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Abstract

We address the question of characterizing and finding optimal representations
for supervised learning. Traditionally, this question has been tackled using the
Information Bottleneck, which compresses the inputs while retaining information
about the targets, in a decoder-agnostic fashion. In machine learning, however, our
goal is not compression but rather generalization, which is intimately linked to
the predictive family or decoder of interest (e.g. linear classifier). We propose the
Decodable Information Bottleneck (DIB) that considers information retention and
compression from the perspective of the desired predictive family. As a result, DIB
gives rise to representations that are optimal in terms of expected test performance
and can be estimated with guarantees. Empirically, we show that the framework
can be used to enforce a small generalization gap on downstream classifiers and to
predict the generalization ability of neural networks.

1 Introduction

A fundamental choice in supervised machine learning (ML) centers around the data representation
from which to perform predictions. While classical ML uses predefined encodings of the data [1–5]
recent progress [6, 7] has been driven by learning such representations. A natural question, then, is
what characterizes an “optimal” representation — in terms of generalization — and how to learn it.

The standard framework for studying generalization, statistical learning theory [8], usually assumes
a fixed dataset/representation, and aims to restrict the predictive functional family V (e.g. linear
classifiers) such that empirical risk minimizers (ERMs) generalize.1 Here, we turn the problem on its
head: we ask whether it is possible to enforce generalization by changing the representation of the
inputs such that ERMs in V perform well, irrespective of the complexity of V .

A common approach to representation learning consists of jointly training the classifier and repre-
sentation by minimizing the empirical risk (which we call J-ERM). By only considering empirical
risk, J-ERM is optimal in the infinite data limit (consistent; [10]), but the resulting representations do
not favor classifiers that will generalize from finite samples. In contrast, the information bottleneck
(IB) method [11] aims for representations that have minimal information about the inputs to avoid
over-fitting, while having sufficient information about the labels [12]. While conceptually appealing
and used in a range of applications [13–16], IB is based on Shannon’s mutual information, which

1Rather than defining learning in terms of deterministic hypotheses h ∈ H, we consider the more general [9]
case of probabilistic predictors V , in order to make a link with information theory.
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Figure 1: Left two plots: illustration of representations learned by joint empirical risk minimization
(J-ERM) and our decodable information bottleneck (DIB), for classifiers V with linear vertical
decision boundaries. (a) For representations learned by J-ERM, there may exist an ERM that does not
generalize; (b) Representations learned by DIB ensure that any ERM will generalize to the test set
(V-minimality) . Right two plots: 2D representations encoded by an multi-layer perceptron (MLP)
for odd-even classification of 200 MNIST [22] examples. The white decision boundary corresponds
to a classifer which was trained to perform well on train but bad on test (see Sec. 4.2). (c) J-ERM
allows such classifiers that cannot generalize; (d) DIB ensures that there are no such classifiers in V .

was developed for communication theory [17] and does not take into account the predictive family
V of interest. As a result, IB’s sufficiency requirement does not ensure the existence of a predictor
f ∈ V that can perform well using the learned representation; 2 while its minimality term is difficult
to estimate, making IB impractical without resorting to approximations [18–21].

We resolve these issues by introducing the decodable information bottleneck (DIB) objective, which
recovers minimal sufficient representations relative to a predictive family V . Intuitively, it ensures
that classifiers in V can predict labels (V-sufficiency) but cannot distinguish examples with the same
label (V-minimality), as illustrated in Fig. 1. Our main contributions can be summarized as follows:

• We generalize notions of minimality and sufficiency to consider predictors V of interest.

• We prove that such representations are optimal — every downstream ERM in V reaches the
best achievable test performance — and can be learned with guarantees using DIB.

• We experimentally demonstrate that using our representations can increase the performance
and robustness of downstream classifiers in average and worst case scenarios.

• We show that the generalization ability of a neural network is highly correlated with the
degree of V-minimality of its hidden representations in a wide range of settings (562 models).

2 Problem Statement and Background

Throughout this paper, we provide a more informal presentation in the main body, and refer the reader
to the appendices for more precise statements. For details about our notation, see Appx. A.

