
In the following appendices we: (i) Formalize our notation in Appx. A; (ii) State and discuss our
assumptions in Appx. B; (iii) State and prove our theoretical results in Appx. C; (iv) Provide details
for reproducing our results in Appx. D; (v) Provide and discuss additional results that shed light on
many of our design choices Appx. E.

A Notation

Letters that are upper-case non-italic Y, calligraphic Y , and lower-case y, represent, respectively, a
random variable (r.v.), its associated codomain, and a realization of it. When necessary to be explicit,
we will say that Y takes value in (t.v.i.) Y . Conditional distribution will be denoted PY |Z ∈ P(Y|Z),
and the image of z as PY | z ∈ P(Y), where P(Y) denotes the collection of all probability measures
on Y with its σ-algebra and P(Y|Z) := {P : Z → P(Y)} is used as a shorthand. The composition
of a function f with a random variable Z will be denoted f(Z). Expectations will be written as:
Ey∼PY

[y] :=
∫
y dPY. Independence between two r.v.s will be denoted with · ⊥ ·. The indicator

function is denoted as 1[·]. The cardinality of a set is denoted by | · |. The preimage of {x} by
f will be denoted f←({x}). Finally, a hat ·̂ will be used to refer to empirical estimates: (i) Ŷ

is an approximation of Y (so PY, PŶ ∈ P(Y)); (ii) P̂Y denotes an empirical distribution of Y;
(iii) Functionals with expectations taken over empirical distributions inherit the hat (e.g. Ĥ[Y |X]).

Letters X,Z,Y are respectively used to refer to the input, representation and target of a predictive task.
We use Xy,Zy to respectively denote an input and a representations that have the same distribution
as X,Z conditioned on y, i.e., PXy = PX|y and PZy = PZ|y. We denote by V any predictive
family, i.e, V ∈ P(Y|Z) and satisfies the assumptions in Appx. B.2. The largest such set if the
universal predictive family U := P(Y|Z). The probability of y ∈ Y given z ∈ Z as predicted by
a classifier f ∈ V is denoted f [z](y) to distinguish it from the underlying conditional probability
PY|Z(y|z). We are interested in minimizing the expected loss of a classifier f ∈ V , also called risk
R(f,Z) := Ey,x∼PY,X

[
Ez∼PZ | x [S(y, f [z])]

]
. In practice we will be given a training set of M input-

target pairsD i.i.d.∼ PMX,Y, in which case we can estimate the risk using the empirical risk R̂(f,Z;D) :=
1
M

∑
y,x∈D Ez∼PZ | x [S(y, f [z])]. The set of ERMs are denoted as V̂(D) := arg minf∈V R̂(f,Z;D).

Finally, we will denote the best achievable risk for V as R∗(V) := minZ minf∈V R(f,Z).

B Assumptions

B.1 Generic Assumptions

We make a some assumptions throughout our paper to have concise statements. First let us discuss
generic assumptions about the setting we are studying:

At least one example per class We assume that every training set has at least one example per label.
This is generally true in modern ML, where |D| � |Y|. Theorem 1 would not hold without
it, as ERMs could not perform optimally without having examples to learn from.

Logarithmic score We only consider the log loss S(y, f [z]) := − log f [z](y) as it is the most
common scoring rule. Indeed, it is (essentially) the only strictly proper (strictly minimized
by the underlying distribution PY×Z) and local (depending only on predicted probability of
the observed event PY×Z(y|Z)) scoring rule [96], making it computationally attractive. The
framework can likely be extended to any proper scoring rule (e.g. pseudo-likelihood, Brier
score, kernel scoring rule) by considering generalized predictive entropy [34, 68, 97].

Finite sample spaces We restrict ourselves to finite |X |,|Y|,|Z|, so as to avoid the use of measure
theory and axiomatic set theory, which would obscure the main points of the paper. While
this assumption holds in computational ML (due to the use of digital computer or the fact
that we can always restrict the sample spaces to the finite examples seen in our training and
testing set), it is unsatisfactory from a theoretical standpoint and the general case should be
investigated in future work. We conjecture that Theorem 1 extends to the uncountable case.

At least as many representations as labels The sample space of representions is at least as large as
the one for labels: |Z| ≥ |Y|. This holds in practice where there are usually less than a 1000

18

possible labels Y while even a single dimensional Z can often (depending on computer) take
232 ≈ 4 ∗ 106 values.

Multi-class classification The sample space of the target is Y = [0, . . . , |Y| − 1].

B.2 Assumptions on Functional Families

Now let us discuss the assumptions that we make about functional families. The following assump-
tions hold for many functional families that are used in practice, including neural networks, logistic
regression, and decision tree classifiers.

Invariance of V to label permutations All predictive families are invariant to permutation, i.e.,
∀V, ∀π : Y → Y , ∀f ∈ V, ∃f ′ ∈ V s.t. ∀z ∈ Z,∀y ∈ Y we have ∀f [z](y) =
f ′[z](π(y)). This holds in practice (neural networks, decision trees, . . .) as we usually
do not want predictors to depend on the order of labels, e.g. Y = {“cat”, “dog”} or
Y = {“dog”, “cat”}. We use this assumption to simplify the proof of Theorem 1.

Non-empty preimage of labels We consider predictive families that have a non empty preimage for
each label: ∀V , ∃f ∈ V , s.t. ∀y ∈ Y, ∃z ∈ Z we have f [z](y) = 1. This is usually true in
ML. In neural networks, this can be achieved by making the weights of your last layer very
large such that the softmax will give the label a probability of 1 (achieved due to floating
point representation). We use this assumption to show that when the label is deterministic,
R∗(V) = 0.

Arbitrary constant prediction of V We assume that in all functional families there always is a pre-
dictor which predicts any constant output regardless of the input: ∀V, ∀PY ∈ P(Y), ∃f ∈
V s.t. ∀z ∈ Z we have f [z] = PY. This is typically true in classification, when the last
layer parametrizes a categorical distribution. In neural networks this can be achieved by
setting all weights to 0 and then the bias of the last layer (softmax) to the desired values.
Notice that this not true in the general case (regression and countable infinite sample space),
in which case the assumption can be relaxed to optional ignorance as in [23]. We use this
assumption to simplify the definition of V-information in Prop. 5.

Monotonic biasing of V We assume that all functional families are closed under “monotonic biasing
towards a prediction y”. Formally, ∀f ′ ∈ V, ∀y ∈ Y, ∀z ∈ Z, ∀p ∈ [0, 1], ∃g ∈ V
s.t. g[z](y) = p and ∀z′, z′′ ∈ Z,∀y′ ∈ Y we have sign(f ′[z′](y′) − f ′[z′′](y′)) =
sign(g[z′](y′)− g[z′′](y′)). In other words, it is possible to construct a g ∈ V that assigns
to a (single) pair z, y the probability p of your choice and preserves the order — if z, y was
assigned a higher probability than z′, y by f ′ then the same holds for g. Such assumption
holds for neural networks, as it is always possible to construct g by modifying the bias term
of the final softmax layer. This assumption is crucial for the proof of Theorem 1.

B.3 Assumptions for the Theorem

We make an additional assumptions for Theorem 1 and Prop. 2.

Deterministic Labeling We assume that labels are deterministic functions of the data ∃t : X → Y
s.t. Y = t(X). This is generally true in ML datasets where every example is only seen once
and thus every example is given a single label with probability 1. This does not necessarily
hold in the real world. We use this assumption to simplify the proofs, we believe that it is
not necessary for the theorem to hold but should be investigated in future work.

C Theoretical Results and Proofs

C.1 Background

C.1.1 Minimal Sufficient Statistics

In the following, we clarify the link between minimal sufficient statistics [25] and representations
[12, 24] of inputs X. The difference between a representation Z in IB and a statistic T (X), is that
the mapping between the inputs X and the representation Z can be stochastic — specifically a
representation is a statistic of the input and independent noise ε ⊥ X, i.e., Z = T (X, ε). We now

19

prove that for (deterministic) statistics, the notion of minimal sufficient representation is equivalent to
that of predictive minimal sufficient statistics [98].

Definition 3 (Minimal Sufficient Representations). A representation Z = T (X, ε) is:

• Sufficient for Y if Z ∈ S := arg maxZ′ I[Y; Z′]

• Minimal Sufficient for Y if Z ∈M := arg minZ′∈S I[X; Z′]

Definition 4 (Sufficient Statistic). A statistic Z = T (X) is predictive sufficient for Y if Y − Z−X
forms a Markov Chain.

Lemma 1 (Equivalence of Sufficiency). Let Z be a statistic T (X) or a representation T (X, ε) of X,
then Z is predictive sufficient for Y by Def. 4 ⇐⇒ Z is sufficient for Y by Def. 3.

Proof. We prove the following for statistics Z = T (X) but the same proof holds for representations
T (X, ε). For both directions we use the fact that for any statistics maxZ′ I[Y; Z′] = I[Y; X]. Indeed,
Y −X− Z constitutes a Markov Chain as Z = T (X). From the data processing inequality (DPI) we
have I[Y; X] ≥ I[Y; Z], where the equality is achieved by using the identity statistic Z = X.

(=⇒) Suppose Z is sufficient by Def. 4. Since Z is a statistic we again have I[Y; X] ≥ I[Y; Z]. From
Def. 4, we also have Y − Z−X which implies (DPI) I[Y; Z] ≥ I[Y; X]. Due to the upper and lower
bound we must have I[Y; X] = I[Y; Z], which is equivalent to Def. 3.

(⇐=) Assume that Z is sufficient by Def. 3. Using the chain rule of information we have

I[Y; Z,X] = I[Y; Z,X]

I[Y; Z] + I[Y; X |Z] = I[Y; X] + I[Y; Z |X]

max
Z′

I[Y; Z′] + I[Y; X |Z] = I[Y; X] + I[Y; Z |X] Def. 3

I[Y; X |Z] = I[Y; Z |X]

I[Y; X |Z] = 0 Y −X− Z

The fourth line comes from arg maxZ′ I[Y; Z′] = I[Y; X]. The last line holds as Z is a statistic of
X. I[Y; X |Z] = 0 implies that Y ⊥ X |Z so Y − Z − X is a Markov Chain, which concludes the
proof.

Definition 5 (Minimal Sufficient Statistic). A sufficient statistic Z is minimal if for any other sufficient
statistic Z′ , there exists a function g such that Z = g(Z′).

Proposition 4 (Equivalence of Minimal Sufficiency). Let Z = T (X) be a (deterministic) statistic,
then Z is minimal (by Def. 5) and sufficient for Y (by Def. 4) ⇐⇒ Z is minimal sufficient by Def. 3.

Proof. From Lemma 1 we know that the sufficiency requirements are equivalent in Def. 5 and Def. 3.
We now need to prove that the minimality requirements are also equivalent.

(=⇒) Let Z be minimal by Def. 5, then for all other sufficient Z′ we have the Markov Chain
X− Z′ − Z. From the DPI, I[X; Z] ≤ I[X; Z′]. This completes the first direction of the proof.

(⇐=) We will prove it by contrapositive. Suppose Z := T (X) ∈ S is not minimal by Def. 5, i.e.
there exists a sufficient statistic Z′ := T′(X) ∈ S s.t. no function g satisfies T (X) = g(T ′(X)).
Then the binary relation {(T ′(x), T (x)) |x ∈ X} is not univalent, therefore the converse relation
{(T (x), T ′(x)) |x ∈ X} is not injective. As a result, there exists a non injective function g̃ such that
T ′(X) = g̃(T (X)). From the DPI we have I[X; Z′] < I[X; Z] with a strict inequality due to the non
injectivity of g̃. So Z is not minimal by Def. 3, thus concluding the proof.

We emphasize that the second implication (⇐=) does not hold in the case of a representation
Z = T (X, ε). Indeed, Def. 5 is not really meaningful for “stochastic” representations.

