
A Proof of Divergence Free Parameterization

Theorem 1. Let J : Rn ! Rn⇥n
be a skew-symmetric matrix whose ij

th
entry is given by

[J]i,j = gi,j(x\ij), where gi,j = �gj,i : Rn�2 ! R is a differentiable function and x\ij =
{x1, x2, . . . , xn} \ {xi, xj}. Then it follows that,

r · (JrH) = 0, (19)

where H : Rn ! R is a twice differentiable function and \ computes the difference between sets.

Proof. The proof follows from evaluating the divergence of the parameterization. Noting that J is
skew-symmetric (hence [J]

i,j
= � [J]

j,i
and [J]

i,i
= 0), we can write the divergence of JrH as,

r · (JrH) =
NX

i=1

@xi

NX

j=1

[J]
i,j

@xjH,

=
NX

i<j

NX

j=1

@xi [J]i,j @xjH + @xj [J]j,i @xiH,

=
NX

i<j

NX

j=1

@xi [J]i,j @xjH � @xj [J]i,j @xiH,

=
NX

i<j

NX

j=1

[J]
i,j

(@xi,xjH � @xi,xjH) + @xi [J]i,j @xjH � @xj [J]i,j @xiH,

where @xi indicates a partial derivative with respect to xi. We see that (@xi,xjH � @xi,xjH) = 0 for
any twice differentiable H and that @xi [J]i,j = @xj [J]i,j = 0 when [J]i,j = gi,j(x\ij).

B Proof of Curl Free Parameterization

Theorem 2. Let V : Rn ! R and H : Rn ! R be thrice and twice differentiable scalar fields

respectively. If the Hessians of V and H are simultaneously diagonalizable, then it follows that,

r^ (r2
VrH) = 0, (20)

where r2
denotes the Hessian operator.

Proof. The proof follows from evaluating the curl of the the expression.

r^r2
VrH = @xi

X

k

@xj ,xkV @xkH � @xj

X

k

@xi,xkV @xkH , 8i < j,

=
X

k

�
@xi@xj ,xkV � @xj@xi,xkV

�
@xkH+

�
@xj ,xkV @xk,xiH � @xi,xkV @xk,xjH

�
8i < j.

(21)

We see that
�
@xi@xj ,xkV � @xj@xi,xkV

�
= 0 by construction. Furthermore, we can write,

X

k

�
@xj ,xkV @xk,xiH � @xi,xkV @xk,xjH

�
=
⇥
r2

Vr2
H �r2

Hr2
V
⇤
LT

, (22)

where [A]
LT

extracts the lower triangular elements from A 2 Rn⇥n. We see that (22) will be zero
by construction if r2

V and r2
H commute.

r2
V and r2

H are symmetric real matrices hence they are always diagonalizable. Because
they are simultaneously diagonalizable (ie. they share a common set of eigenvectors [33]),⇥
r2

Vr2
H �r2

Hr2
V
⇤
LT

= 0 =) r^ (r2
VrH) = 0.

12

B.1 Spectral Curl-Free Parameterization

In this section we discuss a spectral parameterization for R which is curl free by construction. Note
that we have not implemented this parameterization due to computational limitations associated with
computing the eigenvectors of Hessians.

Let the paramterization of H = NH with Hessian matrix r2NH(x) be diagonalizable as follows

r2NH(x) = Q(x)T(x)Q(x)�1
, (23)

where Q(x) : Rn ! Rn⇥n is a unitary matrix whose columns are the eigenvectors of the Hessian
of NH(x), and T(x) : Rn ! Rn⇥n is a diagonal matrix containing the corresponding eigenvalues.
The condition r^RrH = 0 will be satisfied if we choose,

R(x) = Q(x)diag
�
N⇤(x)

�
Q(x)�1

, (24)

where the operator diag(·) forms a square diagonal matrix from its vector argument, and N⇤(x) :
Rn ! Rn gives the eigenvalues of R. In this way, R and r2NH(x) share the same eigenvectors
and so they will commute.

If we know that the system is energy decaying then we require the output of N⇤(x) to be negative,
which can be easily imposed by passing the outputs through the negative softplus function.