2.1 Problem Set-Up: Representation Learning as a Two-Player Game

Consider a game between Alice, who selects a classifier f ∈ V , and Bob, who provides her with a
representation to improve her performance. We are interested in Bob’s optimal choice. Specifically:

1. Alice decides a priori on: a predictive family V , a task of interest that consists of classifying
labels Y given inputs X, and a score/loss function S measuring the quality of her predictions.

2. Given Alice’s selections, Bob trains an encoder PZ |X to map inputs X to representations Z.

3. Using Bob’s encoder and a dataset D i.i.d.∼ PMX,Y of M input-output pairs (x, y), Alice
selects a classifier f̂ from all ERMs V̂(D) := arg minf∈V R̂(f,Z;D), where R̂(f,Z;D) :=
1
M

∑
y,x∈D Ez∼PZ | x [S(y, f [z])] is an estimate of the risk R(f,Z) = ED

[
R̂(f,Z;D)

]
.

2As an illustration, IB invariance to bijections suggests that a non-linearly entangled representation is as good
as a linearly separable one if there is a bijection between them, even when classifying using a logistic regression.
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Our goals are to: (i) characterize optimal representations Z∗ that minimize Alice’s expected loss
R(f̂ ,Z); (ii) derive an objective L that can be optimized to approximate the optimal encoder PZ∗ |X.

We assume that: (i) sample spaces Y,Z,X are finite; (ii) S(y, f [z]) is the log loss − log f [z](y),
where f [z](y) approximates PY|Z(y|z) as in [23]; (iii) the family V satisfies mild constraints that
hold for practical classifiers such as neural networks. See Appx. B for all assumptions.

2.2 Sufficiency, Minimality, and the Information Bottleneck (IB)

We review IB, an information theoretic method for supervised representation learning. IB is built
upon the intuition that a representation Z should be maximally informative about Y (sufficient), but
contain no additional information about X (minimal) to avoid possible over-fitting. Specifically, the
set of sufficient representations S and minimal sufficientM representations are defined as:3

S := arg max
Z′

I[Y; Z′] and M := arg min
Z′∈S

I[X; Z′] (1)

The IB criterion (to minimize) can then be interpreted [12] as the Lagrangian relaxation of Eq. (1):

LIB := − I[Y; Z] + β ∗ I[X; Z] (2)

Despite its intuitive appeal, IB suffers from the following theoretical and practical issues: (i) Lack of
optimality guarantees for Z ∈M. Generalization bounds based on I[Z; X] are a step towards such
guarantees [12, 26] but current bounds are still vacuous [27]. The strong performance of invertible
neural networks [28, 29] also shows that a small I[X; Z] is not required for generalization; (ii) LIB

is hard to estimate with finite samples [12, 30]. One has to either restrict the considered setting
[11, 31, 32], or optimize variational [18–20] or non-parametric [21] bounds; (iii) LIB is invariant to
bijections and thus does not favor simple decision boundaries [33] that can be achieved by a f ∈ V .

We stipulate that these known issues stem from a common cause: IB uses mutual information, which
is agnostic to the predictive family V of interest. To remedy this, we leverage the recently proposed
V-information [23] to formalize the notion of V-minimal V-sufficient representations.

2.3 V-information

From a predictive perspective, mutual information I[Y; Z] corresponds to the difference in expected
log loss when predicting Y with or without Z using the best possible probabilistic classifier.

I[Y; Z] := H[Y]−H[Y|Z] = H[Y]− Ez,y∼PZ,Y

[
− logPY |Z

]
(3)

= H[Y]− inf
f∈U

Ez,y∼PZ,Y
[− log f [z](y)] Strict Properness [34] (4)

where U is the collection of all predictors from Z to distributions over Y , which we call universal.
As the optimization in Eq. (4) is over U , I[Y; Z] measures information that might not be “usable”
by f ∈ V ⊂ U . Xu et al.’s [23] resolve this issue by introducing V-information IV [Z→ Y] to only
consider the information that can be decoded by a predictors of interest f ∈ V instead of f ∈ U .4

IV [Z→ Y] := H[Y]−HV [Y |Z] = H[Y]− inf
f∈V

Ez,y∼PZ,Y
[− log f [z](y)] (5)

IV [Z→ Y] has useful properties, it: recovers I[Y; Z] for V = U , is non-negative, and is zero when Z
is independent of Y. Importantly, V-information is easier to estimate than Shannon’s information;
indeed, it corresponds to estimating the risk (HV [Y |Z]) and thus inherits [23] probably approximately
correct (PAC; [35]) estimation bounds that depend on the (Rademacher [36]) complexity of V .