20

C.1.2 Replacing HV [Y |∅] by H[Y]

Due to our “arbitrary constant prediction of V” assumption, we can replace HV [Y |∅] by H[Y] in Xu
et al.’s [23] definition of V-information.

Proposition 5. For all predictive families V we have HV [Y |∅] = H[Y].

Proof. Denote V∅ ⊂ V the subset of f that satisfy f [x] = f [∅], ∀x ∈ X .

HV [Y |∅] := inf
f∈V

Ez,y∼PZ,Y
[− log f [∅](y)]

= inf
f∈V∅

Ez,y∼PZ,Y
[− log f [∅](y)]

= inf
f∈V∅

Ez,y∼PZ,Y [− log f [z](y)]

= Ey∼PY [− logPY] Properness and Arbitrary Const. Pred.
= H[Y]

The penultimate line uses the properness of the log loss (best unconditional predictor of y is PY) and
our assumption regarding “arbitrary constant prediction”, which implies that there exists f ∈ V s.t.
∀z ∈ Z we have f [z] = PY.

C.2 V-Sufficiency

In this subsection, we prove our claims in Sec. 3.1. First, let us show that HV [Y |Z] is indeed the best
achievable risk for Z.

Lemma 2. For any predictive family V , minf∈V R(f,Z) = HV [Y |Z].

Proof. This directly come from the definition of predictive information:

HV [Y |Z] := inf
f∈V

Ez,y∼PZ,Y
[− log f [z](y)]

= inf
f∈V

Ey∼PY

[
Ez∼PZ|y [− log f [z](y)]

]
= inf
f∈V

Ey∼PY

[
Ex∼PX|y

[
Ez∼PZ|x [− log f [z](y)]

]]
Y −X− Z

= inf
f∈V

Ey,x∼PY,X

[
Ez∼PZ | x [− log f [z](y)]

]
= inf
f∈V

R(f,Z) Def. Risk

= min
f∈V

R(f,Z) Finite Sample Space

Proposition 1 is a trivial corollary of the previous lemma.

Proposition 1. Z is V-sufficient ⇐⇒ there exists f∗ ∈ V whose test loss when predicting from Z
is the best achievable risk, i.e., R(f∗,Z) = minZ minf∈V R(f,Z).

Proof.

SV := arg max
Z

IV [Z→ Y]

= arg max
Z

H[Y]−HV [Y |Z]

= arg min
Z

HV [Y |Z] Const. H[Y]

= arg min
Z

min
f∈V

R(f,Z) Lemma 2

21

Let us now show that when the label is deterministic ∀V, R∗(V) = 0. This may be counterintuitive,
but the following proof shows that we are simply shifting the burden of classification from the
classifier to the encoder — which is unconstrained.

Proposition 6. Assume that labels are a deterministic function of the data ∃t : X → Y s.t. Y = t(X),
then for any predictive family V the best achievable risk is minZ minf∈V R(f,Z) = 0.

Proof. First notice that minZ minf∈V R(f,Z) ≥ 0 due to the non-negativity of the log loss. We
show that the inequality is an equality by constructing a representation Z∗ and a f ∈ V such that
R(f,Z∗) = 0. Intuitively, we do so by finding “buckets” of Z that correspond to a certain label and
then having an encoder which essentially classifies each input x to the correct bucket. Formally:

Let f←({y}) := {z ∈ Z s.t. f [z](y) = 1} denote the preimage of a deterministic label by a classifier
f . By the “Non-empty Preimage of Labels” assumption we know that ∀V there exists f ∈ V s.t.
∀y ∈ Y , the preimage is non-empty |f←({y}) | ≥ 0. Let f be one of those predictors. We construct
the desired Z∗ by setting its probability mass function ∀z ∈ Z, x ∈ X as a uniform distribution over
the f preimage of the label of x (deterministic label assumption Y = t(x)) .

PZ∗ |X(z|x) :=

{
1

|f←({t(x)})| if z ∈ f←({t(x)})
0 else

(9)

We now show that the risk R(f,Z∗) is indeed 0:

R(f,Z∗) := Ey,x∼PY,X

[
Ez∼PZ | x [− log f [z](y)]

]
=
∑
y∈Y

∑
x∈X

∑
z∈Z

PY(y)PX |Y(x | y)PZ∗|X(z |x)[− log f [z](y)]

=
∑
y∈Y

∑
x∈X

∑
z∈f←({t(x)})

PY(y)PX |Y(x|y)
− log f [z](y)

|f←({t(x)}) | Eq. (9)

=
∑
y∈Y

 ∑
z∈f←({y})

PY(y)
− log f [z](y)

|f←({y}) |

[∑
x∈X

PX |Y(x|y)

]

=
∑
y∈Y

 ∑
z∈f←({y})

PY(y)
− log 1

|f←({y}) |

 ∗ 1 Def. f

= 0

The fourth line uses y = t(x), thus removing the dependence with X. The penultimate line uses
∀z ∈ f←({y}), f [z](y) = 1 which is the defining property of the selected f .

C.3 Theorem

We will now prove the main result of our paper, namely that any ERM that uses a V-minimal
V-sufficient representation will reach the best achievable test loss.

Theorem. Suppose Y is a deterministic labeling t(X). Let V ∈ P(Y|Z) be a predictive family
satisfying the assumptions in Appx. B.2. Under the assumptions stated in Appx. B.1 , we have that:
if Z is a V-minimal V-sufficient representation of X for Y, then any ERM on any dataset will achieve
the best achievable risk, i.e.

Z ∈MV =⇒ ∀M ≥ |Y|, D i.i.d.∼ PMX,Y, ∀f̂ ∈ V̂(D) we have R(f̂ ,Z) = min
Z

min
f∈V

R(f,Z)

C.3.1 Lemmas for Theorem 1

In this subsection we show three simple lemmas that are useful for proving Theorem 1. First we
show that in the deterministic label setting, V-sufficiency implies that the representaion space can be
partitioned by Y , i.e., the supports of each Zy are non-overlapping.

22

Lemma 3. Assume Y is a deterministic labeling t(X). Then Z ∈ SV =⇒ ∀y 6= y′, y, y′ ∈ Y we
have supp(PZ|y) ∩ supp(PZ|y′) = ∅.

Proof. Let us prove it by contrapositive. Namely, we will show supp(PZ|y) ∩ supp(PZ|y′) 6=
∅ =⇒ Z 6∈ SV . supp(PZ|y) ∩ supp(PZ|y′) 6= ∅ implies that ∃y 6= y′ ∈ Y,∃z ∈ Z s.t.
PZ|Y(z|y′) 6= 0 and PZ|Y(z|y) 6= 0. Using Bayes rule (and the fact that PY has support for
all labels), that means PY|Z(y′|z) 6= 0 and PY|Z(y|z) 6= 0 so ∃y ∈ Y s.t. PY|Z(y′|z) = 1.
Due to the finite sample space assumption and monotonicity of V predictive entropy, this implies
0 < H[Y |Z] = HU [Y |Z] ≤ HV [Y |Z]. From Prop. 6 we conclude that Z 6∈ SV as desired.

We now show the simple fact that, if some classifier achieves zero test loss then being an ERM is
equivalent to achieving zero training loss.

Lemma 4. Let D i.i.d.∼ PMX,Y be a training dataset. Suppose ∃f ∈ V s.t. R(f,Z) = 0, then:
f̂ ∈ V̂∗(D) ⇐⇒ R̂(f̂ ,Z;D) = 0.

Proof. As R(f,Z) is an expectation of a non-negative discrete r.v., it is equal to zero if and only if
∀z ∈ supp(Z), ∀y ∈ supp(PY|Z) we have log f [z](y) = 0. R̂(f,Z;D) is also a weighted average
(discrete expectation) of log f [z](y) = 0 over a subset of the previous support ẑ ∈ supp(Ẑ) ⊆
supp(Z), ∀ŷ ∈ supp(Ŷ) ⊆ supp(Y) so we conclude that R̂(f,Z;D) = 0. As the minimal
training loss is always zero and the risk cannot be less than zero (non negativity of log loss and
finite sample space) the definition of ERMs becomes V̂(D) := arg minf∈V R̂(f,Z;D) = {f ∈
V s.t. R̂(f,Z;D) = 0} as desired.

A representation is V-minimal V-sufficient if and only if it has no V-information with any of the
terms in any y decomposition of X.

Lemma 5. Assume Y is a deterministic labeling t(X), then:

∀Z ∈MV ⇐⇒ Z ∈ SV and ∀y ∈ Y,∀N ∈ Dec(X, y) we have IV [Zy → N] = 0.

Proof.
(⇐=) Due to the non negativity of V-information, we have ∀Z′ ∈ SV , 0 = IV [Zy → N] ≤
IV
[
Z′y → N

]
so Z reaches the minimal achievable value in each term and thus also on their expectation

IV [Z→ Dec(X,Y)] = 0. We thus conclude that Z ∈MV := arg minZ∈SV IV [Z→ Dec(X,Y)] .

(=⇒) Let us show that there is at least one Z ∈MV s.t. ∀y ∈ Y,∀N ∈ Dec(X, y), IV [Zy → N] =
0, from which we will conclude that they all have to satisfy the previous property in order to
minimize IV [Z→ Dec(X,Y)] . Let us consider Z∗ as defined in Eq. (9). Notice that PZ∗y |Xy (z|x) =

1
|f←({t(x)})| = 1

|f←({y})| = PZ∗y
(zy), where the last equality comes from the fact that zy is associated

with a single label y. An other way of saying it, is that Xy − y − Z∗y forms a Markov Chain, but
y is a constant. We thus conclude ∀y ∈ Y Z∗y ⊥ Xy. By definition of y decomposition of X
(Eq. (6)), we also know that ∀N ∈ Dec(X, y), ∃t′ : X → Y s.t. N = t′(Xy), from which we
conclude that Z∗y ⊥ N. Due to the independence property of V-information, we have ∀y ∈ Y ,
∀N ∈ Dec(X, y), IV [Zy → N] = 0 as desired. As we found one Z∗ ∈MV s.t. this is true, it must be
for all Z ∈ MV . Indeed, due to the positivity property it is the only way of reaching the minimal
IV [Z→ Dec(X,Y)] = 0.

C.3.2 Proof Intuition

The main difficulty in the proof is that V-minimality removes information using deterministic labeling
while the predictors f ∈ V are probabilistic.10 As a result the proof is relatively long, here is a rough
outline:

10 If both the labeling and predictors had been deterministic, the proof would be very simple and would
go as follows: assume f is not optimal on test performance, show that the labels Ŷ predicted by f and are in
Dec(X, y), conclude that Z does not minimize Dec(X, y) as it perfectly predicts Ŷ by construction.

23

Train

Test

Perfect
train
bad
test

Wrong

Correct

Wrong

Correct
Monotonic
biasing
towards

Figure 5: Intuition behind the construction of g ∈ V in the proof of Theorem 1. The plot schematically
represents the all the representationsZy associated with a label y = 1. The representationsZty (green)
are associated with training examples, Zey (yellow) are associated with test / evaluation examples, Zcy
(blue) are those that yield correct predictions of y = 1 by f ′, Zwy (orange) are those that yield wrong
predictions of y = 1 by f ′.

1. As the theorem is about all ERMs, use a proof by contrapositive to only talk about a single
ERM f ′ that performs optimally on train but not on test.

2. Construct a random variable Ñ which labels train examples as 1 and test as 0. Show that
Ñ ∈ Dec(X, y).

3. Using the “monotonic biasing of V” assumption, construct g ∈ V from f ′ ∈ V by monoton-
ically biasing the predictions towards the “test” label Ñ = 0 s.t. g[z](0) = PÑ(0) for every
representation z(c) that are perfectly labelled by f ′ (as shown in blue in Fig. 5).

