
Weak Form Generalized Hamiltonian Learning

Kevin L. Course
University of Toronto

kevin.course@mail.utoronto.ca

Trefor W. Evans
University of Toronto

trefor.evans@mail.utoronto.ca

Prasanth B. Nair
University of Toronto

pbn@utias.utoronto.ca

Abstract

We present a method for learning generalized Hamiltonian decompositions of
ordinary differential equations given a set of noisy time series measurements. Our
method simultaneously learns a continuous time model and a scalar energy function
for a general dynamical system. Learning predictive models in this form allows
one to place strong, high-level, physics inspired priors onto the form of the learnt
governing equations for general dynamical systems. Moreover, having shown how
our method extends and unifies some previous work in deep learning with physics
inspired priors, we present a novel method for learning continuous time models
from the weak form of the governing equations which is less computationally
taxing than standard adjoint methods.

1 Introduction

Figure 1: 2D slice of Lorenz ’63 gener-
alized Hamiltonian and trajectory

While the bulk of dynamical system modeling has been
historically limited to autoregressive-style models [1] and
discrete time system identification tools [2, 3], recent years
have seen the development of a diverse set of tools for
directly learning continuous time models for dynamical
systems from data. This includes the development of a rich
set of methods for learning symbolic [4–11] and black-
box [12–21] approximations of continuous-time governing
equations using basis function regression and neural net-
works, respectively.

In terms of using neural networks to model continuous
time ordinary differential equations (ODEs), a significant
subset of these methods have focused on endowing the
approximation with physics inspired priors. Making use
of such priors allows models in this class to exhibit de-
sirable properties by construction, such as being strictly
Hamiltonian [16, 17, 21] or globally stable [15]. While the existing literature presents a powerful
suite of techniques for learning physics inspired parameterizations of ODEs, there remain limitations.

• Methods for leveraging physics inspired prior information on the form of the energy within
the system are not applicable to general odd-dimensional ODEs.

• Methods for endowing ODEs with stability constraints require placing restrictions on the
form of the Lyapunov function without directly placing a prior on the energy function. There
are many systems for which we know a monotonically decreasing energy leads to stability.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



• Methods for using neural networks to approximate continuous time ODEs require one to
approximate the ODE derivatives or perform backpropagation by solving a computationally
expensive adjoint ODE.

In this work, we address these issues by introducing a novel class of methods for learning generalized
Hamiltonian decompositions of ODEs. Importantly, our method allows one to leverage high-level,
physics inspired prior information on the form of the energy function even for odd-dimensional
chaotic systems. This class of models generalizes previous work in the field by allowing for a broader
class of prior information to be placed onto the energy function of a general dynamical system.
Having introduced this new class of models, we present a weak form loss function for learning
continuous time ODEs which is significantly less computationally expensive than adjoint methods
while enabling more accurate learning than approximate derivative regression.

2 Generalized Hamiltonian Neural Networks

2.1 Generalized Hamiltonian Decompositions of Dynamical Systems

Our starting point is the generalized Hamiltonian decomposition proposed by Sarasola et al. [22] in
the context of feedback synchronization of chaotic dynamical systems. In the present work we extend
this decomposition from R3 to Rn. To illustrate, consider an autonomous ODE of the form,

ẋ = f(x), (1)

where ˙(·) indicates temporal derivatives, x 2 Rn, and f : Rn ! Rn. The generalized Hamiltonian
decomposition of the vector field, f , is given by,

f(x) = (J(x) +R(x))rH(x), (2)

where J : Rn ! Rn⇥n is a skew-symmetric matrix, R : Rn ! Rn⇥n is a symmetric matrix, and
H : Rn ! R is the generalized Hamiltonian energy function.

The generalized Hamiltonian decomposition in (2) is overly general; there are infinite choices
for J, R, and H which produce identical trajectories. We now show how the Helmholtz Hodge
decomposition (HHD) can be used to impose constraints on the terms in (2) to ensure that the
generalized Hamiltonian decomposition is physically meaningful.