3 Methods

In this section, we define V-minimal V-sufficient representations, prove that they are optimal in the
two-player representation learning game, and discuss how to approximately learn them in practice.

3As shown in Appx. C.1.1, this common [12, 24] definition is a generalization of minimal sufficient
statistics [25] to stochastic statistics Z = T (X, ε) where ε is a source of noise independent of X.

4[23] also replace H[Y] with HV [Y |∅]. This requires that any f ∈ V can be conditioned on the empty
set ∅. We keep H[Y] for simplicity and show that both are equivalent in our setting (Appx. C.1.2).
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3.1 V-Sufficiency and Best Achievable Performance

Let us study Alice’s best risk minf∈V R(f,Z) using a representation Z. This tight lower bound on her
performance looks strikingly similar to HV [Y |Z], which is controlled by IV [Z→ Y] (see Eq. (5)).
As a result, if Bob maximizes IV [Z→ Y], he will ensure that Alice can achieve the lowest loss.

Definition 1. A representation Z is said to be V-sufficient if it maximizes V-information with the
labels. We denote all such representations as SV := arg maxZ′ IV [Z′ → Y].

Proposition 1. Z is V-sufficient ⇐⇒ there exists f∗ ∈ V whose test loss when predicting from Z
is the best achievable risk, i.e., R(f∗,Z) = minZ minf∈V R(f,Z).

Although the previous proposition may seem trivial, it bears important implications, namely that
contrary to the sufficiency term of IB one should maximize IV [Z→ Y] rather than I[Y; Z] when
predictors live in a constrained family V . Indeed, ensuring sufficient I[Y; Z] does not mean that there
is a classifier f ∈ V that can “decode” that information. 5 We prove our claims in Appx. C.2.

3.2 V-minimality and Generalization

We have seen that V-sufficiency ensures that Alice could achieve the best loss. In this section, we
study what representations Bob should chose to guarantee that Alice’s ERMs will perform optimally
by ensuring that any ERM generalizes beyond the training set.

IB suggests minimizing the information I[Z; X] between the representation Z and inputs X to avoid
over-fitting. We, instead, argue that only the information that can be decoded by V matters, and
would thus like to minimize IV [Z→ X]. However, the latter is not defined as X does not generally
take value in (t.v.i.) Y , the sample space of V’s co-domain. For example, in a 32× 32 image binary
classification, Y = {0, 1} but X = [0, . . . , 256]1024 so classifiers f ∈ V cannot predict x ∈ X . To
circumvent this, we decompose X into a collection of r.v.s N that t.v.i. Y , so that IV [Z→ N] is well
defined. Specifically, let Xy ,Zy be “conditional r.v.” s.t. PXy = PX|y , PZy = PZ|y , PXy,Zy = PX,Z|y .
We define the y decomposition of X as r.v.s that arise by all possible labelings of Xy:6

Dec(X, y) := {N | ∃t′ : X → Y s.t. N = t′(Xy)} (6)

We can now define the average V-information between Z and the y decompositions of X as:

IV [Z→ Dec(X,Y)] :=
1

|Y|
∑
y∈Y

1

|Dec(X, y)|
∑

N∈Dec(X,y)

IV [Zy → N] (7)

IV [Z→ Dec(X,Y)] essentially measures how well predictors in V can predict arbitrary labeling
N ∈ Dec(X, y) of examples with the same underlying label y. Replacing the minimality term I[X; Z]
by IV [Z→ Dec(X,Y)] we get our notion of V-minimal V-sufficient representations.

Definition 2. Z is V-minimal V-sufficient if it is V-sufficient and has minimal average V-information
with y decompositions of X. We denote all such Z asMV := arg minZ∈SV IV [Z→ Dec(X,Y)] .