The further development of this parameterization is left as a direction for future work.

C Governing Equations

This section contains the governing equations for the numerical studies written in the form of
a generalized Hamiltonian decomposition. Note that these decompositions are not unique. The
Lorenz ’63 decomposition was originally derived by Sarasola et al. [22] for the purpose of feedback
synchronization of chaotic systems. Figure 8 shows some sample data used to train the models.

Nonlinear Pendulum

f(x) =

✓
0 1
�1 0

�
+


0 0
0 �0.35

�◆
g sin(x1)

x2

�
. (25)

Duffing Oscillator

f(x) =

✓
0 1
�1 0

�
+


0 0
0 �0.35

�◆
x
3
1 � x1

x2

�
. (26)

Lorenz ’63 System

f(x) =

0

@
"

0 � 0
�� 0 �x1

0 x1 0

#
+

2

4
�
2

⇢
0 0

0 �1 0
0 0 ��

3

5

1

A

2

4
�⇢

�
x1

x2

x3

3

5 . (27)

Figure 8: Pendulum, duffing oscillator, and Lorenz ’63 sample data

13

D ODE Model Comparison Metrics

To compare different models, we will use two metrics: (i) the state error and (ii) the derivative error.
To compute these metrics we first uniformly sample 50 initial conditions within the domain of interest
(note the models have not seen these initial conditions) and simulate these initial conditions forward
in time for 200 seconds using the true governing equations yielding,

X(j)
true

= {(xtrue(ti), ẋtrue(ti)}200i=1 for j 2 1, 2, . . . , 50. (28)

We then integrate these same initial conditions forward in time using the models,

X(j)
pred

= {xpred(ti)}200i=1 for j 2 1, 2, . . . , 50, (29)

and perform the following computations: (i) compute the mean `
2 norm of the difference between

the predicted states and the true states,

State error =
1

50

50X

j=1

1

200

200X

i=1

||xtrue(ti)� xpred(ti)||2, (30)

and (ii) the mean `
2 norm of the difference between the predicted derivatives for each true state and

the true derivatives,

Derivative error =
1

50

50X

j=1

1

200

200X

i=1

||ẋtrue(ti)� model(xtrue(ti))||2. (31)

In all experiments, uncertainty estimates are given by one standard deviation from the mean.

E Neural Network Architectures and Hyperparameters

This section contains a complete description of the neural networks along with the hyperparameters
used in this work. In all experiments, we used the Adam optimizer with a learning rate of 10�3 and a
weight decay of 10�4.

Section 4.1 In this section we compare the weak form loss function to the state regression and
derivative regression loss functions. In all cases, we use a FCNN with 3 hidden layers with 300 units in
each hidden layer. All experiments use a batch size of 120. In the study which compared loss functions
for learning ODEs, both the Weak form loss experiments and derivative regression experiments use
50 batch integration time steps while the state regression experiments use 10 batch integration time
steps. This reduction in batch integration time steps was used in state regression experiments to
cut the computational cost of the method to provide a realistic training time measurement for state
regression. In our experiments state regression tended to require a lower batch integration time step
than the other loss functions to achieve approximately the same performance. Appendix I below
contains an experiment where the number of batch integration time steps was held constant for all
methods.

Section 4.2 – Nonlinear Pendulum In this experiment we used a GHNN with an asymptotically
globally stabilizing prior, a HNN, and a FCNN. For all neural networks we selected 3 hidden layers
with 300 units in each hidden layer.

All experiments used 100 batch integration time steps and a batch size of 120. Training data was
generated by integrating two independent initial conditions forward for 20 seconds using the adaptive
RK4(5) ODE integration tool provided by torchdiffeq [14] at a frequency of 50Hz. Independent
zero mean Gaussian noise with a standard deviation of 0.1 was then added to these trajectories and
used in training. For each experiment, 10 independent models were trained for each specific ODE
parameterization. To choose between models, a validation dataset was created by integrating the
initial conditions forward in time at 13Hz (meaning the validation dataset was 20% the size of the
training set). Like for the training dataset, independent zero mean Gaussian noise with a standard
deviation of 0.1 was added to these trajectories.