4. Show that g predicts Ñ better than the marginal distribution PÑ for representations z(w) that
are not perfectly labelled by f ′ (as shown in orange in Fig. 5), while predicting as well as
PÑ for z(c). Conclude that g predicts Ñ better than PÑ.

5. Show that the previous point entails IV

[
Z→ Ñ

]
6= 0. Conclude by Lemma 5 that Z 6∈ MV

as desired.

C.3.3 Formal Proof

Proof. If Z ∈ MV is V-minimal V-sufficient then by definition it is also V-sufficient, we thus
restrict our discussion to V-sufficient representations. As Z is V-sufficient, ∃f ∈ V s.t. R(f,Z) =
minZ minf∈V R(f,Z) = 0. The first equality comes from Prop. 1. The second equality comes
from Prop. 6 and the deterministic assumption Y = t(X). As there is some function f with risk
R(f,Z) = 0, Lemma 4 tells us that being an ERM is equivalent to having zero empirical risk
f̂ ∈ V̂(D) ⇐⇒ R̂(f̂ ,Z;D) = 0. We thus only need to prove that V-minimality implies that every
function with zero empirical risk will get zero actual risk, i.e., they all generalize: Z ∈ MV =⇒
∀D i.i.d.∼ PMX,Y, ∀f ∈ V s.t. R̂(f,Z;D) = 0 will achieve R(f,Z) = 0.

We will prove this statement by contrapositive, namely that the existence of a predictor with 0
empirical risk but larger actual risk implies that the representation is not V-minimal: ∃D i.i.d.∼ PMX,Y,∃f ′
s.t. R̂(f ′,Z;D) = 0 ∧ R(f ′,Z) > 0 =⇒ Z 6∈ MV . For ease of notation let us assume that we are
in a binary classification setting |Y| = 2. We will later show how to reduce the multi-classification
setting to the binary one.

Let f ′ be a function with R̂(f ′,Z;D) = 0 ∧ R(f ′,Z) > 0. As the risk is positive, there must
be some label ∃y ∈ Y s.t. when predicting from examples labeled as y the expected loss will be
positive Ry(f ′,Z) := Ex∼PX |Y

[
Ez∼PZ |X [− log f ′[z](y)]

]
> 0. Due to the deterministic labeling

assumption and Lemma 3, we can study one single such label y without considering any other label
y′ ∈ Y (neither the examples nor the representations interact between labels). Without loss of
generality — due to the invariance of V to label permutations — let us assume that this label is y = 1.

Let X ty be the set of examples (associated with y) seen during training and X ey = Xy \ X ty those only

during test (eval). Let Zwy := {z(w)
y ∈ Zy|f ′[zy](y) 6= 1} be the representations who are (wrongly)

24

not predicted y by f ′ with a probability of 1. Let Zcy := Zy \ Zwy be the set of representations that
are (correctly) labeled y by f ′ with a probability of 1. Notice that both these sets are non empty
|Zwy | > 0 and |Zcy| > 0 because respectively Ry(f ′,Z) > 0 and R̂y(f ′,Z,D) = 0.

Let Ñ := 1[Xy ∈ X ty] be a binary “selector” of training examples. Notice that Ñ ∈ Dec(X, y), as

1[· ∈ X ty] is a deterministic function from Xy → Y . We want to show that HV

[
Ñ |Zy

]
< H

[
Ñ
]
. To

do so we have to find a function g whose risk when predicting Ñ is smaller than the entropy H
[
Ñ
]
.

Notice that f ′ is close to being the desirable g, but not quite. 11

We construct the desired g by starting with f ′ and monotonically increasing the probability of
predicting Ñ = 0 s.t. ∀z(c) ∈ Zcy we have g[z(c)] = PÑ as seen in Fig. 5. Specifically, from the
“monotonic biasing of V” we know that for f ′ ∈ V , y = 0, some z(c) ∈ Zcy , and p = PÑ there exists
g ∈ V s.t. g[z(c)](0) = PÑ(0) and ∀z′, z′′ ∈ Z,∀y′ ∈ Y we have sign(f ′[z′](y′) − f ′[z′′](y′)) =

sign(g[z′](y′) − g[z′′](y′)). Notice that ∀z̃(c) ∈ Zcy we have g[z](0) = PÑ(0) due to the ordering
requirement of monotonic biasing. Indeed, we have just shown that this is true for one such zc

and by construction ∀z̃(c) ∈ Zcy we have sign(f ′[z(c)](0) − f ′[z̃(c)](0)) = sign(0 − 0) = 0

so 0 = sign(g[z(c)](0) − g[z̃(c)](0)) = sign(PÑ(0) − g[z̃(c)](0)) from which we conclude that
g[z̃(c)](0) = PÑ(0) and g[z̃(c)](1) = PÑ(1) as we are in a binary setting.

Due to ordering requirement of monotonic biasing ∀z(w) ∈ Zwy we have g[z(w)](0) > PÑ(0) as
seen in Fig. 5. Indeed, ∀z(w) ∈ Zwy we have f ′[z(w)](0) > 0 by construction (f ′[z(w)](1) 6= 1)
so by the ordering requirement sign(f ′[z(c)](0) − f ′[z(w)](0)) = sign(−f ′[z(w)](0)) = −1 =
sign(g[z(c)](0)−g[z(w)](0)) = sign(PÑ(0)−g[z(w)](0)) from which we conclude that g[z(w)](0) >
PÑ(0).

In other words, g predicts training examples Ñ = 0 in the same way as PÑ but testing examples

better than PÑ. From here it should be clear that HV

[
Ñ |Zy

]
< H

[
Ñ
]
, which we prove below for

completeness.

I
[
Zy → Ñ

]
:= H

[
Ñ
]
−HV

[
Ñ |Zy

]
= sup
f∈V

Ex,n,z∼PXy,Ñ,Zy

[
log

f [z](n)

PÑ(n)

]
≥ Ex,n,z∼PXy,Ñ,Zy

[
log

g[z](n)

PÑ(n)

]
Use g

= Ex,n∼PXy,Ñ

∑
z∈Zcy

PZy |Xy (z|x) log
g[z](n)

PÑ(n)


+ Ex,n∼PXy,Ñ

 ∑
z∈Zwy

PZy |Xy (z|x) log
g[z](n)

PÑ(n)

 Zcy := Zy \ Zwy

= 0 + Ex,n∼PXy,Ñ

 ∑
z∈Zwy

PZy |Xy (z|x) log
g[z](n)

PÑ(n)

 ∀z ∈ Zcy, g[z] = PÑ(n)

=
∑
x∈X ty

∑
z∈Zwy

PZy,Xy (z, x) log
g[z](1)

PÑ(1)

11Indeed, by construction f ′ predicts perfectly the training examples Ñ = 1, because R̂y(f
′,Z,D) = 0 for

y = 1. Unfortunately, its risk when predicting Ñ is not always smaller than H
[
Ñ
]
. For example, f ′ would

incur infinite loss if some test examples x ∈ X ey was encoded to some some Zcy because f ′ would predict that it
comes from the training set with probability of 1.

25

+
∑
x∈X ey

∑
z∈Zwy

PZy,Xy (z, x) log
g(z)[0]

PÑ(0)
Def. Ñ and X ey = Xy \ X ty

= 0 +
∑
x∈X ey

∑
z∈Zwy

PZy,Xy (z, x) log
g(z)[0]

PÑ(0)
R̂(f ′,Z;D) = 0

> 0 ∀z ∈ Zwy , g[z](0) > PÑ(0)

Where the penultimate line comes form the fact that all train example x ∈ X ty must get encoded to

some z ∈ Zcy as the empirical risk of f ′ is 0. We conclude that I
[
Zy → Ñ

]
6= 0, so by Lemma 5,

Z 6∈ MV which concludes the proof for the binary case.

For the multi-classification setting, the same proof holds by taking f ′ and effectively reducing it to a
binary classifier. This is possible by starting from f ′ and monotonically biasing it to construct f ′binary
which predicts with zero probability for all but two labels y, y′ ∈ Y . One of those labels (say y) has to
be the correct label (to ensure that f ′binary still reaches 0 empirical risk), while the other y′ can be any
label s.t. ∃z ∈ Zy with f ′[z](y′) 6= 0. Such a y′ always exists as the risk of f ′ is not 0. Due to the
monotonic biasing, ∀z ∈ Zy we have f ′binary[z](y) ≥ f ′[z](y) and f ′binary[z](y′) ≥ f ′[z](y′). As a
result f ′binary still reaches 0 empirical risk but non zero actual risk, it can thus be used to construct
the desired g as before.

C.4 V-minimal V-sufficient Properties

In this section we prove Prop. 2. We first show that universal sufficient representation corresponds to
the subset of sufficient representations that t.v.i. in the domain of predictors in U .

Lemma 6 (Recoverability of sufficiency). Let U be the universal family, then SU = S ∩ Z

Proof. In the following we abuse notation by using Z ∈ Z to denote that Z t.v.i. Z . Let us denote Ω =⋃Z as the set of all possible finite sample spaces. From the recoverability property of V-information,
we know that IU [Z→ Y] = I[Y; Z] so arg maxZ∈Z IU [Z→ Y] = arg maxZ∈Z I[Y; Z]. Suppose
that S ∩ Z is non empty, then S ∩ Z = (arg maxZ∈Ω I[Y; Z]) ∩ Z = arg maxZ∈Z I[Y; Z] = SU as
desired. To show that S ∩ Z is indeed non empty, notice that one can effectively learn the sufficient
representation Z = Y due to the assumption |Y| ≤ |Z| (when |Y| < |Z|, restrict the support to
Y).

Let us characterize the set of minimal sufficient representations in terms of independence.

Lemma 7 (Characterization of Minimal Sufficient Representations). Suppose Y is a deterministic
labeling t(X), then the set of minimal sufficient representationsM correspond to {Z ∈ S| Z ⊥
X|Y }.

Proof.

M := arg min
Z∈S

I[X; Z]

= arg min
Z∈S

I[X; Z] + I[Z; Y|X] Y −X− Z

= arg min
Z∈S

I[X,Y; Z] Chain Rule

= arg min
Z∈S

I[X; Z|Y] + I[Z; Y] Chain Rule

= arg min
Z∈S

I[X; Z|Y] Sufficiency

The last line uses the fact that I[Z; Y] is a constant as the optimization is contrained to sufficient Z ∈ S .
Notice that I[X; Z|Y] ≥ 0 and we know that it can reach zero when the labels are deterministic, for
example with Z = Y. SoM = {Z ∈ S| I[Y; Z|Y] = 0} = {Z ∈ S| Z ⊥ X|Y } which concludes
the proof.

26

Similarly, let us characterize U-minimal U-sufficient representations in terms of independence.

Lemma 8 (Characterization of U -Minimal U -Sufficient Representations). Suppose Y is a determin-
istic labeling t(X), then U-minimal U-sufficient representationsMU correspond to {Z ∈ SU | ∀y ∈
Y,∀N ∈ Dec(X, y), Z ⊥ N }

Proof. Because of Lemma 5, ∀y ∈ Y,∀N ∈ Dec(X, y) we have IV [Zy → N] = 0. As U -information
recovers MI that means N ⊥ Zy. SoMU = {Z ∈ SU | ∀y ∈ Y,∀N ∈ Dec(X, y), Z ⊥ N } as
desired.

Lemma 9 (Monotonicity of V-information). Let V ⊆ V+ be two predictive families, then ∀Z t.v.i Z
and ∀Y t.v.i. Y we have IV+ [Z→ Y] ≤ IV [Z→ Y].