Intuitively, a representation is V-minimal if no predictor in V can assign different predictions to
examples with the same label. Consequently, predictors will not be able to distinguish train and test
examples and must thus perfectly generalize. In this case, predictors will perform optimally as there
is at least one which does (V-sufficiency; Prop. 1). We formalize this intuition in Appx. C.3:

Theorem 1. (Informal) Let V be a predictive family, D i.i.d.∼ PMX,Y a dataset, and assume labels Y are
a deterministic function of the inputs t(X). If Z ∈MV be V-minimal V-sufficient, then the expected
test loss of any ERM f̂ ∈ V̂(D) is the best achievable risk, i.e., R(f̂ ,Z) = minZ minf∈V R(f,Z).

As all ERMs reach the best risk, so does their expectation, i.e., any Z ∈ MV is optimal. We also
show in Appx. C.4 that V-minimality and V-sufficiency satisfy the following properties:

5Notice that IV [Z→ Y] corresponds to the variational lower bound on I[Y; Z] used by Alemi et al. [19]. We
view IV [Z→ Y] as the correct criterion rather than an estimate of I[Y; Z].

6Such (deterministic) labelings are also called “random labelings” [37] as they are semantically meaningless.
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Function H(V , x,y, PZ|X):
z← sample once from each PZ|x

return inff∈V
∑
z,y∈z,y

− log f [z](y)
|D|

Function L̂DIB(V , D, PZ|X, K, β):
(x,y),LVmin,Y ← D, 0, unique(y)
LVsuff ← H(V , x, y, PZ|X)
for y in Y do
xy ← x[y == y]

for k ← 1 to K do
n← random_choice(Y , size=|xy|)
LVmin +=

H(V,xy,n,PZ|X)

|Y|∗K

return (const) +LVsuff − β ∗ LVmin

(a) Pseudo-code for L̂DIB(D)

R
eal labeling

...
CatDog Dog Cat

...
BA B A

...3

1

2
Encoder

...
01 1 1

Every possible binary labeling

Reverse
Gradients

Classifier

Dogs

Cats

...
K

4 ...

(b) DIB with neural networks

Figure 2: Practical DIB (a) Pseudo-code to compute the L̂DIB(D); (b) Illustration of DIB to train a
neural encoder. V-sufficiency corresponds to the standard log loss. V-minimality heads are trained to
classify K arbitrary labeling within each class but the gradients w.r.t. the encoder are reversed so that
Z cannot be used for that task. Each head has different parameters but the same architecture V .

Proposition 2. Let V ⊆ V+ be two families and U the universal one. If labels are deterministic:

• Recoverability The set of U-minimal U-sufficient representations corresponds to the mini-
mal sufficient representations that t.v.i. in the domain of U , i.e.,MU =M∩Z .

• Monotonicity V+-minimal V-sufficient representations are V-minimal V-sufficient, i.e.,
arg maxZ∈SV IV+ [Z→ Dec(X,Y)] ⊆MV .

• Characterization Z ∈MV ⇐⇒ Z ∈ SV and IV [Z→ Dec(X,Y)] = 0.

• Existence At least one U -minimal U -sufficient representation always exists, i.e., |MV | > 0.

The recoverability shows that our notion of V-minimal V-sufficiency is a generalization of minimal
sufficiency. As a corollary, IB’s representations are optimal when Alice is unconstrained in her choice
of predictors V = U . The monotonicity implies that minimality with respect to (w.r.t.) a larger V+ is
also optimal. Finally, the characterizations property gives a simple way of testing for V-minimality.

3.3 Practical Optimization and Estimation

In the previous section we characterized optimal representations Z∗ ∈ MV . Unfortunately, Bob
cannot learn these Z∗ as it requires the underlying distribution PX,Y. We will now show that he can
nevertheless approximate Z∗ in a sample- and computationally- efficient manner.

Optimization. Learning Z ∈MV requires solving a constrained optimization problem. Similarly to
IB, we minimize the decodable information bottleneck (DIB), a Lagrangian relaxation of Def. 2:

LDIB := − IV [Z→ Y] + β ∗ IV [Z→ Dec(X,Y)] (8)
Notice that each IV [Z→ ·] has an internal optimization. In particular IV [Z→ Dec(X,Y)] turns the
problem into a min (over Z) - max (over f ∈ V) optimization, which can be hard to optimize [38, 39].
We empirically compare methods for optimizing LDIB in Appx. E.2 and show that joint gradient
descent ascent performs well if we ensure that the norm of the learned representation cannot diverge.