Testing data was generated by uniformly sampling 50 initial conditions (never before seen by the
models) from within the domain of interest and integrating the trajectories forwards for 200seconds.

14

Section 4.2 – Lorenz ’63 System In this experiment we used a GHNN with a soft energy flux rate
prior and a FCNN. The FCNN and GHNN were selected to have 3 hidden layers with 300 hidden
units in each layer. Recall that for a GHNN with a soft energy flux rate prior we parameterize each
component of the decomposition as follows: H = NH , [J]i,j = Ni,j , and RrH = rND.

All experiments used 500 batch integration time steps and a batch size of 120. Training data was
generated by integrating 21 independent initial conditions forward for 20 seconds using the adaptive
RK4(5) ODE integration tool provided by torchdiffeq [14] at a frequency of 250Hz. Independent
zero mean Gaussian noise with a standard deviation of 0.1 was then added to these trajectories and
used in training. For each experiment, 10 independent models were trained for each specific ODE
parameterization. To choose between models, a validation dataset was created by integrating the
initial conditions forward in time at 63Hz (meaning the validation dataset was 20% the size of the
training set). Like for the training dataset, independent zero mean Gaussian noise with a standard
deviation of 0.1 was added to these trajectories.

Testing data was generated by uniformly sampling 50 initial conditions (never before seen by the
models) from within the domain of interest and integrating the trajectories forwards for 200 seconds.

F N -Body Experiment Details

N -body Forces We will consider N particles in two dimensions. The particles all have unit mass
and will impart the following gravitational forces on one another, with a gravitational constant of
unity. The gravitational force felt on particle i by a single particle j is given by

Fij =
x
(j) � x

(i)

����x(j) � x(i)
����3
2

, (32)

where x
(i) 2 R2 is the position of the ith particle. Summing over all particles yields the N -body

equations of motion

ẍ
(i) =

NX

j=1,j 6=i

x
(j) � x

(i)

����x(j) � x(i)
����3
2

, for i = 1, . . . , N. (33)

The sum of potential and kinetic energy of the system is given by

H = �
X

1i<jN

1����x(j) � x(i)
����
2

+
nX

i=1

����v(i)
����2
2

2
, (34)

where v
(i) 2 R2 is the velocity of the ith particle.

Non-conservative Force Field The simulation will run in the presence of the non-conservative
force field (which has a non-vanishing curl)

F = sinc
⇣q

x
2
1 + x

2
2

⌘n
x2, �x1

o
. (35)

Note that this field is also divergence-free everywhere so that the vector field has no conservative
component. The effect of this force field is that energy will be put into and taken out of the system
throughout the simulation trajectory.

Dynamics in the Force Field Combining the N -body dynamics in the force field gives the equa-
tions of motion

ẍ
(i) =

NX

j=1,j 6=i

x
(j) � x

(i)

����x(j) � x(i)
����3
2

+
�
x
(i)
2 sinc(r(i)),�x

(i)
1 sinc(r(i))

 T

, for i = 1, . . . , N, (36)

where r =
p
x
2
1 + x

2
2 denotes the Euclidean distance of a particle from the origin. Writing this as a

coupled system of first order ODEs gives the following 4N equations

v̇
(i) =

NX

j=1,j 6=i

x
(j) � x

(i)

����x(j) � x(i)
����3
2

+
�
x
(i)
2 sinc(r(i)),�x

(i)
1 sinc(r(i))

 T

, for i = 1, . . . , N, (37)

ẋ
(i) = v

(i)
, for i = 1, . . . , N. (38)

15

Note that the potential energy of the system does not change from the N -body case since the force
field is non-conservative, therefore the total energy relation is the same.

Dataset Generation & Training Details A dataset was generated by integrating the dynamics
forward in time using N = 12 particles, giving n = 4N = 48 state variables. For initial conditions,
all velocity state variables were initialized to zero, and all position state variables were sampled
iid from a standard normal. The dynamics were integrated 30 units forward in time and 1500 state
observations were taken, evenly spaced along the trajectory. Only a single trajectory was used for
training.

