50 7824 65.06 5496 47.64 3593 25.38

CrossEntropy  peNet200 8081 72.89 6528 60.55 52.00 43.11
Supervised ResNet-50  78.81 6539 5555 48.64 3727 26.92
Contrastive ResNet-200  81.38 7329 66.16 61.80 54.01 45.71

Table 2: Top: Average Expected Calibration Error (ECE) over all the corruptions in ImageNet-C [4] for a given
level of severity (lower is better); Bottom: Average Top-1 Accuracy over all the corruptions for a given level
of severity (higher is better).

9 Two stage training on Cross Entropy

To ablate the effect of representation learning and have a two stage evaluation process we also
compared against using models trained with cross-entropy loss for representation learning. We
do this by first training the model with cross entropy and then re-initializing the final layer of the
network randomly. In this second stage of training we again train with cross entropy but keep the
weights of the network fixed. Table 3 shows that the representations learnt by cross-entropy for a
ResNet-50 network are not robust and just the re-initialization of the last layer leads to large drop in
accuracy and a mixed result on robustness compared to a single-stage cross-entropy training. Hence
both methods of training cross-entropy are inferior to supervised contrastive loss.

10 Training Details

In this section we present results for various ablation experiments, disentangling the effects of (a)
Optimizer and (b) Data Augmentation on downstream performance.



Accuracy mCE rel. mCE

Supervised Contrastive 78.7 67.2 94.6

Cross Entropy (1 stage) 77.1 68.4 103.7

Cross Entropy (2 stage) 73.7 73.3 92.9
Table 3: Comparison between representations learnt using Supervised Contrastive and representations learnt
using Cross Entropy loss with either 1 stage of training or 2 stages (representation learning followed by linear
classifier).

10.1 Optimizer

We experiment with various optimizers for the contrastive learning and training the linear classifier
in various combinations. We present our results in Table 4. The LARS optimizer [ 3] gives us the
best results to train the embedding network, confirming what has been reported by previous work
[1]. With LARS we use a cosine learning rate decay. On the other hand we find that the RMSProp
optimizer [10] works best for training the linear classifier. For RMSProp we use an exponential
decay for the learning rate.

Contrastive Optimizer Linear Optimizer Top-1 Accuracy

LARS LARS 78.2
LARS RMSProp 78.7
LARS Momentum 77.6
RMSProp LARS 77.4
RMSProp RMSProp 77.8
RMSProp Momentum 76.9
Momentum LARS 7.7
Momentum RMSProp 76.1
Momentum Momentum 77.7

Table 4: Results of training the ResNet-50 architecture with AutoAugment data augmentation policy for 350
epochs and then training the linear classifier for another 350 epochs. Learning rates were optimized for every
optimizer while all other hyper-parameters were kept the same.

10.2 Data Augmentation
We experiment with the following data augmentations:

o AutoAugment: [2] A two stage augmentation policy which is trained with reinforcement
learning for Top-1 Accuracy on ImageNet.

¢ RandAugment: [3] A two stage augmentation policy that uses a random parameter in place
of parameters tuned by AutoAugment. This parameter needs to be tuned and hence reduces
the search space, while giving better results than AutoAugment.

e SimAugment: [!] An augmentation policy which applies random flips, rotations, color
jitters followed by Gaussian blur. We also add an additional step where we warping the
image before the Gaussian blur, which gives a further boost in performance.

o Stacked RandAugment: [O] An augmentation policy which is based on RandAugment [3]
and SimAugment [1]. The strategy involves an additional RandAugment step before doing
the color jitter as done in SimAugment. This leads to a more diverse set of images created
by the augmentation and hence more robust training which generalizes better.

and found that AutoAugment [5] gave us the highest Top-1 accuracy on ResNet-50 for both the cross
entropy loss and supervised contrastive loss. On the other hand Stacked RandAugment [9] gives us
highest Top-1 accuracy on ResNet-200 for both the cross entropy loss and supervised contrastive
Loss. We conjecture this is happens because Stacked RandAugment is a stronger augmentation
strategy and hence needs a larger model capacity to generalize well.



We also note that AutoAugment is faster at runtime than other augmentation schemes such as Ran-
dAugment [3], SimAugment [1] or StackedRandAugment [9] and hence models trained with Au-

toAugment take lesser time to train. We leave experimenting with MixUp [

future work.

] or CutMix [14] as

Contrastive Augmentation Linear classifier Augmentation Accuracy
AutoAugment AutoAugment 78.6
AutoAugment RandAugment 78.1
AutoAugment SimAugment 75.4
AutoAugment Stacked RandAugment 77.4
SimAugment AutoAugment 76.1
SimAugment RandAugment 75.9
SimAugment SimAugment 77.9
SimAugment Stacked RandAugment 76.4
RandAugment AutoAugment 78.3
RandAugment RandAugment 78.4
RandAugment SimAugment 76.3
RandAugment Stacked RandAugment 75.8

Stacked RandAugment AutoAugment 78.1
Stacked RandAugment RandAugment 78.2
Stacked RandAugment SimAugment 77.9
Stacked RandAugment Stacked RandAugment 75.9

Table 5: Combinations of different data augmentations for ResNet-50 trained with optimal set of hyper-
parameters and optimizers. We observe that stacked RandAugment does consistently worse for all configu-
rations due to lower capacity of ResNet-50 models. We also observe that for other augmentations that we get

the best performance by using the same augmentations in both stages of training.

Further we experiment with varying levels of augmentation magnitude for RandAugment since that
has shown to affect performance when training models with cross entropy loss [3]. Fig. 3 shows
that supervised contrastive methods consistently outperform cross entropy training independent of
augmentation magnitude.
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Figure 3: Top-1 Accuracy vs RandAugment magnitude for ResNet-50 (left) and ResNet-200 (right). We see that
supervised contrastive methods consistently outperform cross entropy for varying strengths of augmentation.
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