Proof. Let us start from the monotonicity of the predictive entropy [23], which comes directly from
the fact that we are optimizing over a larger functional family:

HG [Y|Z] ≥ HG [Y|Z] Monotonicity V-ent.
H[Y]−HG [Y|Z] ≤ H[Y]−HG [Y|Z]

IG [Z→ Y] ≤ IV [Z→ Y] Prop. 5

Proposition 2. Let V ⊆ V+ be two families and U the universal one. If labels are deterministic:

• Recoverability The set of U-minimal U-sufficient representations corresponds to the mini-
mal sufficient representations that t.v.i. in the domain of U , i.e.,MU =M∩Z .

• Monotonicity V+-minimal V-sufficient representations are V-minimal V-sufficient, i.e.,
arg maxZ∈SV IV+ [Z→ Dec(X,Y)] ⊆MV .

• Characterization Z ∈MV ⇐⇒ Z ∈ SV and IV [Z→ Dec(X,Y)] = 0.

• Existence At least one U -minimal U -sufficient representation always exists, i.e., |MV | > 0.

Proof.

Existence In Eq. (9) we show how to construct such a Z ∈MV .

Characterization As IV [Z→ Dec(X,Y)] is an average over a non negative (positivity of V-
information) IV [Zy → N] it is equal to zero if and only if all the terms are zero:
IV [Z→ Dec(X,Y)] = 0 ⇐⇒ ∀y ∈ Y, ∀N ∈ Dec(X, y) we have IV [Zy → N] = 0.
We conclude the proof using Lemma 5.

Monotonicty Following the same steps as the proof in (=⇒) of Lemma 5, we get that V+-minimal
V-sufficient representation implies ∀y ∈ Y,∀N ∈ Dec(X, y) we have IV+ [Zy → N] =
0. Using the monotonocity of V-information in our setting (Lemma 9) we have 0 =
IV+ [Zy → N] ≤ IV [Zy → N]. As V-information is always positive, we conclude that
∀y ∈ Y,∀N ∈ Dec(X, y), IV [Zy → N] = 0. By Lemma 5, we conclude that Z is V-
minimal V-sufficient as desired.

Recoverability Using Lemma 6 we know that SU = S ∩ Z so the domain of optimization for
minimality and U-minimality is the same. Using Lemma 7 and Lemma 8 we only need to
show that ∀Z ∈ SU we have Z ⊥ X|Y ⇐⇒ ∀y ∈ Y, ∀N ∈ Dec(X, y) we have N ⊥ Zy.
As a reminder, Zy and Xy have distribution PXy = PX|y , PZy = PZ|y and PXy,Zy = PX,Z|y
by definition.

(=⇒) Starting from minimality Z ⊥ X|Y so ∀y ∈ Y we have PXy,Zy = PX,Z|y =
PX|y ∗ PZ|y = PXy ∗ PZy from which we conclude that Zy ⊥ Xy. As N = t′(Xy), for all
N ∈ Dec(X, y) we have Zy ⊥ N as desired.

27

(⇐=) Let us prove it by contrapositive. I.e. we show that Z 6⊥ X|Y =⇒ ∃y ∈
Y,∃N ∈ Dec(X, y) s.t. N 6⊥ Zy. As Z 6⊥ X|Y then ∃x̃ ∈ X , ỹ ∈ Y s.t. PZ|X,Y(· | x̃, ỹ) 6=
PZ|Y(· | ỹ). Let us define Ñ = 1[Xỹ = x̃ỹ], as 1[Xỹ = ·] is a deterministic function from
X → Y , we have Ñ ∈ Dec(X, ỹ). Then:

PZỹ|Ñ(· | 1) = PZỹ|Xỹ (· | x̃ỹ) Def. Ñ

= PZ|X,Y(· | x̃, ỹ) Def. Zỹ

6= PZ|Y(· | ỹ) Def. x̃, ỹ

= PZỹ Def. Zỹ

As PZỹ|Ñ(· | 1) 6= PZỹ we conclude that ∃ỹ ∈ Y,∃N ∈ Dec(X, ỹ) s.t. N 6⊥ Zỹ as desired.

Corollary 1. Suppose Y is a deterministic labeling t(X). Let U be the universal predictive family.
Under the assumptions stated in Appx. B.1, we have that: if Z is a minimal sufficient representation
of X for Y that t.v.i. Z , then any ERM on any dataset will achieve zero risk, i.e.

Z ∈M∩Z =⇒ ∀M ≥ |Y|, D i.i.d.∼ PMX,Y, ∀f̂ ∈ Û(D) we have R(f̂ ,Z) = 0

Proof. First notice that U is unconstrained and thus satisfies the assumptions in Appx. B.2. As a result,
Theorem 1 tells us that Z ∈ MU =⇒ ∀M ≥ |Y|, D i.i.d.∼ PMX,Y, ∀f̂ ∈ Û(D) we have R(f̂ ,Z) =

minZ minf∈U R(f,Z). Because the labeling is deterministic we have by Prop. 6 that the best
achievable risk is minZ minf∈U R(f,Z) = 0. From the recoverability property of V-minimality
and V-sufficiency (Prop. 2) we haveM∩ Z = MU so Z ∈ MU ⇐⇒ Z ∈ MU =⇒ ∀M ≥
|Y|, D i.i.d.∼ PMX,Y, ∀f̂ ∈ Û(D) we have R(f̂ ,Z) = minZ minf∈U R(f,Z) = 0 as desired.

C.5 Estimation Bounds

In this section we will prove and formalize Prop. 3, namely that L̂DIB(D) estimates LDIB with
PAC-style guarantees. First, let us formalize LDIB and L̂DIB(D) described respectively in Eq. (8) and
Fig. 2a. For simplicity, in the following we will use TDec(X, y) := {t |N = t(X), ∀N ∈ Dec(X, y)}
to denote the labeling that gave rise to Dec(X, y). For notational convenience we use the following
shorthands throughout this section:

HZ
V [T (Xy)] :=

1

|Dec(X, y)|
∑

t∈TDec(X,y)

HV [t(Xy) |Zy] (10)

ĤZ
V [Y] := inf

f∈V

1

|D|
∑
x,y∈D

− log f [z ∼ PZ|x](y) (11)

ĤZ
V [t(Xy)] := inf

f∈V

1

|Dy|
∑
x∈Dy

− log f [z ∼ PZ|x](t(x)) (12)

ĤZ
V [T (Xy)] :=

1

K

∑
t∈TDec(X,y;K)

ĤZ
V [t(Xy)] (13)

Definition 6 (DIB). Let β ∈ R>0 be a hyper-parameter controlling the importance of V-minimality.
The β-DIB criterion for the encoder PZ|X and predictions of Y from X is:

LDIB(X,Y, PZ|X;β) := − IV [Z→ Y] + β ∗ IV [Z→ Dec(X,Y)]

= −H[Y] + HV [Y |Z]

+
∑
y∈Y

β

|Y|
∑

t∈TDec(X,y)

(H[t(Xy)]−HV [t(Xy) |Zy])

= (const) + HV [Y |Z]−
∑
y∈Y

β

|Y|
∑

t∈TDec(X,y)

HV [t(Xy) |Zy]

28

= (const) + inf
f∈V

Ex,y∼PX,Y

[
Ez∼PZ | x [− log f [z](y)]

]
−

∑
y∈Y

β

|Dec(X, y)||Y|

∑
t∈TDec(X,y)

inf
f∈V

Ex∼PX|y

[
Ez∼PZ | x [− log f [z](t(x))]

]
= (const) + HV [Y |Z]− β

|Y| H
Z
V [T (Xy)]

Where (const) does not depend on PZ|X .

The empirical DIB is very similar but: (i) uses D to estimate all expectations over PX,Y; (ii) uses a
single sample from Bob’s encoder z ∼ PZ | x; (iii) estimates the average over t ∈ TDec(X, y) using
K samples TDec(X, y;K) := {ti}Ki=1 where ∀i = 1, . . . ,K, ti ∼ Unif(TDec(X, y)) .

Definition 7 (Empirical DIB). Let β ∈ R>0 be a hyper-parameter controlling the importance of
V-minimality,D i.i.d.∼ PMX,Y be a training set of M i.i.d. input-output pairs (x, y), and K ∈ N>0 denote
the number of r.v. to sample from each y decomposition of X. The empirical (under D,K) β-DIB
criterion for the encoder PZ|X and predictions of Y from X is:

L̂DIB(D, PZ|X;β,K) := (const) + inf
f∈V

1

M

∑
x,y∈D

− log f [z ∼ PZ|x](y)

−

∑
y∈Y

β

K|Y||Dy|
∑

t∈TDec(X,y;K)

inf
f∈V

∑
x∈Dy

− log f [z ∼ PZ|x](t(x))


= (const) + ĤZ

V [Y]− β

|Y| Ĥ
Z
V [T (Xy)]

Where we use z ∼ PZ|x to denote that z is one sample from PZ|x, (const) is the same constant as in
Def. 6 , and Dy := {x | (x, y) ∈ D} is the subset of input examples labeled y.

Prop. 3 says that despite the previous approximations, L̂DIB(D, PZ|X;β,K) still inherits V-
information’s PAC estimation guarantees. More formally:

Proposition 7 (PAC Estimation Guarantees). Let RM (log ◦V) denote the M -samples Rademacher
complexity of log ◦V := {g | g(z, y) = log f [z](y),∀f ∈ V}, X,Y,Z be r.v.s, D i.i.d.∼ PMX,Y be a
dataset of M i.i.d. input-output pairs (x, y), β ∈ R>0, and K ∈ N>0. Assume that ∀f ∈ V, ∀z ∈
Z, ∀y ∈ Y we have | log f [z](y)| ≤ C, then for any δ ∈]0, 1[, with probability at least 1− δ we have
that the estimation error12 err := |LDIB(X,Y, PZ|X;β)− L̂DIB(D, PZ|X;β,K)| is bounded by:

err ≤ 2RM (log ◦V) + β log |Y|+ C

√
2 log 1

δ

M
(14)

In order to prove Prop. 7, we need two key lemmas, one for PAC-estimation guarantees of the
V-sufficiency term and the other for estimation bounds of the V-minimality term.

C.5.1 Lemmas for Estimation Bounds

The estimation guarantees that we will use for the V-sufficiency term essentially comes from Lemma
3 of Xu et al. [23], which we state here with a slight modification to incorporate the sampling from
an encoder.

Lemma 10 (Estimation error V-sufficiency; Lemma 3 of Xu et al. [23]). Let D i.i.d.∼ PMX,Y be a dataset
of M input-output pairs. Assume that ∀f ∈ V, ∀z ∈ Z, ∀y ∈ Y we have | log f [z](y)| ≤ C, then

12Up to terms that are constant in PZ|X. We can provide similar guarantees when incorporating these constants
due to Lemma 4 of Xu et al.’s [23] but there is no reason to estimate these constants in our framework.

29

for any δ ∈]0, 1[, with probability at least 1− δ, we have:∣∣∣HV [Y |Z]− ĤZ
V [Y]

∣∣∣ ≤ RM (log ◦V) + C

√
2 log 1

δ

M
(15)

Proof. For the bulk of the proof, we refer the reader to the proof in Xu et al. [23] which uses
the standard Rademacher machinery (McDiarmid’s inequality and a symmetrization argument for
Rademacher random variables) to prove that with probability at least 1− δ, we have:∣∣∣HV [Y |Z]− inf

f∈V

1

|D|
∑

z,y∈Dz,y

− log f [z](y)
∣∣∣ ≤ RM (log ◦V) + C

√
2 log 1

δ

M

The only difference with Eq. (15) is that the dataset Dz,y consist of i.i.d. samples from PZ,Y, while
ourD consists of samples from PX,Y. Sampling a pair (x, y) ∼ PX,Y and then a single from z ∈ PZ|x
is nevertheless equivalent to sampling directly from (x, y, z) ∼ PX,Y,Z so x, y ∈ D and z ∼ PZ|x in
Eq. (11) can be replaced by z, y ∈ Dz,y to get the desired Eq. (15).