Training was conducted using the using weak derivative regression with a 100 batch integration time
steps and a batch size of 120.

G Description of Data Mini-batching Hyperparameters

This section explains some intricacies around batching that are specific to learning ODEs. As was
briefly mentioned in Section 3, our dataset can be written as follows: D =

n
x(i)
1 ,x(i)

2 , . . . ,x(i)
T

om

i=1

where we have used the notation x(i)
j

to indicate the measurement of the state at time instant tj , x(tj),
for trajectory i. Recall that we collect m trajectories of length T of the state x.

There are two batching hyperparameters that we have made use of in this work: (i) the batch size and
(ii) the batch integration time steps. The batch size aligns with the typical notion of batch size while
the batch integration time steps indicates the number of time steps (l) in each sub-sampled trajectory.

To be more clear, we sample a single training trajectory from our dataset as:

Xsample =
n
x(i)
j
,x(i)

j+1, . . . ,x
(i)
j+l

o
, (39)

where i and j are random integers from the sets {1, 2, . . . ,m} and {1, 2, . . . , T � l} respectively.

H Description of Test Space

The test space was held constant throughout all experiments in this work. We used 200 Gaussian
radial basis functions (GRBFs) which have been evenly spaced over the batch integration time window
with a shape parameter of 10. For example, having sampled a batch integration time window given by
tsample = {tj , tj+1, . . . , tj+l} where j is a random integer from the set {1, 2, . . . , T � l}, the test
space is spanned by,

GRBFk(t) = e
�10(t�ck)

2

, for k = 1, 2, ..., 200, (40)

where each ck is an evenly placed basis function center from the interval [tj , tj+l].

I Extended Study on Methods for Learning ODEs

This section contains an extended study on the performance weak form regression as compared
to state regression and derivative regression. Here we have set the mini-batching hyperparameters
to the same value for all loss functions to illustrate how the learning schemes perform given the
same settings. Note that these hyperparameters were tuned for the experiment in Section 4.1 as it
was observed that state regression could adequately recover the governing equations with a smaller
number of batch integration time steps than the other methods. In this experiment, we trained a
FCNN for 3000 epochs, with a batch size of 120, and a batch integration time of 50 steps. As before,
we collect measurements of a nonlinear pendulum for 20 seconds as it decays towards its stable
equilibrium from two independent initial conditions. We vary the measurement sampling frequency
from 10Hz to 100Hz.

As above, the derivate regression loss function was unable to recover the the governing ODE at this
level of noise. In particular, the loss function resulted in models whose trajectories diverged in finite
time for all experiments but the 10Hz and 30Hz experiments; hence no state prediction errors were
calculated for these models.

16

We see that the weak form loss function had a state error rate which improved as the measurement
frequency was increased. This is expected given the fact that numerical integration schemes improve
their performance as the spacing between quadrature points is decreased. We also see that state
regression methods tended to lose accuracy as the measurement frequency was increased. This is
expected given the fact that the the time interval over which integration is required is decreased as the
measurement frequency is increased (ie. the ODE solver was required to integrate over a longer time
window for each training step).

Most striking from this experiment is the fact that state regression required significantly longer
training time than weak form regression. We observe that the weak form regression method had a
training time which was constant with respect to the sampling frequency while state regression had a
training time which increased with time between samples.

Figure 9: Comparison of State Error (L) and Derivative Error (R) for Different Loss Functions

Table 3: Loss Function Training Time Comparison
Measurement Frequency (Hz)

Method 10 20 30 40 50 60 70 80 90 100

Weak form 0:00:32 0:00:32 0:00:32 0:00:32 0:00:32 0:00:32 0:00:33 0:00:31 0:00:31 0:00:32
State regression 4:23:59 3:12:15 2:26:59 2:20:32 2:20:37 2:10:38 2:08:58 2:09:52 1:56:48 1:45:22
Derivative regression 0:00:28 0:00:29 0:00:28 0:00:28 0:00:29 0:00:27 0:00:29 0:00:29 0:00:30 0:00:31

J Duffing Oscillator Experiment

Figure 10: GHNN predicted tra-
jectory example

In this section we demonstrate GHNNs applied to learning a gen-
eralized Hamiltonian decomposition of the Duffing oscillator. A
generalized Hamiltonian decomposition of the governing equations
for the Duffing oscillator is provided in Appendix C. We measure the
system at a frequency of 50Hz as it decays towards stability using
10 independent initial conditions. Measurements are corrupted by
zero mean Gaussian noise with a standard deviation of 0.1.