Consider a HHD of the vector field in (2). The HHD extends the Helmholtz decomposition, which is
valid in R3, to Rn [23]1. For a vector field f : Rn ! Rn, we make use of geometric algebra to define
the HHD as,

f = f1 + f2, (3)
where r · f1 = 0, r ^ f2 = 0, and ^ is the geometric outer product2. This decomposes f into a
sum of its divergence and curl-free components. The HHD suggests the imposition of the following
divergence-free and curl-free constraints onto the decomposition in (2); they are r · (JrH) = 0 and
r^ (RrH) = 0 respectively. The following remarks discuss how these constraints naturally follow
from considering a generalized Hamiltonian decomposition of a physical system.

Remark 1 In physical systems governed by an autonomous ODE, energy variation occurs along
with an associated change in phase space volume. Liouville’s theorem states that the time derivative
of a bounded volume in phase space for a vector field, f , is given by V̇ (t) =

R
A(t)(r · f)dx,

where A(t) is a bounded set in phase space with volume V (t) [22]. For an ODE decomposed as
ẋ = f = (J+R)rH , by requiring that J be skew-symmetric and r · (JrH) = 0 we see that,

Ḣ(x) = rH(x)T ẋ = rH(x)TR(x)rH(x) & r · f = r · (RrH). (4)
Noting that under this constraint the entire divergence is carried by RrH , we make use of the HHD
to require that r ^ (RrH) = 0; this forces the entire curl onto JrH without loss of generality.
Hence energy variation occurs along with associated change in phase space volume and conserved
dynamics are divergence free. In this way, a generalized Hamiltonian decomposition of an ODE
which satisfies the divergence-free and curl-free constraints specified previously enforces that the
generalized Hamiltonian, H , behaves similarly to a Hamiltonian for a real-world physical system.

1We consider a limited version of the HHD for decomposing vector fields specifically.
2See Macdonald [24] for more details on geometric algebra and calculus.
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Remark 2 As expected, the generalized Hamiltonian decomposition reduces exactly to the standard
Hamiltonian decomposition given further restrictions on the form of J and R. We note that we can
recover the standard Hamiltonian decomposition by setting,

J =


0 1
�1 0

�
& R = 0. (5)

In this case the generalized Hamiltonian decomposition reduces exactly to the Hamiltonian decom-
position as is used in related work by Bertalan et al. [16], Greydanus et al. [17], and Toth et al. [21].

2.2 Parameterizing Generalized Hamiltonian Decompositions

We have shown how decomposing an ODE in the form of a generalized Hamiltonian decomposition
endows the ODE with a meaningful energy-like scalar function. The challenge then becomes how to
parameterize the functions J, R, and H such that the constraints of the decomposition are satisfied.
In this work, we demonstrate how to parameterize these functions by neural networks such that
the constraints are satisfied – we dub the resulting class of models generalized Hamiltonian neural

networks (GHNNs). In the following exposition, N : Rn ! R will be used to refer to a neural
network with a scalar valued output of the following form,

N (x) = (Wk � �k�1 �Wk�1 � · · · � �1 �W1) (x),

where � indicates a composition of functions, Wi indicates the application of an affine transformation,
and each �i indicates the application of a nonlinear activation function. Note that a unique solution
to an initial value problem whose dynamics are defined by an autonomous ODE exists when f is
Lipschitz continuous in x [25]. We use infinitely differentiable softplus activation functions unless
otherwise noted due to differentiability requirements that will be discussed in the coming sections.

First we will discuss how to parameterize J such that the divergence-free constraint on the generalized
Hamiltonian decomposition in (2) is satisfied by construction.