We now provide a bound on the error of the V-minimality.

Lemma 11 (Estimation error V-minimality). D i.i.d.∼ PMX,Y be a dataset of M i.i.d. input-output pairs
(x, y), β ∈ R>0, and K ∈ N>0. We have:

β

|Y|
∑
y∈Y
|HZ
V [T (Xy)]− ĤZ

V [T (Xy)] | ≤ β log |Y| (16)

Proof. Suppose that at y = arg maxy∈Y(HZ
V [T (Xy)] − ĤZ

V [T (Xy)]) we have HZ
V [T (Xy)] >

ĤZ
V [T (Xy)] then:

errMin :=
β

|Y|
∑
y∈Y
|HZ
V [T (Xy)]− ĤZ

V [T (Xy)] |

≤ βmax
y∈Y
|HZ
V [T (Xy)]− ĤZ

V [T (Xy)] | Max > Mean

= βmax
y∈Y

(HZ
V [T (Xy)]− ĤZ

V [T (Xy)]) Assumption

≤ βmax
y∈Y

HZ
V [T (Xy)] Non negativity

= βmax
y∈Y

1

|Dec(X, y)|
∑

t∈TDec(X,y)

HV [t(Xy) |Zy] Eq. (10)

≤ βmax
y∈Y

max
t∈TDec(X,y)

HV [t(Xy) |Zy] Max > Mean

= βmax
y∈Y

max
t∈TDec(X,y)

inf
f∈V

Ex∼PX|y

[
Ez∼PZ | x [− log f [z](t(x))]

]
Def.

≤ βmax
y∈Y

max
t∈TDec(X,y)

Ex∼PX|y

[
Ez∼PZ | x

[
− logPt(Xy)(t(x))

]]
f [·] = Pt(Xy)

= βmax
y∈Y

max
t∈TDec(X,y)

Ex∼PX|y

[
− logPt(Xy)(t(x))

]
E[const]

≤ βmax
y∈Y

max
t∈TDec(X,y)

log Ex∼PX|y

[
1

Pt(Xy)(t(x))

]
Jensen’s Ineq.

≤ βmax
y∈Y

max
t∈TDec(X,y)

log

|Y|∑
n=1

PN(n)
1

PN(n)
t(Xy) = N

= βmax
y∈Y

max
t∈TDec(X,y)

log |Y|

= β log |Y|

30

The fourth line uses the non-negativity of V-entropy in the finite sample setting which can be
shown using the non-negativity of entropy and the monotonicity of V-entropy. The fact that ∃f ∈
V, s.t. ∀z ∈ Z we have f [z] = Pt(Xy) comes from the arbitrary biasing assumption of V . The third
to last line uses the fact that t(Xy) t.v.i. the co-domain of t which is Y .

In the above we assumed that HZ
V [T (Xy)] > ĤZ

V [T (Xy)] at the arg max y. When HZ
V [T (Xy)] ≤

ĤZ
V [T (Xy)], we have:

errMin ≤ βmax
y∈Y
|HZ
V [T (Xy)]− ĤZ

V [T (Xy)] | Max > Mean

= βmax
y∈Y

(HZ
V [T (Xy)]− ĤZ

V [T (Xy)]) Assumption

≤ βmax
y∈Y

ĤZ
V [T (Xy)] Non negativity

= β log |Y|

Where we get the last line by applying the same steps as before to bound ĤZ
V [T (Xy)] instead of

HZ
V [T (Xy)].

Note that the latter bound is loose and is not a PAC-style bound. To derive a tighter PAC-style
bound one can use the fact that each HV [t(Xy) |Zy] term in HZ

V [T (Xy)] is C√
M

-sub-Gaussian due
to Lemma 10. We do not provide such bounds as the current looser bounds are more succinct and
sufficient to show that LDIB is easier to estimate than LIB with finite samples.

C.5.2 Proof for Estimation Bounds

We are now ready to prove Prop. 7

Proof. Due to the triangular inequality the error is:

err :=
∣∣∣LDIB(X,Y, PZ|X;β)− L̂DIB(D, PZ|X;β,K)

∣∣∣
=
∣∣∣(const)− (const) + HV [Y |Z]− ĤZ

V [Y]− β

|Y|
∑
y∈Y

(
HZ
V [T (Xy)]− ĤZ

V [T (Xy)]
)∣∣∣

≤ |0|+
∣∣∣HV [Y |Z]− ĤZ

V [Y]
∣∣∣+

β

|Y|
∑
y∈Y

∣∣∣HZ
V [T (Xy)]− ĤZ

V [T (Xy)]
∣∣∣ (17)

We can now compute the probability of not being approximately correct:

PAC := P

err > 2RM (log ◦V) + β log |Y|+ C

√
2 log 1

δ

M


≤ P

(∣∣∣HV [Y |Z]− ĤZ
V [Y]

∣∣∣+
β

|Y|
∑
y∈Y

∣∣∣HZ
V [T (Xy)]− ĤZ

V [T (Xy)]
∣∣∣

> 2RM (log ◦V) + β log |Y|+ C

√
2 log 1

δ

M

)
Eq. (17)

≤ P

(∣∣∣HV [Y |Z]− ĤZ
V [Y]

∣∣∣ > 2RM (log ◦V) + C

√
2 log 1

δ

M


31

∨

 β

|Y|
∑
y∈Y

∣∣∣HZ
V [T (Xy)]− ĤZ

V [T (Xy)]
∣∣∣ > β log |Y|

)

≤ P

(∣∣∣HV [Y |Z]− ĤZ
V [Y]

∣∣∣ > 2RM (log ◦V) + C

√
2 log 1

δ

M

)

+ P

(
β

|Y|
∑
y∈Y

∣∣∣HZ
V [T (Xy)]− ĤZ

V [T (Xy)]
∣∣∣ > β log |Y|

)
Union Bound

≤ δ + 0 Lemma 10 and Lemma 11

So, as desired, the probability of being approximately correct is:

P

err ≤ 2RM (log ◦V) + β log |Y|+ C

√
2 log 1

δ

M

 = 1− PAC = 1− δ

D Reproducibility

In this section we provide further details of the hyperparameters chosen for the various experiments in
the main text. Unless stated otherwise, all the models are trained for 300 epochs, using Adam [99] as
the optimizer, a learning rate of 5e− 5, at every epoch we decay all learning rates by (1/100)(1/300)

(so that the learning rate is decayed by 100 during the entire training), a batch-size of 256, without
data augmentation, and using 5 and 3 random seeds respectively for experiments in the main text
and appendices. We checkpoint and use the model which achieves the smallest training loss for
evaluation.13 Activation functions are LeakyReLU(x) = max(x, 0.01 ∗ x) while other unspecified
parameters are PyTorch [100] defaults. The code can also be found at github.com/YannDubs/
Mini_Decodable_Information_Bottleneck.

D.1 V-Minimality V-Sufficiency

Bob’s encoder is a neural network which maps the input X to a mean µz and standard devia-
tion σz used to parametrize a multivariate normal distribution with diagonal Gaussian: PZ|X =
N (Z;µz, softplus(σz − 5)), where softplus(·) = log(1 + exp(·)). Note that we use −5 as done in
VIB [19] to make the methods more comparable. During training we sample a single z ∼ PZ|X,
while we sample 12 during evaluation (as done in VIB [19]). 14 The representation then goes through
a batch normalization layer without trainable parameters (setting the mean to 0 and standard deviation
to 1), which ensures that the representation cannot diverge as discussed in Appx. E.3.

The encoder is trained using two losses which are weighted by a hyperparameter β, L̂DIB(D) =
LVsuff − βLVmin:

• V-sufficiency LVsuff. The representation z goes through a head of architecture V . The last
layer of this head goes through a softmax to parametrize a distribution over of labels, i.e.,
f [z](y) corresponds to the yth neuron in that layer. The resulting loss LVsuff is the standard
cross entropy. We then back-propagate to jointly minimize the loss with respect to the head
and the encoder.

• V-minimality LVmin. In addition to being used for LVsuff, the representation z is used as
input to V-minimality heads that each predict a different N ∈ Dec(X, y) in the same way
as how the V-sufficiency head predicts the label Y. We get each N using Algorithm 1, i.e.,

13Notice that we use a small learning rate, a large number of epochs, and checkpoint based on training loss
because we are interested in studying the generalization ability of a model depending solely on the criterion
being optimized over.

14Contrary to VIB, DIB does not require the use of an encoder that parameterizes a Gaussian distribution. We
use a Gaussian to make it more comparable to VIB.

32

github.com/YannDubs/Mini_Decodable_Information_Bottleneck
github.com/YannDubs/Mini_Decodable_Information_Bottleneck

assigning each example x ∈ X some index and then performing base |Y| expansion (see
Appx. E.5). For the case of CIFAR10 this corresponds to: (i) assigning each image some
index between 0 and the number of examples (∼ 6000); (ii) having 4 nuisance labels N
corresponding to each digit of the new index, e.g., the cat number 627 will have N1 = 0,
N2 = 6, N3 = 2, N4 = 7.
Each V-minimality head predicts the corresponding N. Having to treat every example
differently based on their underlying label y (“for loop” in Fig. 2a) is not amenable to batch
GPU training, which assumes that every example in a batch is treated the same way. We thus
use the same predictor for a set {Dec(X, y)}y∈Y (see Appx. E.6), i.e., instead of having one
predictor for Dec(X, cat) and another for Dec(X, dog) where representations are z ∼ Zy
(as shown in Appx. D) we use a single head to predict both Dec(X, cat),Dec(X, dog) using
representations z ∈ Z from cats or dogs as inputs. By taking an average over the loss of each
head we get the LVmin term of Fig. 2a. Throughout the paper we unroll the optimization of
V-minimality heads for 5 steps, i.e., for every batch LVmin) is minimized by V-minimality
heads while the encoder maximizes it. We show in Appx. E.2 that, as seen in Fig. 2b, DIB
can perform similarly well with joint gradient ascent descent — by reversing gradients
which is more efficient and easier to implement.

Once the encoder is trained, we can train Alice’s classifier by:

• Standard (Avg, ERM). We freeze the trained encoder and use the representations as inputs
to Alices head of architecture V . Alice then trains her classifier by minimizing the usual
cross-entropy.

• Worst ERM. In some cases we want to explicitly find a Classifier from Alice that will
perform well on train but bad on test. To do so, we optimize arg minf∈V R̂(f,Z;D)− 0.1 ∗
R(f,Z) (see Appx. E.7), which corresponds to minimizing the training cross-entropy while
directly maximizing the test cross-entropy.

Finally, Alice’s classifier is then evaluated by its test log loss (risk).

D.1.1 V-Sufficiency

For the V-Sufficiency experiments (Sec. 4.1), we use a ResNet18 for Bob’s encoder and a single-
hidden layer MLP for Alice with varying width (see Appx. E.1 for details and justification). For
Fig. 3a we use a 2 dimensional Z and odd-even classification of CIFAR100. For Fig. 3b we use a 8
dimensional Z and full CIFAR100. The encoder is trained to be VBob-sufficient and so we do do not
use LVmin. Alice uses an architecture VAlice and is trained using standard cross-entropy. To support
Prop. 1 we want to show that V-sufficient representations are optimal when Bob and Alice have
access to the entire underlying distribution. As a result, we evaluate Alice’s classifier on the training
set.

D.1.2 V-Minimality V-Sufficiency

For the V-minimality experiments (Sec. 4.2), our goal is to show that if Bob trains V-minimal V-
sufficient representations, any ERM trained by Alice will perform well on test (supporting Theorem 1).

