
First, we would like to thank the reviewers for their thoughtful critiques and commendations. We appreciate and are1

energized by the fact that reviewers found our work to be significant and novel (R2) while positioning itself well with2

respect to previous work (R2, R3). We have done our best to respond to as many questions and concerns as possible:3

While [R3] found the experiments convincing, reviewers also noted that the paper would have been more im-4

pactful by including a broader range of experiments that are more realistic / application focussed (R1, R2, R3).5

We agree the paper would certainly have been strengthened with real-world applications. The intent behind focusing6

on model problems was to examine the fundamental properties of GHNNs given basic physical systems – leaving7

applications on complex real-world systems to future work.8

[R1] asked about whether metrics were produced using 50 initial conditions from a held-out test set. This was9

indeed the case and we have made it more clear in our revised paper. Further to this, [R1] raised some questions10

about the clarity of the metrics in Appendix D. We agree we could have done a better job explaining our comparison11

metrics. For this reason we now have added equations describing the metrics in detail to clear up these concerns.12

We want to be clear that we do not wish to claim that weak regression performs significantly better than state13

regression (R1). Rather we claim that "[in our example] weak derivative matching has comparable performance to14

state regression while requiring substantially less runtime." [R1] also notes that our claim that "GHNNS perform at15

least as well as other state-of-the art continuous time models" is too strong. This is a fair comment and our choice16

of wording could have been better. We have remedied this claim and have added an extended discussion explaining17

why we believe GHNNs perform approximately as well as the other modern models for continuous time ODEs while18

simultaneously learning an underlying energy function.19

Thank you [R1] for sharing an excellent paper from Rudy et. al. [R1] asked about why they appeared to have20

a lower error on similar problems. We would like to point out that, while they do a form of state regression in21

their paper, they use a slightly different metric to compute the performance of their models. More specifically: (i)22

they compute errors based on the single initial condition they have access to at training time and (ii) they compute a23

normalized error metric that they call the EF score. We compute a mean EF score of approximately 0.06 for the weak24

form regression method and a mean EF score of 0.27 for the state regression method at a noise of approximately 20% –25

aligning with their EF score of approximately 0.23± 0.3 for their cubic oscillator (note that we haven’t done a full26

study to validate this EF score – we only made use of the two training trajectories and the pretrained models we had27

used to produce Table 1). Thank you [R1] for suggesting we plot the noisy data on top of a nominal trajectory as28

was done in this paper. We agree this would make our exposition more clear and we have added these plots to the29

revised paper.30

[R1] also asked about why Figure 2 in [17] seemed to show lower state errors on a real pendulum than our31

simulated pendulum. We note that the real pendulum data is significantly less noisy than our simulated data (see32

Schmidt et. al. "Distilling Free-Form Natural Laws from Experimental Data", Science, 2009). Furthermore, they only33

model the system for approximately 20 seconds over which time their system can be approximated as energy conserving34

– making it a good candidate for HNNs.35

[R2] points out that theorem 1 is unclear. Thanks for pointing this out, we’ve updated the proof to make it clear36

that gij = gji in our parameterization. [R2] also notes that it’s not clear if all gij’s are the same network. We’ve37

updated our paper so that eq. (7) now reads gi,j(x\ij) = Ni,j(x\ij) to make it clear that these are different networks.38

[R4] asked if the method is still applicable in the case m=1. We can set m=1 without changing the method presented39

here. The number of independent trajectories required will depend on the complexity of the ODE. We noted the number40

of independent trajectories used for each experiment in the original submission.41

[R4] asks if the measurements are assumed to be exact. We assume various amounts of zero mean Gaussian noise42

on our measurements that are listed in the original submission. We believe our experiments show our methods are43

effective given noisy measurements.44

[R4] also notes that a draw back of weak form regression is that you are restricted to low order quadratures45

since you cannot evaluate x(t). This is true in the way we have presented our work here. We briefly discuss this46

in Appendix H where we show how state regression outperforms weak derivative regression when the measurement47

sampling frequency is low. That being said, there exists a suite of methods from the state estimation / data assimilation48

fields for estimating x(t) given an uncertain measurement and dynamics model. We have mentioned this possible49

extension in our newly added "future work" section.50


