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Abstract

Intra-saliency and inter-saliency cues3 have been extensively studied for co-saliency
detection (Co-SOD). Model-based methods produce coarse Co-SOD results due to
hand-crafted intra- and inter-saliency features. Current data-driven models exploit
inter-saliency cues, but undervalue the potential power of intra-saliency cues. In
this paper, we propose an Intra-saliency Correlation Network (ICNet) to extract
intra-saliency cues from the single image saliency maps (SISMs) predicted by any
off-the-shelf SOD method, and obtain inter-saliency cues by correlation techniques.
Specifically, we adopt normalized masked average pooling (NMAP) to extract
latent intra-saliency categories from the SISMs and semantic features as intra
cues. Then we employ a correlation fusion module (CFM) to obtain inter cues
by exploiting correlations between the intra cues and single-image features. To
improve Co-SOD performance, we propose a category-independent rearranged
self-correlation feature (RSCF) strategy. Experiments on three benchmarks show
that our ICNet outperforms previous state-of-the-art methods on Co-SOD. Abla-
tion studies validate the effectiveness of our contributions. The PyTorch code is
available at https://github.com/blanclist/ICNet.

1 Introduction

Co-Saliency Object Detection (Co-SOD) aims to discover the commonly salient objects in a group
of relevant images [36]. It serves as a preliminary step for various computer vision tasks, e.g.,
co-segmentation [9], co-localization [27], and image retrieval [21], etc. The saliency information
within a single image (intra-saliency cue) and the occurrence of saliency within a group of images
(inter-saliency cue) are essential to the success of existing Co-SOD methods, which can be roughly
divided into model-based (non-deep) methods [4, 14, 15] and data-driven (deep) ones [13, 29, 32].

The model-based (non-deep) methods [4, 14, 15] utilize hand-crafted features with manually designed
detection pipelines. Most of them leverage as intra cues the single image saliency maps (SISMs)
predicted by off-the-shelf SOD methods [5, 44], and compute various inter cues based on subjective
priors and hand-crafted features of salient regions in SISMs. Unfortunately, hand-crafted features are
usually inconsistent in expressing high-level semantics [36, 43], e.g., versatile viewpoints, complex
shapes, and illuminant changes, etc, leading to undesirable Co-SOD predictions [8, 14]. Besides, with
subjective priors [4, 8], e.g., low-rank constraint, central bias rule, co-saliency distribution consistency
and histogram-based contrast, these Co-SOD methods [4, 8] are usually unstable in capturing robust
inter cues in complex real-world scenarios [36, 43].
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Recently, data-driven (deep) methods [11, 13, 39] are proposed to learn discriminative features
with great performance gains on Co-SOD. Among these methods, [38, 39, 40] learn intra and
inter cues from scratch to discover similar foregrounds within an image group while distinguishing
the foreground and background in each image. The methods of [13, 32] focus on capturing inter
cues by imposing various architectures, e.g., recurrent module and group-level concatenation. The
works of [10, 11] obliquely take the SISMs as supervisions of the networks and constrain the inter
consistency via energy minimization. Despite with promising results, previous Co-SOD networks [28,
29] undervalue the potential power of intra cues for Co-SOD. Recently, the SISMs produced by
some SOD networks [35, 42] achieve comparable results with popular Co-SOD networks on Co-
SOD benchmarks [2, 33, 37] by standard metrics [1, 3, 6], as will be shown in §4. This indicates
that a stronger Co-SOD network can be developed if we well exploit the intra cues in SISMs.
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Figure 1: The main idea of our ICNet.

In this paper, we propose an Intra-saliency Cor-
relation Network (ICNet) for fine-grained Co-
SOD performance. Our ICNet directly integrates
the intra cues and correlation techniques into a
deep network for end-to-end learning. We ex-
tract intra cues by adopting normalized masked
average pooling (NMAP) [25] to combine single
image saliency maps (SISMs) predicted by any
SOD method and deep features. To explore the
inter cues for Co-SOD, we employ a correlation
fusion module (CFM) to capture the correlations between the extracted intra cues and single-image
features. In order to further improve our ICNet on Co-SOD, we design a rearranged self-correlation
feature (RSCF) strategy to maintain the feature independence upon semantic categories, while benefit-
ing from global receptive fields. Our main idea is illustrated in Figure 1, from which we can see that
co-saliency information can be obtained by exploring correlations between intra-saliency categories.
Extensive experiments on three Co-SOD benchmarks demonstrate that our ICNet outperforms state-
of-the-art Co-SOD methods on standard objective metrics and subjective visual quality. Ablation
studies also validate the effectiveness of each component in our ICNet.

In summary, our major contributions are manifold:

• We propose a novel Intra-saliency Correlation Network (ICNet) for Co-SOD, by integrating
intra-saliency features of SISMs and correlation techniques. Ablation studies show that
SISMs clearly improve the performance of the proposed ICNet for Co-SOD.