Since our theory does not impose any limitation on the possible representations Z, we need an encoder
that is very flexible and as close as possible to a universal function approximator. Thus, we use a large
MLP with three hidden layers each with 2048 hidden units, for a total of around 21M parameters.
Furthermore, we use a 1024 dimensional Z in order to avoid constraints arising from a dimensionality
bottleneck rather than from the criterion that Bob uses to train Z. Alice’s predictive family V is a
single hidden layer MLP with 128 hidden units. As the encoder is much larger than V we increase
the learning rate of V-minimality heads by a factor of 50 to make sure that they can “keep up” with
the changing encoder.

For Fig. 4a and Fig. 4b (Effect of DIB on generalization), we use the CIFAR10 dataset, and train Al-
ice’s classifier in the “Worst ERM” setting. The same holds for Fig. 4c, but uses the CIFAR10+MNIST
dataset (see Appx. D.2). In this case, the Bob’s encoder is still trained using only CIFAR10. Once the
encoder is trained and frozen, we evaluate how well Alice’s (worst) ERM can predict the CIFAR10
labels (as before). In addition, we also train another classifier in V to predict the MNIST labels, using
the same encoder.

33

For Table 1 (performance of Avg. and worst ERM for different regularizers) we train the encoder
in different ways, and Alice’s classifier in the “Worst ERM” (top row) and “Avg. ERM” (bottom
row) settings. Importantly, each regularizer is used only during Bob’s training, as we are interested to
know how DIB performs compared to other regularizers for representation learning, when the Alice’s
downstream classifier is an empirical risk minimizer as in our problem formulation (Sec. 2.1). The
regularizers are as follows (we tuned all models): (i) “No Reg.” does not use any regularizer and the
encoder directly outputs the representation z rather than a distribution from which to sample (this is
the only such deterministic encoder in these results); (ii) “Stoch Rep.” does not use any regularizer
but the encoder is the same as the one used in DIB, i.e., it parametrizes a Gaussian distribution from
which 12 z are sampled and the predictions are marginalized over these samples; (iii) “Dropout” uses
50% dropout after every layer in the encoder and is kept when training Alice’s encoder; (iv) “Wt.
Dec.” uses 1e-4 weight decay during Bob’s training; (v) “VIB” uses a KL-divergence “regularizer”
to force the parametrized to be closer to a standard normal distribution (as described in [19]), the
weight of the regularizer β = 1e− 1. (vi) “V−-DIB” uses a one hidden layer MLP with 2 hidden
units (instead of 128) and β = 100. (vii) “V+-DIB” uses a one hidden layer MLP with 8192 hidden
units (instead of 8192) and β = 0.01. (viii) “V-DIB” uses the correct one hidden layer MLP with
128 hidden units and β = 10.

D.2 CIFAR10+MNIST Dataset

We follow Achille and Soatto [20] and overlay MNIST digits on top of CIFAR10 images to create
the CIFAR10+MNIST dataset. Concretely, we pick a CIFAR10 image and on top of it overlay an
MNIST image selected uniformly at random. The code used to generate the dataset as well as some
samples can be found in https://github.com/YannDubs/Overlayed-Datasets.

D.3 Correlation

For the correlation experiments in Sec. 4.3, we largely follow previous work by Jiang et al. [50] in the
sweeps over hyperparameters to get an initial set of models with potentially different generalization
errors.

Let Conv(kernel_size, stride) denote a convolutional layer. The basic block of the convolu-
tional networks consist of (in order): Conv(3, 2, padding=1), BatchNorm, Relu, Conv(1,
1), BatchNorm, Relu, Conv(1,1), Relu, dropout. The final networks consist of one
Conv(1,1),Relu used to set the correct number of channels, followed by “depth” number of
blocks, followed by Conv(1,1) that set the number of channels to the dimensionality of the rep-
resentation, followed by an average pooling over the spatial dimensions. The resulting output is a
(deterministic) representation which will go through an MLP with 2 hidden layers of width 128 to
perform classification.

In order to be comparable to Jiang et al. [50] we sweep over the following hyperparameters: (i) the
learning rate (1e-3, 3e-4, 1e-4); (ii) the batch size (32, 64, 128); (iii) the dropout rate (0, 0.25,
0.5); (iv) the width/channel size (192, 384, 768); (v) the depth/number of blocks (2, 4, 8); (vi) the
dimensionality of the representation (32, 128, 512). We train every models with combination of
these parameters on CIFAR10 and stop once the train log likelihood is better than 0.01 (with a hard
stop at 300 epochs if the model did not reach that threshold by then). The resulting subset of 562
models thus all (approximately) perform equally well on training, which enables to study the effect
of hyperparameters on generalization in isolation without the influence of performance on training
as an indicator for generalization. For each resulting model we compute the difference between
performance on train and test (generalization gap), both in terms of accuracy and log likelihood. We
then compare the rank correlation between the desired measure and the observed generalization gap.

The methods that we compare to are the best performing in each section of Jiang et al. [50], namely:
(i) “Entropy” is the average entropy of the predicted probabilities; (ii) “Path Norm” takes an input of
all ones and passes it through the network where all the parameters are squared and returns the square
root of the sumed logits; (iii) “Var. Grad.” computes the average gradients at the end of training;
(iv) “Sharp. Mag” essentially finds the maximum (relative) perturbation that can be applied to the
weights to get less than 0.1 log likelihood difference. We use 1

α′ version of sharpness magnitude as
described in Jiang et al. [50].

34

https://github.com/YannDubs/Overlayed-Datasets

The code of Jiang et al. [50] is not (currently) public but we did our best to follow their work on all
but the following three points: (i) We use an MLP after the CNN, which was used to evaluate V+,V−
minimality as in the rest of the paper, (ii) We do not sweep over the weight decay and optimizer but
instead we vary the size of the representation, to try to incorporate a representation-specific parameter,
(iii) our implementation of the sharpness magnitude measures differences in log-likelihood instead of
accuracy. 15

E Additional Experiments

In the rest of the appendices we provide additional experiments and results. Specifically we investigate:
(i) How to obtain meaningful nested predictive families V− ⊂ V ⊂ V+ which we use throughout our
paper (Appx. E.1); (ii) Different methods to deal with the min-max optimization in LDIB (Appx. E.2);
(iii) An important “trick” that helps the min-max optimization of LDIB (Appx. E.3); (iv) The effect
of using Monte Carlo estimation of IV [Z→ Dec(X,Y)] (Appx. E.4); (v) How to improve LDIB

by sampling approximately independent nuisance r.v.s from Dec(X, y) (Appx. E.5); (vi) How to
efficiently implement LDIB for standard GPU batch training (Appx. E.6); (vii) How to obtain an
ERM which performs well on train but bad on test (“Worst ERM”;Appx. E.7); (viii) Whether our
V − sufficiency results in Sec. 4.1 hold across various settings (Appx. E.8); (ix) Why V-sufficiency
is not as important in large networks trained with SGD (Appx. E.9); (x) The effect of β on different
V-minimality terms (Appx. E.10); (xi) The performance of DIB as a standard regularizer (Appx. E.11);
(xii) Whether the degree of V-minimality is correlated with generalization across different neural
networks and datasets (Appx. E.12).

E.1 Sweeping over Predictive Families

A core set of our experiments involve using nested predictive families V− ⊂ V ⊂ V+. In this
appendix, we study different ways of “sweeping” over functional families, i.e. finding some parameter
s.t. increasing the value it can take k < k′ means increasing the family Vk ⊂ Vk′ . Using neural
networks with varying architectures, we investigate the following possibilities:

Width Sweeping over the width (w = 4k) of a single layer MLP (d = 1).

Depth Sweeping over the depth (d = k) of an MLP (w = 128) 16.

Width and Depth Simultaneously sweeping over the depth (d = k) and width (w = 32 ∗ 2k) of an
MLP.

Weight Pruning Sweeping over the percentage of non-pruned weights (% 6=0 = 2k

28) of an MLP
(d = 3,w = 2048). 17

To see whether the aforementioned methods are effective ways of sweeping over functional families,
we analyze their respective complexity by looking at how well they can fit arbitrary labelling, which
was proposed by [37] as a measure of complexity intuitively similar to Rademacher complexity.
Specifically, we train a X − 1024− 1024−Z − 64−Y MLP on CIFAR10, then freeze the encoder
X − 1024− 1024−Z , shuffle the labels PZ×Y = PZ ×PY, and compute the training log likelihood
achieved by the predictive family minf∈V R̂(f,Z;D). We do so for increasing dimensionality
(2,16,1024) of the representations Z.

Figure 6 shows that each of the four aforementioned sweeping methods increases their respective
complexities (besides for two dimensional representations which appears constant). Sweeping only
over depth does not appear to significantly increase the complexity of the functional family 18.
Sweeping over weight pruning fraction is a very effective method to increase the functional family.

15We initially only wanted to consider generalization in terms of log-likelihood since our theory only talks
about log-likelihood. For this reason, the correlation of sharpness magnitude in Table 2 is lower than in Jiang
Jiang et al. [50], which is why we also transcribe their results.

16We also tried with a width of 32 but the differences due to depth was surprisingly less pronounced there.
17To implement that, we start with a usual MLP and then prune recursively 50% of the weights. The

recursiveness ensures that every weight which were previously pruned will also be pruned in the next round.
18This is likely because the sweeping interval [1, . . . , 5] is quite small. When using a larger sweeping interval,

the optimization was harder, often yielding smaller randomized log likelihood.

35

(a) Width (b) Depth

(c) Width and Depth (d) Weight Pruning

Figure 6: Sweeping over functional families. Each plot shows how the complexity of a functional
family (measured by its ability to learn arbitrary CIFAR10 labels from a 2, 16, 1024 dimensional
representation) increases by sweeping over the following properties of an MLP: (a) Width, (b) Depth,
(c) Width and Depth (width = 32∗2depth), (d) Weight Pruning. The results in all panels are averaged
over 3 runs with 95% bootstrap confidence interval.

Sweeping over the width and depth together is also very effective to increase the complexity of the
family, but we found that in some experiments the deepest MLPs were too difficult to optimize.
Sweeping over the width of the MLP increases the complexity significantly. This last method is
simple and effective, so we decided to use it as the sweeping method in the main text.

E.2 Min-Max Optimization

As mentioned in Sec. 3.3, optimizing the DIB involves a min-max procedure that is hard to optimize.
In all our experiments, we optimize over Z by using variants of stochastic gradient descent (SGD) to
learn the parameters of the encoder and thus require the gradient of the DIB objective Eq. (8) with
respect to the encoding model’s parameters. To see where the issues arise, we show how to compute
the gradients ∂

∂ZLDIB
19:

∂

∂Z
LDIB = − ∂

∂Z
IV [Z→ Y] +

∂

∂Z
β ∗ IV [Z→ Dec(X,Y)]

= − ∂

∂Z
IV [Z→ Y]

+
∂

∂Z

∑
y∈Y

β

|Y| ∗ |Dec(X, y)|
∑

N∈Dec(X,y)

IV [Zy → N]

= − ∂

∂Z
H[Y] +

∂

∂Z
HV [Y |Z]

19We use the notation ∂
∂Z
LDIB to denote ∂

∂θ
LDIB where Z = encoderθ(X, ε), ε ∼ U(0, 1). In other words

the encoder will take some noise ε and some input x and will output a representation z, we are interested in the
parameters of that encoder.

36

Figure 7: Effect of taking multiple inner optimization steps (over V) on Alice’s generalization gap
during the min-max optimization in DIB. The left figure shows the gap when higher order gradients
are computed through the unrolled internal optimization. The right figure is a baseline showing the
result of taking the same number of internal optimization steps but not tracking gradients through the
internal optimization. An inner optimization of 0 means joint optimization using gradient reversing.