Estimation. A major benefit of LDIB over LIB is that it can be estimated with guarantees using finite
samples. Namely, if Bob has access to a training set D i.i.d.∼ PMX,Y, he can estimate LDIB reasonably
well. In practice, we: (i) use D to estimate all expectations over PX,Y; (ii) use samples from Bob’s
encoder z ∼ PZ | x; (iii) estimate the average over N ∈ Dec(X, y) in Eq. (7) using K samples.
Figure 2a shows a (naive) algorithm to compute the resulting estimate L̂DIB(D). Despite these
approximations, we show in Appx. C.5 that LDIB inherits V-information’s estimation bounds [23].
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(b) Scaling Up

Figure 3: Optimality of V-sufficiency. Plots of Alice’s best possible performance with different
VBob-sufficient representations. The log likelihood is column-wise scaled from 0 to 100, and vertical
separators are present to discourage between-column comparison. The predictive families are MLPs
with varying widths. (a) Samples of Bob’s 2D representations along with Alice’s decision boundaries
for an odd-even CIFAR100 binary classification; (b) Same scaled log likelihood but using 8D
representations, the standard CIFAR100 dataset, and averaging over 5 runs.

Proposition 3. (Informal) Let R|D| denote the |D| samples Rademacher complexity. Assuming the
loss is always bounded | log f [x](y)| < C then with probability at least 1− δ, L̂DIB(D) described in

Fig. 2a approximates LDIB with error less than 2R|D|(log ◦V) + β log |Y|+ C

√
2 log 1

δ

M .

The fact that the estimation error in Prop. 3 grows with the (Rademacher) complexity of V , shows
that the error is largest for V = U corresponding to LIB. We also see a trade-off in Alice’s choice
of V . A more complex V means the estimation of L̂DIB(D) is harder for Bob (Prop. 3), but Alice’s
prediction will improve (smaller minZ minf∈V R(f,Z); Theorem 1).

Case study: neural networks. Suppose that V is a specific neural architecture, the encoder PZ |X
is parametrized by a neural network qθ, and we are interested in cat-dog classification. As shown
in Fig. 2b, training qθ with DIB corresponds to fitting qθ with multiple classification heads, each
having exactly the same architecture V but different parameters. The V-sufficiency head (in blue)
tries to classify cats and dogs. Each of the K (typically 3-4, see Appx. E.4) V-minimality heads (in
orange) ensure that the representation cannot be used to classify an arbitrary (fixed) labeling of cats
or dogs. In practice, the encoder and heads are trained jointly but gradients from V-minimality heads
are reversed. The V-minimality losses are also multiplied by a hyper-parameter β.

4 Experiments

We evaluate our framework in practical settings, focusing on: (i) the relation between V-sufficiency
and Alice’s best achievable performance; (ii) the relation between V-minimality and generalization;
(iii) the consequence of a mismatch between VAlice and the functional family VBob w.r.t. which Z is
sufficient or minimal — especially in IB’s setting VBob = U ; (iv) the use of our framework to predict
generalization of trained networks. Many of our experiments involve sweeping over the complexity
of families V− ⊆ V ⊆ V+, we do this by varying widths of MLPs — with V → U in the infinite
width limit [40, 41]. Alternative ways of sweeping over V are evaluated in Appx. E.1.

4.1 V-sufficiency: Optimal Representations When the Data Distribution is Known

We study optimal representations when Alice has access to the data distribution PZ×Y. Alice’s risk
R(f,Z) in such setting is important as it is a tight lower bound on her performance in practical settings
(see Sec. 3.1). We consider the following setting: Bob trains a ResNet18 encoder [42] by maximizing
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(a) Generalization Gap (b) V-Sufficiency,-Minimality

CIFAR-10 TEST

CIFAR-10 TRAIN

MNIST TEST

MNIST TRAIN

(c) CIFAR10+MNIST

Figure 4: Effect of DIB on generalization Left two plots (CIFAR10): Impact of DIB’s β on: (a) the
train and test performance of Alice worst ERM; (b) the ÎV [Z→ Dec(X,Y);D] and ÎV [Y → Z;D]
of Bob’s representation Z. As β increases, Z becomes V-minimal which increases the Alice’s test
performance until Z is far from V-sufficient. Right plot (CIFAR10+MNIST): Same as (a) but images
contain overlaid digits as distractors (see Appx. D.2). V-minimality avoids over-fitting by removing
spurious MNIST information. The shaded areas indicate 95% bootstrap confidence interval on 5 runs.