Theorem 1. Let J : Rn ! Rn⇥n
be a skew-symmetric matrix whose ij

th
entry is given by

[J]i,j = gi,j(x\ij), where gi,j = �gj,i : Rn�2 ! R is a differentiable function and x\ij =
{x1, x2, . . . , xn} \ {xi, xj}. Then it follows that,

r · (JrH) = 0, (6)

where H : Rn ! R is a twice differentiable function and \ computes the difference between sets.

The proof is given in Appendix A. In the present work we parameterize each gi,j by a neural network,

gi,j(x\ij) = N (x\ij). (7)

Now we will develop some parameterizations for RrH that will allow us to approximately satisfy
the curl-free constraint on the decomposition in (2).

Theorem 2. Let V : Rn ! R and H : Rn ! R be thrice and twice differentiable scalar fields

respectively. If the Hessians of V and H are simultaneously diagonalizable, then it follows that,

r^ (r2
VrH) = 0, (8)

where r2
denotes the Hessian operator.

The proof is given in Appendix B. Unfortunately, parameterizing scalar functions V and H such that
their Hessians are simultaneously diagonalizable requires that we compute the eigenvectors of V
or H (see Appendix B.1 for such a parameterization). To avoid doing so, we consider two possible
parameterizations for RrH . Let ND : Rn ! R and Nv : Rn ! R be neural networks. The two
parameterizations we consider are,

RrH = rND(x) and RrH = r2Nv(x)rH(x). (9)

The first parameterization in (9) is curl-free by construction owing to the definition of the gradient
operator. The second parameterization in (9) is not guaranteed to be curl-free but penalty methods
can be used to enforce the constraint in practice. Note that the curl-free constraint is only intended to
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limit the possible solution space for H to make the energy function more meaningful. For this reason,
exactly satisfying the constraint is not required.

While the first parameterization is cheaper to compute and it satisfies the curl-free constraint by
construction, the second parameterization allows for a richer set of priors to be placed on the form of
the generalized Hamiltonian. This is discussed in depth in Section 2.3. Finally, note that we are not
required to explicitly compute r2Nv when computing RrH . Instead, we only require the product
between r2Nv and rH when computing the ODE model output.

2.3 Choices for Priors on the Generalized Hamiltonian

We have presented a number of parameterizations for J and R in the previous section. This section
demonstrates the power of the generalized Hamiltonian formalism by explaining how these different
parameterizations can be mixed and matched to leverage different priors on the form of the governing
equations. Unless otherwise noted, we will use the same parameterization for J in all cases.

Globally Asymptotically Stable & Energy Decaying By globally asymptotically stable we mean
systems which always converge to x = 0 in finite time; one example of such a system is a pendulum
with friction. To enforce global stability, we choose the second parameterization in (9) for RrH so
that RrH = r2Nv(x)rNH(x), where Nv is chosen to be an input concave neural network [26].
Furthermore we set H as follows,

H = NH(x) = ReHU(N (x)�N (0)) + ✏xTx, (10)

where ReHU is the rectified Huber unit as described by Kolter and Manek [15]. Since Nv is concave,
its Hessian is negative definite and we see that the energy variation along trajectories of the system
must be strictly decreasing, i.e. Ḣ = rH

TRrH = rNH(x)Tr2Nv(x)rNH(x) < 0.

In addition, due to our parameterization for NH , we see that H(x) > 0 8x 6= 0, H(0) = 0, and
H(x) ! 1 as x ! 1. We see that NH then acts as a globally stabilizing Lyapunov function for the
system [27]. Note that even for a random initialization of the weights in our model the ODE will be
strictly globally stable at x = 0. Furthermore, unlike the work of Kolter and Manek [15], (i) we are
not required to place convexity restrictions onto the form of our Lyapunov function and (ii) we are
placing a prior directly onto the energy function of the state rather than an arbitrary scalar function.