In this experiment we place a prior on the form of the governing
equations which enforces local stability. Recall that this prior ensures
that energy must strictly decrease along trajectories even for a set of
randomly initialized neural network weights. The learnt generalized
Hamiltonian and vector field is shown in Figure 11.

Again, we observe that our model learnt the important qualitative
features of the vector field, f , and generalized Hamiltonian. Further-
more in Figure 10 we observe that the trajectories produced by the
learnt model align well with trajectories produced by the true un-
derlying equations and the generalized Hamiltonian energy function.
The performance of GHNNs on this problem is compared to FCNNs
and HNNs in Table 2.

17

For all neural networks we selected 3 hidden layers with 300 units in each layer. For each experiment,
10 independent models were trained for each specific ODE parameterization. To choose between
models, a validation dataset was created by integrating the training initial conditions forward in time
at 13Hz (meaning the validation dataset was 20% the size of the training set). Like for the training
dataset, independent zero mean Gaussian noise with a standard deviation of 0.1 was added to these
trajectories.

Testing data was generated by uniformly sampling 50 initial conditions (never before seen by the
models) from within the domain of interest and integrating the trajectories forwards for 200 seconds.

Figure 11: Learnt (L) and true (R) generalized Hamiltonian and vector field for the Duffing oscillator

K Lorenz ’63 Experiment Without Prior

Figure 12: Lorenz predicted trajec-
tory example with no prior

In this section we demonstrate GHHNs applied to learning a gen-
eralized Hamiltonian decomposition of the Lorenz ’63 system
when no prior is placed onto the form of the generalized Hamil-
tonian. We use the same data as we did for the experiment in
Section 4.2. In Figure 12, we observe that without the soft energy
flux rate prior, we are still able to learn a reasonable approxi-
mation to the underlying governing equations. To reiterate the
discussion above, we expect to only be able to capture qualita-
tive aspects of the trajectory due to the fact that the Lorenz ’63
equations are chaotic. As we would expect, without placing a
prior onto the form of the generalized Hamiltonian, we see in
Figure 13 that we are unable to recover the specific generalized
Hamiltonian decomposition given in Appendix C. As the general-
ized Hamiltonian decomposition is not unique, we expect to learn a generalized Hamiltonian which
does not necessarily align with the arbitrary decomposition chosen in Appendix C. This example
draws attention to the fact that there is a potential for future work in reducing the space of plausible
generalized Hamiltonians for general dynamical systems.

Figure 13: Lorenz generalized Hamiltonian and vector field: no prior (L), soft prior (C), and true (R)

18

	Introduction
	Generalized Hamiltonian Neural Networks
	Generalized Hamiltonian Decompositions of Dynamical Systems
	Parameterizing Generalized Hamiltonian Decompositions
	Choices for Priors on the Generalized Hamiltonian

	Parameter Estimation for GHNNs
	Numerical StudiesCode can be found online at: https://github.com/coursekevin/weakformghnn.
	Comparison of Methods for Learning ODE Models
	Example Problems
	Discovering Energy Sources & Losses

	Related Works
	Conclusion
	Proof of Divergence Free Parameterization
	Proof of Curl Free Parameterization
	Spectral Curl-Free Parameterization

	Governing Equations
	ODE Model Comparison Metrics
	Neural Network Architectures and Hyperparameters
	N-Body Experiment Details
	Description of Data Mini-batching Hyperparameters
	Description of Test Space
	Extended Study on Methods for Learning ODEs
	Duffing Oscillator Experiment
	Lorenz '63 Experiment Without Prior