• We validate that well exploiting SISMs improves Co-SOD performance. By leveraging
normalized masked average pooling (NMAP) and a correlation fusion module (CFM), intra
and inter cues can be well captured from SISM and deep features for Co-SOD.

• We introduce a rearranged self-correlation feature (RSCF) strategy to obtain robust co-
saliency features with the inter cues. Benefiting from the independence upon semantic
categories and positions, our ICNet with RSCF achieves better Co-SOD performance.

• Experimental results demonstrate that the proposed ICNet outperforms previous state-of-
the-art Co-SOD methods on three benchmarks.

2 Related Work

Previous model-based Co-SOD methods [4, 14, 15] mainly utilized single image saliency maps
(SISMs) produced by off-the-shelf SOD methods as intra-saliency cues, and explored various inter-
saliency cues for Co-SOD. The work of [14] measured the similarities between different regions as
inter cues, and linearly integrated them with intra cues to derive the co-saliency maps. The method
of [15] employed manifold ranking to explore inter cues based on intra cues. Specifically, each image
in a group along with its intra cue was utilized to compute correlations with all images in that group.
Based on the correlations produced by each pair of images, the inter consistency is extracted to
generate final Co-SOD results. Under a low-rank constraint, the method of [4] fused SISMs yielded
by multiple SOD models with adaptive weights for Co-SOD predictions. The weights indicate the
importance of each SOD model, acting as inter cues to guide the fusion process. However, model-
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based Co-SOD methods [4, 14, 15] are limited by hand-crafted features and manually-designed inter
cues, which are not robust to complex real-world scenarios.

To alleviate the drawbacks of model-based methods, data-driven Co-SOD methods [13, 29, 32, 39]
were proposed to tackle the Co-SOD task with obvious performance gains over previous model-based
ones [4, 14, 15]. The work of [32] fed the concatenated features of multiple images into a series
of convolutional layers to build a group-level representation, which was further combined with the
single-image features for collaborative learning. Later, the authors of [39] proposed an unsupervised
learning scheme to derive initial co-saliency masks, which were served as the guidance to train a
fully convolutional network [20] for Co-SOD predictions. The method of [29] learned an additional
semantic vector in a supervised manner to represent the co-salient category of an image group,
boosting the low-level features from the high-level ones for better Co-SOD performance. In [13], the
authors sequentially fed single-image features into a recurrent module to progressively update the
inter-saliency features, encoding the inter consistency into a robust group-level representation.

Though with remarkable performance gains, some top-tier SOD methods [35, 42] surprisingly achieve
comparable results with deep Co-SOD networks [11, 39] on famous benchmarks, as mentioned in [7].
This indicates that if the intra cues in SISMs are well used, we can design a more powerful Co-SOD
network. To this end, in this paper, we propose an Intra-saliency Correlation Network to integrate
intra-saliency features of SISMs and correlation techniques for fine-grained Co-SOD performance.
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Figure 2: Pipeline of the proposed ICNet. We assume the input image group consists of two images
to simplify the illustration. In practice, the size of an image group is not fixed. We first utilize
NMAP (denoted as “+”) to extract intra cues (i.e., SIVs) from the features and corresponding SISMs
produced by any off-the-shelf SOD method. Then we employ the CFM to further explore inter cues
(i.e., CSA maps) from the intra cues and features by correlation techniques. Finally, these inter cues
and the devised RSCFs are integrated to generate co-saliency predictions.

3 Proposed Intra-saliency Correlation Network (ICNet)

3.1 Overall Network Architecture

Given a group of n relevant images I = {Ii}ni=1, co-saliency object detection (Co-SOD) aims to
discover their commonly salient object(s) and generate the co-saliency mapsM = {Mi}ni=1. The
image group I is first fed into an encoder network to extract `2-normalized high-level semantic
features F = {Fi}ni=1. We integrate single image saliency maps (SISMs), denoted as S = {Si}ni=1,
predicted by any SOD method, into a standard deep network for Co-SOD. To explore useful intra cues
for Co-SOD, we combine the semantic features F and corresponding SISMs S , and adopt normalized
masked average pooling (NMAP) [25] to produce single-image vectors (SIVs) V = {vi}ni=1, which
represent latent intra-saliency categories (§3.2). To obtain useful inter cues from the intra ones (i.e.,
SIVs V), we further employ a correlation fusion module (CFM) to exploit correlations between
semantic features F and SIVs V , generating co-salient attention (CSA) maps A = {Ai}ni=1 (§3.3).
In order to maintain the consistency of featuresF and CSA mapsA in terms of category independence,
we propose to compute the self-correlation within features F and an additional rearranging operation,
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obtaining the rearranged self-correlation features (RSCFs) Fr = {F r
i }ni=1 (§3.4). Finally, the CSA

maps and RSCFs are fed into a decoder network to predict the co-saliency mapsM (§3.5). Figure 2
illustrates the pipeline of our ICNet.