Locally Asymptotically Stable & Energy Decaying By locally asymptotically stable we mean
systems for which we know energy strictly decreases along trajectories of the system and there are
multiple energy configurations which the system could converge to (ie. there are potentially multiple
regions of local stability). One such example of a system is a particle in a double potential well
with energy decay. As before, to enforce this prior we choose the second parameterization in (9) for
RrH so that RrH = r2Nv(x)rNH(x) where Nv(x) is chosen to be an input concave neural
network [26]. Furthermore, we parameterize H as,

H = NH(x) = � (N (x))� � (N (0)) + ✏xTx. (11)

This parameterization enforces the condition that Ḣ < 0 along trajectories of the system and that
NH(x) +NH(0) > 0, NH(0) = 0, and NH(x) ! 1 as x ! 1. This ensures that the trajectory
will stabilize to some fixed point even for a randomly initialized set of weights.

Generalized Hamiltonian is Conserved We can also enforce that the generalized Hamiltonian be
conserved along trajectories of the system by construction. To do so, we can choose any parame-
terization for H and set R = 0. In this case we see that Ḣ = 0 along trajectories of the system by
construction. Note that we have not needed to assume that our system is Hamiltonian or that our
system can be described in terms of a Lagrangian. Our approach is valid even for odd-dimensional
systems meaning that it is applicable even to surrogate models of complex systems which need not
be derived from the laws of dynamics.

Setting Energy Flux Rate In addition to the strong priors on the form of the energy function listed
above, it is also possible to place soft priors on the form of the energy function. For example, we can
regularize the loss function with some known energy transfer rate. Consider weather modeling for
example; while placing strong forms of prior information onto the form of the energy function may be
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challenging, it may be possible to estimate the energy flux rate for some local climate given the time
of year, latitude, etc. For example, given some nominal energy flux rate measured at m time instants,
{Ḣnom(ti)}mi=1, an arbitrary parameterization of H given by NH , and an arbitrary parameterization
of RrH given by rND we can add 1

m

P
m

i=1 ||rNH(x(ti))TrND(x(ti)) � Ḣnom(ti)||22 to the
loss function at training time. As will be demonstrated by the numerical studies in Section 4, such
regularization can help heal identifiability issues with the generalized Hamiltonian decomposition
when other forms of prior information are not available.

Known Generalized Hamiltonian This is a useful prior as it is often straightforward to identify the
total energy of a system without being able to write-down all sources of energy addition or depletion.
To this end, we consider an extremely flexible parameterization for the generalized Hamiltonian,

f = W(x)rH(x), (12)
where W : Rn ! Rn⇥n is a square matrix and H is the known energy function. From W we can
easily recover, J = (W �WT )/2 and R = (W +WT )/2. The study in Section 4.3.provides an
example of the interpretability gained by learning a decomposition of an ODE in this form.

3 Parameter Estimation for GHNNs

We now consider the problem of efficiently estimating the parameters of GHNNs given a set of noisy
time series measurements. After a brief review of common methods for parameter estimation, we
propose a novel procedure for learning from the weak form of the governing equations. To the best of
the knowledge of the authors, this method has not been proposed in the context of deep learning. This
method drastically reduces the computational cost of learning continuous time models as compared
to adjoint methods while being significantly more robust to noise than derivative regression.

We make use of the notation ẋ = f✓(x) to indicate a parameterized ODE. We collect m trajectories
of length T of the state, x. We will use the short hand notation x(i)

j
to indicate the measurement of the

state at time instant tj , for trajectory i. Our dataset is then as follows: D = {x(i)
1 ,x(i)

2 , . . . ,x(i)
T
}m
i=1 =

{X(i)}m
i=1, where X(i) indicates the collection of state measurements for the i

th trajectory.

Review of Methods In maximum likelihood state regression methods, the parameters are estimated
by solving the optimization problem,

✓
⇤ =argmax

✓

1

m

mX

i=1

log p✓(x
(i)
2 ,x(i)

3 , . . . ,x(i)
T
|x(i)

1 ),

subject to: ẋ(i)
j

= f✓(x
(i)
j
) 8j 2 [1, 2, ..., T ] , 8i 2 [1, 2, ...,m] .