+
∑
y∈Y

β′
∑

N∈Dec(X,y)

(
∂

∂Z
H[Y]− ∂

∂Z
HV [N |Zy])

=
∂

∂Z
min
f∈V

R(Y)(f,Z)−
∑
y∈Y

β′
∑

N∈Dec(X,y)

∂

∂Z
min
f∈V

R(N)(f,Z) Lemma 2

=

 ∂

∂Z
min
f∈V

R(Y)(f,Z) +
∑
y∈Y

β′
∑

N∈Dec(X,y)

∂

∂Z
max
f∈V

R(N)(f,Z)

 (18)

Where we used R(Y) and R(N) to make it explicit that the risk terms are for different predictions.
For the first term in Eq. (18), we follow the de facto method of computing gradients, i.e., to treat
the problem simply as joint optimization over Z and V . Complications arise, however, because the
V-minimality term involves a maximization, thus giving rise to a min (over the encoding) - max (over
classifiers) optimization. There exist at least three ways of estimating such gradients:

Exact Assuming that we can perform the inner optimization exactly f∗Y = arg minf∈V R(Y)(f,Z)

and f∗N = arg maxf∈V R(N)(f,Z), then we we know by the Envelop theorem [101] that the
gradients are simply:

∂

∂Z
R(Y)(f∗Y,Z) + β′

∑
y∈Y

∑
N∈Dec(X,y)

∂

∂Z
R(Y)(f∗N,Z)

This exact method is very restrictive, as we can essentially only find the optimal functions if
we add strong restrictions on V (e.g. linear classifiers).

Joint Optimization One could disregard the issues that arise from min-max optimization and
optimize everything jointly. This can easily be implemented by reversing the sign (sometimes
referred to as a gradient reversal layer [102]). This is what we show in Fig. 2b. Note that
there are no guarantees of convergence, even to a local minimum.

Unrolling Optimization A third possibility consists in “unrolling” the inner optimization [39, 103–
105] by taking a few SGD steps in the internal optimization loop (over the functions f) and
computing the gradients with respect to the Z. Note that there are again no guarantees of
converging even to a local minimum. Nevertheless, the gradients are better estimates of the
true gradients than in the joint case. A key hyper-parameter then becomes the number of
inner optimization steps to perform for each Z update.

We experimented with the three aforementioned approaches to estimating the gradients. While
preliminary results suggested that the “Exact” method is, unsurprisingly, better than the two other

37

(a) Absolute Value of Mean of Z (b) Standard Deviation of Z

Figure 8: Consequences of not performing the internal optimization to convergence on (a) the average
(across batches) absolute value of the mean of Z; (b) the average (across batches) of the standard
deviation of Z. In both cases we plot “DIB Free”, which consists of the naive DIB, and “DIB” which
uses our batch normalization solution.

methods, we did not want to restrict the function families and thus opted for the other two approaches.
In the following, we compare two performance of the other methods that do not necessitate any
restriction on V . For all of experiments, we employ an additional trick that arises due to the inner
optimization not being run until convergence (see Appx. E.3).

Figure 7 shows the effect of the number of inner optimization steps on Alice’s generalization. We see
that she achieves best performance by either joint optimization (which is noted as 0 inner optimization
steps) or unrolling optimization with multiple inner optimization steps. Although it is not clear from
Fig. 7 using 5 inner optimization steps is significantly better than performing joint optimization.
Indeed, at the best β (β = 10 for 5 inner steps, and β = 1000 for joint optimization) taking 5 inner
steps gives an average test log likelihood of−1.56±0.03 against−1.65±0.00 for joint optimization.
We also see that increasing the number of steps results in an objective which appears more robust to
the choice of β. This comes, however, at the cost of increased computational complexity. Throughout
the paper we use five inner optimization steps, but note that for larger problems, it would be advisable
to use joint optimization in order to decrease the computational complexity.

E.3 Diverging Representation from Min-Max

As discussed in Appx. E.2, the DIB objective requires a minimax optimization, which we solve using
5 steps of inner optimization. A major issue that arises from with this approach is that the encoder
can “cheat” because the inner optimization is not done until convergence. As a result the encoder can
learn representations Z that are highly variable such that the decoder f ∈ V , which tries to predict N,
cannot adapt quickly enough.

To solve this issue we pass the sampled representations through a batch normalization layer [106] but
without trainable hyper-parameters, i.e. we normalize each batch of representations to have a mean
of zero and a variance of one. As this is simply a rescaling, it could easily be learned by any f ∈ V if
the inner optimization were performed until convergence (it does not modify V). Nevertheless, it
does give much better results since it ensures that the encoder learns a meaningful representation,
rather than taking advantage of the limited number of steps in the internal maximization. Note that
the encoder has many more parameters than the classifier, allowing it to alter the representation such
that the classifier cannot “keep up”. Figure 8 shows that without this “trick” the mean and standard
deviation in fact diverges as β increases (labeled DIB Free). This is solved by the normalization trick
(labeled DIB), which we use throughout the paper.

E.4 Monte Carlo Estimation of IV [Z→ Dec(X,Y)]

Optimizing DIB involves the task of minimizing IV [Z→ Dec(X,Y)] , which requires (Eq. (7))

computing an average over all Y decompositions of X — of which there are |Y|
|X|
|Y|+1. As a result,

38

(a) Generalization Gap

(b) Terms in DIB

Figure 9: Effect of number of Monte Carlo Samples on (a) the worst case generalization gap; (b) the
terms estimated by DIB. In both (a) and (b) the left plot show [4, 12, 20] Monte Carlo samples per
label. The right plot (labeled DIB Same) is a baseline that always has four Monte Carlo samples, but
uses [1, 3, 5] predictors with different decoders with different initializations each predicting the same
N (for a total of [4, 12, 20] predictors as in the left plots). All other hyperparameters are the same as
for Fig. 4.

even though the V-information terms are sample efficient (due to the estimation bounds given in
[23]), estimating it directly is not computationally efficient. To estimate the IV [Z→ Dec(X,Y)] in a
computationally efficient manner, we thus perform a Monte Carlo estimation of the average (corre-
sponding to random_choice in Fig. 2a). In this section we show that in practice, we only require a
very small number of Monte Carlo samples, allowing DIB to be implemented in a computationally
efficient manner.

Figure 9 shows the result of using a different number of Monte Carlo samples (4, 12, or 20 r.v.s N
per label y). All other hyperparameters are identical to those used in Fig. 4. In order to ensure that
the gains come from sampling different Ns rather than from using a larger number of predictors, we
also trained a model (labeled “DIB Same”) which always uses four N labelings multiple predictors
per labeling to match the total number of different predictors. For example, “DIB Same” with 20
predictors corresponds to sampling four N and then having 5 predictors (different initializations) per
N that each try to predict the same arbitrary labels N. Indeed, increasing the number of predictors
(even with the same N) might help as each will converge to a different local minimum. We see that
increasing the number of predictors does seem to have an effect on DIB, but the number of Monte
Carlo estimates does not seem to change much compared with using more predictors. Interestingly,
the best test log likelihood comes from using the fewest number of predictors.

This finding that the number of Monte Carlo samples has little effect on DIB might seem surprising

as we only use four instead of the |Y|
|X|
|Y|+1 ≈ 10000 different N. But it is important to notice that

many of these Y decompositions of X are redundant (i.e. they contain the same V-information).

39

Input :All possible inputs X , labels Y associated with each X , all possible labels Y
Output :A matrix N, where the ith column is the value of Ni for the corresponding X
indices← zeros(|X |)
Ns← zeros(|X |, dlog|Y|(|X |)e − 2)
for y ∈ Y do

idcs[Y == y]← range(0, len(Y == y))
end
for i← 0 to |X | do

Ns[i,:] ← base |Y| expansion of idcs[i]
end

Algorithm 1: Y decomposition of X through base expansion

(a) Generalization Gap (b) Terms in DIB

Figure 10: Effect of using Base |Y| expansion (labeled “DIB”) vs. randomly selecting N from the set
of Y decompositions of X (labeled “DIB Random”) on (a) the worst case generalization gap; (b) the
terms estimated by DIB. All other hyper-parameters are the same as for Fig. 4.

For example, due to the invariance of V to permutations, minimizing IV [Z→ N] also minimizes
IV [Z→ πN], for all permutations π on Y . Generally speaking, the larger the functional family V ,
the more that N ∈ Dec(X, y) will be redundant in that minimizing the V-information with respect to
some subset of N will also minimize the V-information of a different subset of N ∈ Dec(X, y).

E.5 y Decomposition of X Through Base Expansion

In the main paper and Appx. E.4, we discussed how estimate to estimate IV [Z→ Dec(X,Y)] by
uniformly sampling N ∈ Dec(X, y). As previously mentioned, many N ∈ Dec(X, y) will actually
be redundant and have the same V-information. It thus makes sense to only using Ns which are
(approximately) mutually independent so as to minimize redundancies. We do so by assigning to
each Xy a certain index and then computing the base |Y| expansion of that index. For example,
in the case of binary cat-dog classification, we would assign some index to all cats and have N be
the binary expansion of that index. Using base |Y| indexing gives a set {Ni}i of dlog|Y| |X | − 2e
elements, which ensures that (i) each of the N is a deterministic function from Xy → Y and thus
part of Dec(X, y); (ii) each of the N are (approximately) uncorrelated and thus will not be redundant.
The algorithm to compute the set of N from which we estimate IV [Z→ Dec(X,Y)] is described in
Algorithm 1.

Figure 10 shows the effect of using the y decomposition of X through base |Y| expansion, instead
of randomly sampling labels N ∈ Dec(X, y). We see that although differences are not large, the
base expansion is better. At the optimal β = 10, using base |Y| expansion gives a test log likelihood
of −1.41± 0.05 vs. −1.66± 0.09. Note that the base |Y| expansion does not incur any additional
computational costs nor does it have any other drawbacks that we know about.

40

R
eal labeling

CatDog Dog Cat

...

BA B A

...3

1

2
Encoder

01 1 1

...

...

Every possible binary labeling

Reverse
Gradients

Classifier

Cats and
Dogs

...

K

4
...

(a) DIB for Batch Training

(b) Generalization Gap

Figure 11: (a) Schematic illustration of using the predictor / V-minimality head for a set
{Dec(X, y)}y∈Y which is more amenable to batch training than the standard way of one predictor /
V-minimality head for each Dec(X, y) shown in Fig. 2b. (b) Effect on Alice’s log likelihood when
sharing the predictors (labeled “DIB Shared Pred.”) compared to no sharing (labeled “DIB.”).

E.6 Sharing Predictors of {Dec(X, y)}y∈Y for Batch Training

In Eq. (7) we see that every example has to be treated differently depending on its underlying label
y ∈ Y . Indeed, Dec(X, y) depends on the underlying label y. In practice this means having a “for
loop” over y ∈ Y (see Fig. 2) and using a different V-minimality head for each Dec(X, y). This
makes DIB hard to take advantage of the standard batch GPU training, where all examples in a batch
are assumed to go through the same predictor regardless of their underlying label. Here we investigate
whether DIB can be modified to take advantage of batch training by having a single predictor for a set
of nuisance r.v. {Dec(X, y)}y∈Y as seen in Fig. 11a, i.e. treating all representations z ∼ Z the same
way instead of having to distinguish them based on their underlying label z ∼ Zy . This has the same
under underlying computational complexity, but it has the advantage of being trainable in batches.
Interestingly, Fig. 11b shows that sharing the predicors (“DIB shared Pred.”) reaches a better test
performance in practice. This is probably an artefact of the values β we are sweeping over, but it
nevertless shows that one can perform well by sharing the predictors and this take advantage of batch
training.