IVBob
[Z→ Y], Alice freezes it and trains her own classifier f ∈ VAlice using the underlying PZ×Y,

i.e., f is trained and evaluated on the same dataset. See Appx. D.1 for experimental details.

Which V-sufficiency should Bob chose? Proposition 1 tells us that Bob’s optimal choice is VBob =
VAlice. If he opts for a larger family VAlice ⊆ VBob, the representation Z is unlikely to be decodable
by Alice. If VBob ⊆ VAlice, he will unnecessarily constrain Z. We first consider a setting that can be
visualized: classifying the parity of CIFAR100 class index [43] using 2D representations. Figure 3a
shows samples from Z and Alice’s decision boundaries. To highlight the optimal VBob for a given
VAlice, we scale the performance of each column from 0 to 100 in the figure. As predicted by Prop. 1,
the best performance is achieved at VAlice = VBob. The worst predictions arise when VAlice ⊆ VBob,
as the representations cannot be separated by Alice’s classifier (e.g. VBob width 16 and VAlice width
1). This suggests that IB’s sufficiency (infinite width VBob = U) is undesirable when VAlice is
constrained. Figure 3b shows similar results in 8D across 5 runs. See Appx. E.8 for more settings.

4.2 V-minimality: Optimal Representations for Generalization

Theorem 1 states that V-minimality ensures all ERMs can generalize well. We investigate whether
this is still approximately the case in practical settings, i.e., when Bob optimizes L̂DIB(D).

Experimental Details. Our claim concerns all ERMs V̂∗(D), which cannot be supported by training
a few f̂ ∈ V̂∗(D). Instead, we evaluate the ERM that performs worst on the test set (Worst
ERM), i.e., arg maxf∈V̂∗(D) R(f,Z). We do so by optimizing the following Lagrangian relaxation

arg minf∈V R̂(f,Z;D)− γR(f,Z) (see Appx. E.7). As our theory does not impose constraints on
Z, we need an encoder close to a universal function approximator. We use a 3-MLP encoder with
around 21M parameters and a 1024 dimensional Z. Since we want to investigate the generalization of
ERMs resulting from Bob’s criterion, we do not use (possibly implicit) regularizers such as large
learning rate [44]. For more experimental details see Appx. D.1.

What is the impact of DIB’s β ? We train representions on CIFAR10 with various β to investigate
the effect of ÎV [Z→ Dec(X,Y);D] and ÎV [Y → Z;D] (Fig. 4b) on Alice’s performance (Fig. 4a).
Increasing β results in a decrease in ÎV [Z→ Dec(X,Y);D] which monotonically shrinks the train-
test gap. This suggests that, although our theory only applies for V-minimality, IV [Z→ Dec(X,Y)]
is tightly linked to generalization even when it is non-zero. After a certain threshold (β = 10) the
generalization gains come at a large cost in IV [Y → Z], which controls the best achievable loss.
This shows that a trade-off (controlled by β) between V-minimality (generalization) and V-sufficient
(lower bound) arises when Bob has to estimate LDIB using finite samples L̂DIB(D).

V-minimality and robustness to spurious correlations. We overlay MNIST digits as a distractor
on CIFAR10 (see Appx. D.2). We run the same experiments as with CIFAR10, but we additionally
train an ERM from V to predict MNIST labels, i.e., test whether Z contains decodable information
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about MNIST. Figure 4c shows that as β increases, predicting MNIST becomes harder. Indeed
decreasing ÎV [Z→ Dec(X,Y);D] removes all V-information in Z which is not useful for predicting
Y. As a result, Alice’s ERM must generalize better as it cannot over-fit spurious patterns.7

Table 1: Alice’s worst and average case log loss given different representation schemes used by Bob
(lower is better). Standard errors are across 5 runs.