(13)

In other words, we integrate an initial condition, x(i)
1 , forward using an ODE solver and maximize

the likelihood of these forward time predictions given measurements of the state – hence we refer to
this class of methods as “state regression”. This optimization problem can be iteratively solved using
adjoint methods with a memory cost that is independent of trajectory length [14]. While the memory
cost of these methods are reasonable, a limitation of these methods is that they are computationally
expensive. For example, the common Runge-Kutta 4(5) adaptive solver requires a minimum of six
evaluations of the ODE for each time step [14].

Derivative regression techniques attempt to reduce the computational cost of state regression
by performing regression on the derivatives directly. While in some circumstances derivatives
of the state can be measured directly, most often these derivatives must first be estimated at
each time instant using finite difference schemes [28]. This yields the augmented dataset,
D̃ = {(x(i)

1 , ẋ(i)
1 ), (x(i)

2 , ẋ(i)
2 ), . . . (x(i)

T
, ẋ(i)

T
)}m

i=1. In maximum likelihood derivative regression,
the optimal ODE parameters are estimated as,

✓
⇤ = argmax

✓

1

mT

mX

i=1

TX

j=1

log p✓(ẋ
(i)
j
|x(i)

j
). (14)

While this method is less computationally taxing than state regression as it does not require an
expensive ODE solver, it is limited by the fact that derivative estimation is highly inaccurate in the
presence of even moderate noise [8].
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Weak form learning of GHNNs While derivative regression [5, 15–17, 20] and state regression
[14, 18, 21] are well-known in the deep learning literature, learning ODEs from the weak form of the
governing equations has only been used in the context of sparse basis function regression as far as the
authors are aware [8, 29].

In the present work we show how to use the weak form of the governing equations in the context of
learning deep models for ODEs. This method allows one to drop the requirement of estimating the
state derivatives at each time step without having to backpropogate through an ODE solver or solving
an adjoint ODE – drastically cutting the computational cost of learning deep continuous time ODEs.
Pantazis and Tsamardinos [8] and Schaeffer and McCalla [29] independently showed how the idea
of working with the weak form of the governing equations could be used in the context of sparse
regression to learn continuous time governing equations using data corrupted by significantly more
noise than is possible with derivative regression.

To derive the weak form loss function, we multiply the parameterized ODE by a time dependent
sufficiently smooth3 continuous test function v : R ! R, integrate over the time window of
observations Z

tT

t1

vẋdt =

Z
tT

t1

vf✓(x)dt, (15)

and integrate by parts,

vx
���
tT

t1

�
Z

tT

t1

v̇xdt =

Z
tT

t1

vf✓(x)dt. (16)

In order to reduce this infinite dimensional problem into a finite set of equations, we introduce a
dictionary of K test functions { 1(t), 2(t), . . . , K(t)}. This Petrov-Galerkin discretization step
leads to,

 kx
���
tT

t1

�
Z

tT

t1

 ̇kxdt =

Z
tT

t1

 kf✓(x)dt 8k 2 [1, 2, . . . ,K] . (17)

Assuming the time measurements are sufficiently close together, we can efficiently estimate the
integrals in (17) using standard quadrature techniques. The weak form of the governing equations
leads to a new maximum likelihood objective,

✓
⇤ = argmax

✓

1

m

mX

i=1

KX

k=1

log p✓

✓
 kx

(i)
���
tT

t1

�
Z

tT

t1

 ̇kx
(i)
dt|x(i)

◆
. (18)

This weak derivative regression method allows us to eliminate the requirement of estimating deriva-
tives or performing the expensive operations of differentiating through an ODE solver or solving an
adjoint ODE.