E.7 Searching for an ERM That Does Not Generalize

In Sec. 4.2 we briefly outlined a method to test Theorem 1, which states that all ERMs should
generalize well when trained from V-minimal V-sufficient representations. In other words, no ERM
should have a non-zero generalization gap. Since we can only approximate V-minimal V-sufficient
representations, our aim is to show that no ERM predicting from such a representation will incur a
large generalization gap. Of course, it is infeasible to train all possible ERMs and then check that
each generalizes well. So instead we directly search for the ERM with the largest generalization gap
(worst case). We expect from Theorem 1 that even this ERM will have a small gap. Specifically, we
want to maximize the test loss under the empirical risk minimization constraint:

arg max
f∈V

R(f,Z)

s.t. R̂(f,Z;D) = min
f∈V

R̂(f,Z;D)
(19)

Using a Lagrangian relaxation of Eq. (19) and flipping the sign, our objective is then:

arg min
f∈V

R̂(f,Z;D)− γR(f,Z) (20)

41

Figure 12: Sweeping over γ to find a poorly generalizing ERM. As γ increases, the test performance
decreases without having much effect on the training performance, until approximately γ = 0.1. In
these experiments, Bob learns representations with either joint ERM (labeled ERM) or DIB. Alice
then trains a decoder from Bob’s representation using Eq. 20. Left plot shows results on CIFAR100,
right plot is for our CIFAR10+MNIST dataset.

We thus minimize the training loss as usual while maximizing the test loss times a factor γ. This can
easily be optimized by training on training and test examples, but multiplying all the gradients of test
examples by −γ. Note that this is the same loss used by [107].

In order to find an f that is a poorly generalizing ERM, we sweep over values of γ and select the
largest such that f is (approximately) an ERM. Figure 12 shows that γ = 0.1 seems to be a good
value for both datasets, to ensure that f is approximately an ERM but performs as poorly as possible
on test. We thus use this value for all “worst case” experiments in the paper.

E.8 Optimality of V-Sufficiency in Various Settings

In Fig. 3b we have provided experimental evidence for the optimality of V-sufficient representations
for the considered setting (CIFAR100, 8-dimensional representations, ResNet18). Here we show that
similar conclusions hold for CIFAR100 and SVHN, with 2- or 8-dimensional representations, and
with ResNet18 or X -1024-1024-Z MLP encoders.

Fig. 13 summarizes all the results under various settings. Similarly to Fig. 3b we see that for most
VAlice the empirical optimal representation is recovered by maximizing IV [Z→ Y]. The 3 exceptions
(e.g. SVHN, MLP, 2 dimenional representation, width 2 VAlice) out of the 40 possible VAlice in
each setting are likely due to optimization issues. Notice that the results for SVHN with a ResNet18
encoder show that when the width of VAlice and VBob are both larger, performance becomes less
dependent on VBob. We investigate this phenomenon in the following subsection Appx. E.9.

E.9 The Surprising Effect of Large Neural Families Trained with SGD

Figure 14 shows the same results as Fig. 3 for much larger widths of [4, 16, 64, 256, 1024] instead
of [1, 2, 4, 8, 16]. Figure 14b shows that VBob = VAlice is still optimal but the difference for using
VAlice larger than VBob is much less pronounced and mostly disappears at the largest widths. For
example, the difference in performance when VBob has width 4 and VAlice has width 16 is much
larger than the difference in performance when VBob has width 256 and VAlice has width 1024.

This seems to imply that the larger the functional families, the more similar they become. However,
Figure 14a suggests a simpler explanation. Notice that that when VBob is very large, the representation
that is learned is more linearly decodable. Recall that from Fig. 6 larger functional families are indeed
more powerful, however it seems that once networks are wide enough, SGD favors the learning of
classifiers that are very simple, and thus the functional family does not need to be matched. This
notion echoes the fact that SGD is known to learn simple classifiers first [108].

42

(a) MLP

(b) ResNet18

Figure 13: Optimality of V-sufficiency for different hyperparameters. Both plots show the compara-
tive training performance of VBob-sufficient representations for classifiers in VAlice. As in the main
text, the log likelihood is scaled to lie in the range [0, . . . , 100] for each column. The predictive
families V∗ are single MLPs with varying width. (a) shows X -1024-1024-Z MLP encoders, where
the left and right columns use 2 and 8 dimensional Z, respectively, and the rows are CIFAR100 and
SVHN. (b) is the same as in (a) but with a ResNet18 encoder.

43

(a) 2D Visualization

(b) Scaling Up

Figure 14: Optimality of V-sufficiency in larger functional families. Plots are the same as in Fig. 3
but for widths [4, 16, 64, 256, 2014] instead of [1, 2, 4, 8, 16]. Notably, the representations learned by
Bob become nearly linearly decodable for the largest VBob.

We emphasize that this behavior does not contradict our theoretical prediction that the optimal setting
for Bob is to set VBob = VAlice. Instead, it simply illustrates that if both Alice and Bob use large
neural networks with standard initialization and train with SGD, the difference in the full expressivity
of the models is not accessed. It is still provably better to use the same family, and we never observe
performance to be less than optimal when the families are chosen to match.

E.10 Effect of β on Different ∗-Minimality Terms

In Fig. 4a and Fig. 4b, we showed the effect of varying the β of Bob’s DIB objective on Alice’s
worst-case performance. We also plotted the estimated value of the individual V-sufficiency and
V-minimality terms. Figure 15 shows the same plot but for different ∗-minimality terms in Bobs
objective, in particular: V-minimality (single-layer MLP with 128 hidden units), V+-minimality
(single-layer MLP with 8192 hidden units), V−-minimality (single-layer MLP with 2 hidden units),
and variational minimality (using VIB’s bound [19]). For each objective, the best (over β) test
performance is transcribed in Table 1.

Figure 15a shows that V+-minimality gives rise to an objective that may be more robust to the choice
of β but also exhibits higher variance (in line with the estimation bounds from [23]). Figure 15b
shows that the representation can be V−-minimal (that is, IV- [Z→ Dec(X,Y)] is close to zero) but
have little effect on the V-sufficiency term (large IV [Z→ Y]).

E.11 V-Minimality as a Regularizer

In the main text, we have seen that minimizing IV [Z→ Dec(X,Y)] is theoretically optimal (Theo-
rem 1) and empirically outperforms other regularizers in our two stage setting (Table 1). It is thus
natural to ask whether IV [Z→ Dec(X,Y)] can also perform well as a regularizer in a standard neural
network setting.

Table 3: Evaluation of regularizers for permutation invariant classification (test accuracy).
No Reg. Stoch. Rep. Dropout Wt. Dec. VIB DIB

MNIST 98.29± .05 98.33± .04 98.68± .04 98.49± .04 98.63± .04 98.69± .03

CIFAR10MNIST 46.49± .07 47.23± .13 48.86± .17 44.86± .06 46.38± .01 48.07± .10

44

(a) Generalization Gap

(b) Terms in DIB (c) Terms in VIB

Figure 15: Effect of β on the worst case generalization gap, as well as the terms estimated by
DIB (using different Vs for the minimality term) and VIB. (a) Train log likelihood and worst case
test log likelihood of the different predictors; (b) Estimated IV [Z→ Y] and IV [Z→ Dec(X,Y)] ,
IV+ [Z→ Dec(X,Y)] , and IV- [Z→ Dec(X,Y)] ; (c) Estimated IV [Z→ Y] and (a variational esti-
mate of) I[Z; X] for VIB [19]. Similarly to Fig. 4 all experiments ran on cifar10 and the results show
the average over 5 runs as well as 95% bootstrap confidence interval.

We investigate this question in the same setting as Alemi et al. [19], where the neural network is an
MLP, thus treating the pixels as permutation invariant. We use the same hyperparameters as [19]:
1e-4 learning rate with exponential decay of factor 0.984, Adam optimizer, 200 epochs, trained on the
train and validation set, batch size 100, 256 dimensions for Z, X − 1024− 1024−Z MLP encoder,
logistic regression classifier V . The only known difference being that we do not use exponential
moving average (we did not test with it). We jointly train Bob and Alice (“1 Player, Avg ERM” in
Appx. D.1).

We evaluate the model on MNIST (as done in Alemi et al. [19]) as well as on our CIFAR10+MNIST
dataset. Table 3 compares the test accuracy of DIB with the same regularizers as in Table 1, the only
difference being that all the regularizers are applied both on Bob and Alice (as it is now a single
network trained jointly). For dropout the rate is droping rate 50%, for weight decay it uses a factor of
1e-4, VIB uses β = 1e− 3, DIB uses β = 0.1. We see that DIB performs best along with Dropout
on MNIST, and performs second best after dropout on CIFAR10MNIST.

Although DIB performs well, it does not stand out as much as in the other settings we investigated in
the main paper. We suggest a few potential explanations: (i) As is standard practice, we evaluate on
accuracy, while our theory only speaks to log likelihood performance (although recall that Table 2
does show a strong correlation with accuracy generalization gap); (ii) With standard training methods
(large learning rate and avg ERM), neural networks generalize relatively well without the need for
regularizers, as seen by the strong performance of the stochastic representation baseline in Table 3.
(iii) Our representations work well for a downstream ERM, they only regularize the model by the
representation. In the single player game setting, other methods (such as dropout) regularize both the
representation and the downstream classifier, which is not discussed in our theory.

45

E.12 Additional Correlation Experiments

In this section, we expand on the results in Sec. 4.3 in the main paper and show how our approach
compares to our implementation of sharpness (the best generalization measure from [50]) in a setting
with heterogeneous model and dataset choices.

We hypothesize that V-minimality should be a fairly model- and dataset- agnostic measure of gener-
alization. Indeed, IV [Z→ Dec(X,Y)] has the advantage of being a measure in [0, log |Y|], which
is 0 when V-minimal (Prop. 2) and seems to be monotonically decreasing with the generalization
capacity of a model (Table 2).

In order to study this hypothesis we sweep over different hyper-parameters across two datasets
(CIFAR-10 and SVHN) and two models (ResNet18 and a X -2048-2048-2048-Z MLP) each followed
by a Z-128-128-Y MLP, and 5 seeds. The difference with the experiments in the main paper is that
we do not run all possible combination of hyperparemters (computationally prohibitive as we already
have 2*2*5=20 models for each seed,data,architecture) but rather sweep over one hyperparameter at
the time and compute then average rank correlation. Here are the hyperparameters we sweep over:
(i) learning rates (1e-3,1e-4,1e-5,1e-6); (ii) weight decay (1e-6,1e-5,1e-4,1e-3,1e-2,0.1); (iii) dropout
(0.,0.1,0.2,0.3,0.4,0.5,0.6); (iv) Z dimensionality (8,32,128,512,2048). We additionally train a
set of models using VIB with different β values (100,10,1,1e-1,1e-2,1e-3). This gives a total
of 5 ∗ 2 ∗ 2 ∗ (4 + 6 + 7 + 5 + 6) = 560 models, from which we only keep models that reach
a training loss of 0.01. Similar to the main experiment in the paper, we compute the correlation
between the probes and the observed generalization gap, with the difference being that the correlation
is now computed across experiments with both the datasets as well as models while varying only one
hyperparameter at a time.

Table 4: Evaluation of our probe and sharp mag. in settings with different datasets and architectures

W. Dec |Z| VIB Lr Dropout

τloglike.
V 0.67 0.50 0.45 0.62 0.09
Sharp Mag. 0.05 −0.27 −0.16 0.09 −0.36

τacc.
V 0.63 0.52 0.49 0.56 0.06
Sharp Mag. −0.03 −0.09 −0.03 0.29 −0.19

Table 4 shows the performance of IV [Z→ Dec(X,Y)] probe compared to sharpness (the best
performing baseline in Table 2). We observe that our approach is significantly better correlated
than sharpness, both in terms of generalization in terms of accuracy as well as log-likelihood. This
seems to support that V-minimality gracefully handles different datasets and model architectures,
providing reliable estimates of generalization across the spectrum. In contrast, we see that the
sharpness magnitude cannot be used to predict well generalization when sweeping over datasets and
architectures. This suggests that the intuitive idea behind IV [Z→ Dec(X,Y)] (considering how easy
it is to decode the training examples from a representation using the correct functional family) is
useful and robust to predict generalization.

46