No Reg. Stoch. Rep. Dropout Wt. Dec. VIB V−-DIB V+-DIB DIB

Worst 10.23± .13 8.61± .05 1.90± .00 10.25± .03 1.82± .02 1.54± .03 1.94± .33 1.41± .01

Avg. 4.62± .00 4.34± .04 1.49± .00 4.96± .03 1.76± .01 1.47± .01 1.74± .18 1.38± .01

Which V-minimality should Bob chose? We study the effect of Z ∈ SVAlice being minimal w.r.t.
families which are larger (V+-DIB), smaller (V−-DIB), and equal to VAlice. In theory, optimal
representations would be VAlice-minimal (Theorem 1), which are achieved by DIB and V+-DIB
(Monotonicity). V+-DIB should nevertheless be harder to estimate than DIB (Prop. 3). In the last 3
columns of Table 1 we indeed observe that DIB performs best. V+-DIB performs worse, suggesting
that IB’s minimality is undesirable in practice. We also minimize a known lower bound of I[Z; X]
(VIB; [19]) and find that it performs worse than DIB.8 We show results for different β in Appx. E.10.

Comparison to traditional regularizers. To ensure that the previous experimental gains support
our theory and are not necessarily true for other regularizers, we test different regularizers on
Bob and see whether they also learn representations that ensure Alice’s ERM will generalize. In
Table 1, we show the results of: (i) No regularization; (ii) Stochastic representations (DIB with
β = 0); (iii) Dropout [45]; (iv) Weight decay. We find that DIB significantly outperforms other
regularizers, which supports our claims that V-minimality is well-suited for enforcing generalization.
We emphasize that we evaluate the regularizers in a setting which is closer to our theory: two-stage
game, no implicit regularizers, and evaluated on log likelihood. We show in Appx. E.11 that DIB is a
descent regularizer in standard classification settings but performs a little worse than dropout.

4.3 Probing Generalization in Deep Learning

Methods that predict or correlate with the generalization of neural networks have been of recent
theoretical and practical interest [46–51], as they can shed light on the inductive biases in deep
learning [52–54] and prescribe better training procedures [55–59]. Having empirically shown a
strong link between the degree of V-minimality and generalization (Fig. 2b), it is natural to ask
whether it can predict the generalization of a trained model. Specifically, consider the first L layers
as an encoder from inputs X to representations ZL, and subsequent layers as a classifier in VL. We
hypothesize that ÎVL [ZL → Dec(X,Y);D] correlates well with the generalization of the network.

To test this, we follow Jiang et al. [50] and train convolutional networks (CNN) with varying
hyperparameters (depth, width, dropout, batch size, weight decay, learning rate, dimensionality of Z)
and retain those that reach 0.01 empirical risk. From this set of 562 models, we measure Kendall’s
rank correlation [60] between ÎVL [ZL → Dec(X,Y);D] and the generalization gap of each CNN,
i.e., the difference between their train and test performance. For experimental details see Appx. D.3.

Table 2: Rank correlation τ between different measures and generalization gap (in terms of accuracy
τacc and log loss τlogloss) of 562 CNNs. VL denotes our ÎVL [ZL → Dec(X,Y);D].

V+
L V−L VL Entropy Path Norm Var. Grad. Sharp. Mag.

τacc. [50] 0.148 0.373 0.311 0.484
τacc (ours) 0.482 0.391 0.471 0.234 0.347 0.332 0.385
τlogloss (ours) 0.505 0.435 0.498 0.164 0.357 0.167 0.233

Does V-minimality correlate with generalization? In the last five columns of Table 2, we com-
pare our results (VL) to the best generalization measure from each categories investigated in [50]:

7Achille and Soatto [20] show that this happens for minimal Z. The novelty is that we obtain similar results
when considering V-minimality, which is less stringent (Prop. 2) and does not require the intractable I[X; Z].

8 VIB is hard to compare to DIB as it is unclear w.r.t. which family, if any, VIB’s solutions are minimal.
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the entropy of the output [61], the path norm [62], the variance of the gradients after training
(Var. Grad. ; [50]), and the “sharpness” of the minima (Sharp. Mag.; [57]).9 As hypothesized,
ÎVL [ZL → Dec(X,Y);D] correlates with generalization and even outperforms the baselines. Sim-
ilarly to Table 1 we also evaluate minimality with respect to a family larger (V+

L ) or smaller (V−L )
than VL. Surprisingly, V+

L performs better than VL, which might be because larger networks can help
optimization of sub-networks VL ⊆ V+

L as suggested by the Lottery Ticket Hypothesis [63].