4 Numerical Studies4

We compare our approach (GHNN) to a fully connected neural network (FCNN) and Hamiltonian
neural network (HNN). All models were trained on an Nvidia GeForce GTX 980 Ti GPU. We used
PyTorch [30] to build our models, Chen et al.’s [14] "torchdiffeq" in experiments that used state
regression, and the Huber activation function from Kolter and Manek [15]. Unless otherwise noted,
we will use the default settings for the adjoint ODE solvers offered in Chen et al.’s package; at the
time of writing, this includes a relative tolerance of 10�6 and an absolute tolerance of 10�12 with
a Runge-Kutta(4)5 adaptive ODE solver. The metrics used in the coming sections are described in
detail in Appendix D. A description of all the architectures of the neural networks used in this work
can be found in Appendix E.

For all experiments that use weak derivative regression, the test space is spanned by 200 evenly spaced
Gaussian radial basis functions with a shape parameter of 10 over each mini-batch integration window;
this is explained in more detail in Appendix H. A description of mini-batching hyperparameters
specific to learning ODEs can be found in Appendix G.

3In our numerical studies we use C1 test functions.
4Code can be found online at: https://github.com/coursekevin/weakformghnn.
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4.1 Comparison of Methods for Learning ODE Models

We will attempt to learn an approximation to a nonlinear pendulum using a FCNN with a weak
derivative loss function, a derivative regression loss function, and a state regression loss function. We
collect measurements of the pendulum state corrupted by Gaussian noise with a standard deviation of
0.1 as it oscillates towards its globally stable equilibrium along two independent trajectories sampled
at a frequency of 50Hz for 20 seconds.

The error in the states, its derivatives, and training time for the three methods of parameter estimation
are given in Table 1. Note that at this level of noise, derivative regression learnt an ODE model which
diverged in finite time and hence the prediction error could not be calculated.

Table 1: Comparison of our approach (weak form regression) to state regression and derivative
regression for learning a continuous-time model of a nonlinear pendulum

Metric Approach

Weak form regression Derivative regression State regression

State Error 0.17 ± 0.05 Diverged 0.48± 0.24
Derivative Error 0.15 ± 0.08 1.35± 0.76 0.38± 0.13
Train Time 34s 29s 25min 46s

We see that weak derivative matching has comparable performance to state regression while requiring
substantially less run-time. A more extensive study, which includes a variety of measurement
sampling frequencies, led to similar trends (see Appendix I). In the studies that follow we shall
therefore exclusively focus on weak derivative regression.

4.2 Example Problems

Figure 2: GHNN predicted
pendulum trajectory

Nonlinear Pendulum The generalized Hamiltonian decomposition
for a damped nonlinear pendulum is provided in Appendix C. The
experiment setup is the same as in Appendix E.

We make the assumption that the system is asymptotically globally stable
at x = 0 as we only concern ourselves with initial conditions sufficiently
close to the origin. Under these assumptions, we place a globally stable
prior onto the form of the generalized Hamiltonian energy function.
Recall that even for a randomly initialized set of weights, the ODE
model is guaranteed to stabilize to x = 0. Note that unlike existing
methods in the literature, we are able to place a globally stabilizing prior
onto our model structure while simultaneously learning the underlying
generalized Hamiltonian.

In Figure 2 we observe that the trajectories produced by the learnt model
align well with trajectories produced by the true underlying equations and
the generalized Hamiltonian energy function. Furthermore, in Figure 4
we observe that our model learnt the important qualitative features of the
vector field and generalized Hamiltonian. The performance of GHNNs
on this problem is compared to FCNNs and HNNs in Table 2.

Figure 3: Lorenz predicted
trajectory example

Lorenz ’63 System A generalized Hamiltonian decomposition of the
governing equations for the Lorenz system can be found in Appendix C.
We collect measurements of the state corrupted by Gaussian noise with
a standard deviation of 0.1 for 20 seconds at a sampling frequency of
250Hz along 21 independent initial conditions.

Note that without prior information, this decomposition is not unique; in
other words, there are multiple generalized Hamiltonian energy functions
which would well-represent the dynamics. As before, we collect noisy
measurements of the system state and attempt to learn the dynamics in
the form of a generalized Hamiltonian decomposition.
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In this experiment we place a soft energy flux rate prior on the form of the generalized Hamiltonian
energy function. We see that the model is able to capture the fact the system decays to a strange
attractor as is shown in Figure 3. Note that because the governing equations are chaotic, we expect to
only be able to capture qualitative aspects of the trajectory. Furthermore, we see in Figure 5 that we
were able to learn the generalized Hamiltonian and vector field. It should be noted that without this
soft prior, we would would not be able to learn the true generalized Hamiltonian; this is discussed in
Appendix K. The performance of GHNNs on this problem is compared to FCNNs in Table 2. Note
that HNNs are not applicable to this problem as the state space is odd-dimensional.

Figure 4: Learnt (L) and true (R) pendulum
generalized Hamiltonian and vector field

Figure 5: Learnt (L) and true (R) Lorenz ’63
generalized Hamiltonian and vector field

Benchmarking Summary We have applied our approach to three problems in this subsection: the
nonlinear pendulum, the Lorenz ’63 system, and the Duffing oscillator (see Appendix J). Typically a
HNN would not be applied to these systems as they are not energy conserving, but we do so here to
demonstrate the strength of our method when this knowledge is leveraged. We use the same metrics
as are defined in Appendix D. We do not compute the state error for the Lorenz ’63 system because
the governing equations are chaotic. In all cases, GHNNs perform approximately as well as the
flexible FCNN models while simultaneously learning the generalized Hamiltonian energy function
and the energy cycle for the system.

GHNNs allow us to pursue “what if” scenarios related to the form of the energy function such as:
what if the rate of energy transfer is halved or what if the mechanism of energy transfer is altered? To
the best of the author’s knowledge, this work is the first to demonstrate this ability in the context of
general odd dimensional ODEs with a broad class of possible priors.

Table 2: Comparison of our approach (GHNNs) to FCNNs and HNNs
Model N.L. Pendulum Duffing Lorenz ’63

State Error Derivative Error State Derivative Derivative

GHNN w/ prior 0.08± 0.10 0.07± 0.21 0.31± 0.68 0.06± 0.02 5.24± 32.78
FCNN 0.04± 0.03 0.43± 0.05 0.26± 0.63 0.03± 0.01 3.46± 14.02
HNN 3.20± 2.27 0.08± 0.10 1.61± 0.88 0.12± 0.08 N/A

4.3 Discovering Energy Sources & Losses

Figure 6: Learnt J
for N -body problem

To demonstrate the power of the interpretability afforded by the generalized
Hamiltonian approach, we consider the problem of discovering where energy
sources and losses occur in a dynamical system. We consider learning the
dynamics of an N -body problem in two-dimensions where the particles are
subjected to a non-conservative force field (i.e. with a non-vanishing curl)
such that the energy of the system is not constant. It is assumed that the energy
function H is known a priori, and we therefore choose the parameterization
(12) where we learn W(x) = J(x) + R(x) together as the output of an
unconstrained neural network. A dataset was generated by integrating the
dynamics forward in time using N = 12 particles, giving n = 4N = 48
state variables. Further details of the force field, governing dynamics and
experimental setup are provided in Appendix F.