To the best of our knowledge V-minimality is the first measure of generalization of a network that only
considers a single internal representation ZL. This could be of particular interest in transfer learning,
as it can predict how well any model of a certain architecture will generalize when using a specific
pretrained encoder. As V-minimality is a property of a representation rather than the architecture, we
show in Appx. E.12 that it can be meaningfully compared across different architectures and datasets.

5 Other Related Work

Generalized information, game theory and Bayes decision theory. If you need a distribution P ∗X
to act as a representative Γ ⊆ P(X ) you should follow the maximum entropy (MaxEnt) principle
[64, 65] to minimize the worst-case log loss [66, 67]. Grünwald et al. [68] generalized MaxEnt to
different losses by framing the problem as an adversarial game between nature and a decision maker.
Robust supervised learning [69] can also be framed in a way that suggests to maximize conditional
entropy [70, 71]. This line of work focuses on prediction rules (Alice). Our framing (Sec. 2.1) extends
this literature by incorporating a co-operative agent (Bob), which learns representations to minimize
the worst-case loss of the decision maker (Alice). Although [10, 72] also studied representations
using generalized information, they focused on consistency rather than generalization.

Extended sufficiency and minimality. Linear sufficiency is well studied [73–75] but only considers
linear encoders and predictors and is used for estimation rather than predictions. In ML, Cvitkovic
and Koliander [76] incorporated the encoder’s family (Bob) to characterize achievable Z. This is
complementary to our incorporation of the decoder’s family V (Alice) to characterize optimal Z.

Kernel Learning. There is a large literature in learning kernels [77–80] for support vector machines
[2], which implicitly learns a data representation [81]. The learning is either done by minimizing
estimates [82, 83] or bounds of the generalization error [84–88]. The major advantage of our work is
that we are not restricted to predictors V that can be “kernelized” and provide an optimality proof.

6 Conclusion and Future Work

In this work, we propose a prescriptive theory for representation learning. We first characterize
optimal representations Z∗ for supervised learning, by defining minimal sufficient representation
with respect to a family of classifiers V . These representations Z∗ guarantee that any downstream
empirical risk minimizer f ∈ V will incur minimal expected test loss, by ensuring that f can correctly
predict labels but cannot distinguish examples with the same label. We then provide the decodable
information bottleneck objective to learn Z∗ with PAC-style guarantees. We empirically show that
using Z∗ can improve the performance and robustness of image classifiers. We also demonstrate that
our framework can be used to predict generalization in neural networks.

In addition to supporting our theory, our experiments raise interesting questions for future work. First,
results in Sec. 4.2 suggest that performance is causally related with the degree of V-minimality of a
representation, even though we only prove it for “perfect” V-minimality. A natural question, then,
is whether generalization bounds can be derived for approximate V-minimality. Second, the high
correlation between generalization in neural networks and the degree V-minimality (Table 2) suggest
that it might be an important quantity to study for understanding generalization in deep learning.

More generally, our work shows that information theory in theoretical and applied ML can benefit
from incorporating the predictive family V of interest. For example, we believe that many issues
of mutual information [89] in self-supervised learning [90–92], and IB [33, 93, 94] in IB’s theory
of deep learning [14, 95] could be solved by taking into account V . By extending V-information to
arbitrary r.v. (through decompositions) we hope to enable its use in those and many other domains.

9 We report Jiang et al.’s [50] results since our experiments and Sharp. Mag. differs slightly from theirs.
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Broader Impact

Our work takes the perspective that an “optimal” representation is one such that any classifier
that fits the training data should generalize well to test. In terms of potential practical benefits, it
is possible that using our optimal representations, one can alleviate the effort of hyperparameter
search and selection currently required to tune deep learning models. This could be a step towards
democratizing machine learning to sections of the society without large computational resources –
since hyperparameter search is often computationally expensive. We do not anticipate that our work
will advantage or disadvantage any particular group.
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