After training, we can recover J and R. Matrix J is shown in Figure 6 where the discovered structure
closely resembles (5) as expected since the (conservative part) of the N -body dynamics is Hamiltonian.
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Figure 7: Instantaneous energy flux per
particle for an N -body problem in a non-
conservative force field. Ḣ = 3.98

We now use the matrix R to discover which state variables
are contributing to energy loss or gain. Specifically, rH ·
RrH gives the instantaneous energy flux contributed by
each state variable at a point x, where · is the element-
wise product. We visualize this energy flux breakdown
in Figure 7, where colour indicates the flux contributed
by each particle (summing the contribution from velocity
and position variables). The location, x, in state space is
also shown through the particle positions and velocities,
which are given by the black arrows. The grey arrows
show the magnitude and direction of the non-conservative
force field. As expected, positive energy flux is observed
when the force vector and velocity vector are aligned since the force field would contribute to a
particle’s kinetic energy. Conversely, a negative energy flux is observed when the force vector and
velocity vector are in opposite directions. For example, see the dark red and blue particles in the
upper-center of Figure 7. Such an analysis could be helpful to discover and diagnose energy sources
and losses in real dynamical systems.

5 Related Works

Learning Hamiltonians Bertalan et al. [16], Greydanus et al. [17], and Toth et al. [21] indepen-
dently developed methods for learning a Hamiltonian decomposition of an ODE. Hamiltonian systems
can be roughly defined as even dimensional systems (ie. x 2 R2n) which are energy conserving.
More recently, Zhong et al. [31] extended this work for learning ODEs governing Hamiltonian
systems with control and energy dissipation [32]. We have shown in Section 2.3 how the generalized
Hamiltonian formalism reduces exactly to the Hamiltonian formalism when further restrictions are
placed onto the form of J and R. Importantly, the generalized Hamiltonian formalism is applicable
to even odd-dimensional chaotic systems with energy transfer.

Learning Lagrangians Lutter et al. [19] showed how to learn Lagrangians for systems where the
kinetic energy is an inner product of the velocity. By learning Lagrangians rather than Hamiltonians
they could learn physically meaningful dynamics when only measurements of state in non-canonical
coordinates were available. Their formulation requires measuring the generalized forces in addition
to the system state. Cranmer et al. [20] later expanded on this work to systems where the kinetic
energy was no longer an inner product of the velocity however they only considered conservative
systems in their formulation. Note that like the Hamiltonian formalism, the Lagrangian formalism
implies a state space which is even dimensional. Again, a key distinction with the present work is
that the generalized Hamiltonian formalism does not require the state space to be even-dimensional
or that we necessarily know the source of energy addition or depletion.

Learning Stable Dynamics Kolter and Manek [15] presented a method for learning an ODE which
is globally asymptotically stable by construction. They enforced global asymptotic stability by
simultaneously learning a model for an ODE and a Lyapunov function with a single global minimum
and no local minima. In the present work, we have shown how to place a broader set of priors directly
onto the form of the energy function of the system – rather than an arbitrary scalar function of the
state – without having to place convexity restrictions onto the form of the generalized Hamiltonian.

6 Conclusion

This paper made two main contributions. The first contribution shows how to learn a generalized
Hamiltonian decomposition of an ODE. This decomposition simultaneously learns a generalized
Hamiltonian energy function and a black-box ODE model; learning ODEs in this form allows us
to place strong, high-level, physics inspired priors onto the form of the energy within the system.
Importantly, this decomposition is valid for a broad class of ODEs including odd-dimensional,
nonconservative systems. The second contribution of this work is in demonstrating how to learn deep
continuous time models of ODEs from the weak form of the governing equations. We have shown
how learning continuous time models using this formulation is significantly faster than using adjoint
methods while simultaneously being more robust to noise than derivative matching methods.
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Broader Impact

Since this work is in large part theoretical in nature there are few ethical considerations directly
related to this work. In terms of broader impact, this work builds on a long line of work which seeks to
build better models for dynamical systems. The long term intent of work in this field is to learn better
models of real world systems which currently evade first-principles-based modeling; for example, this
has potential applications in climate science, financial markets, and disease outbreak modeling. In
addition, this work specifically has presented a novel method for placing strong, high-level, physics
informed priors onto the form of the equations governing nonlinear dynamical system to directly
learn an ODE and a generalized Hamiltonian from noisy measurements of the system state. We hope
this work inspires further development on learning physics inspired parameterizations of dynamical
systems.
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