3.2 Intra Cues Extraction by Normalized Masked Average Pooling

Several deep networks [10, 11] attempt to extract intra cues by taking SISMs as the training targets
of a sub-network, rather than directly integrating SISMs into the network for end-to-end training.
However, SISMs are not precise enough to indicate the single-salient regions. Thus, explicitly
supervising the network training with SISMs would lead to inaccurate intra cues. To better integrate
both SISMs and semantic features for more discriminative intra cues, we adopt the normalized
masked average pooling (NMAP) operation introduced in [25]. As shown in Figure 3(a), given a
group of `2-normalized image feature F = {Fi}ni=1 (Fi ∈ RC×H×W ), we adjust the corresponding
SISMs S = {Si}ni=1 to proper scales and generate single-image vectors (SIVs) V = {vi}ni=1 by:

v̂i =
1

HW

H∑
x=1

W∑
y=1

Fi(:, x, y)� Si(:, x, y),vi =
v̂i
‖v̂i‖2

, (1)

where� denotes the element-wise multiplication, x and y are the indices along the spatial dimensions.
‖·‖2 is the `2 norm. Note that we use the SISMs predicted by any off-the-shelf SOD model to directly
filter out the features of potentially non-salient regions by multiplication, rather than taking these
SISMs as the training targets and forcing the Co-SOD models into overfitting inaccurate SISMs with
performance drop. In this way, even though the SISMs are not precisely accurate, the inaccuracy will
be largely diluted after averaging and normalizing operations. Thus, vi ∈ RC is able to express latent
intra-saliency categories (Figure 3(b)), and be safely taken as an intra cue.
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Figure 3: Extraction and visualization of single-image vectors (SIVs). In (a), the SIV is obtained
by NMAP with the image feature and corresponding SISM. “�” is the element-wise multiplication.
To visualize the semantic feature in the SIV, we compute pixel-level inner products between the SIV
and different image features (2-nd row in (b)). The highlighted regions indicate that the SIV could
well express the intra-saliency category (“apple”) via its semantic feature. However, w/o. SISMs, the
semantic feature of the produced SIV is meaningless for Co-SOD (3-rd row in (b)).

3.3 Inter Cues Extraction by Correlation Fusion Module

To extract inter cues from the intra ones, a naive way is to concatenate SIVs V with single-image
features F , within the framework of existing deep models [13, 29, 32]. However, [32] can only
handle an image group with a fixed number of images, [13] is easily influenced by the order of input
images due to the recurrent architecture for extracting inter cues, while [29] fails on unseen object
categories since the semantic vector is learned on pre-defined categories. To obtain inter cues while
avoiding these limitations, we introduce a Correlation Fusion Module (CFM) into our ICNet.

Inspired by video object segmentation community [30], which mainly computes the dense correlations
between the features of consecutive frames to achieve fine-grained segmentation. Here, the key to
obtaining accurate co-saliency maps is the dense correlations between the SIVs and single-image
features. To this end, our CFM computes pixel-level correlations between SIVs in V and single-image
features in F to generate useful inter cues in parallel, enabling our network to process image groups
with any number of images.

To illustrate how our CFM works for the Co-SOD task, we take the k-th image Ik from a group of
n images as an example. Here we set n = 4 for simplicity and better illustration. As demonstrated
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Figure 4: Correlation fusion module (CFM). “
∑

” denotes weighted summation. For simplicity,
here we only calculate the co-salient attention (CSA) map for one image from a group of 4 images.
In practice, we implement this process for the feature of each image in the image group to generate
multiple CSA maps as inter cues.

in Figure 4, our CFM takes SIVs in V and the feature Fk of the k-th image Ik as the support vectors
and the query feature map, respectively. For each SIV vi in V , we compute the inner product between
it and pixel-wise feature vectors in Fk, to generate one correlation map Cki ∈ RH×W . Each Cki

highlights the region of Fk that has high response to the intra-saliency category represented by SIV
vi. Nevertheless, for the SIVs that do not represent the co-salient category, the generated correlation
maps highlight regions that are irrelevant to the co-salient category. To alleviate the influence of these
noisy correlation maps to the final inter cues, we fuse {Cki}ni=1 with a weight vector that accounts
for the relevance between each pair of correlation maps. Specifically, we vectorize and `2-normalize
each correlation map in {Cki}ni=1, and then stack them to obtain a matrix Ĉk ∈ Rn×HW . A weight
vector Wk ∈ Rn that measures the importance of each correlation map is calculated as follows:

Wk = softmax(αĈkĈ
T
k 1), (2)

where α is a learned factor to regulate the vector to a proper magnitude for the following softmax
normalization (softmax), ĈkĈ

T
k ∈ Rn×n is a correlation matrix that measures the relevance

between every two correlation maps via inner product, while 1 represents an n-dimensional vector of
all ones. With the weight vector Wk, we sum the correlation maps {Cki}ni=1 followed by a min-max
normalization and obtain a co-salient attention (CSA) map Ak ∈ RH×W for the feature map Fk as
the inter cue. Note that once a correlation map Ckj is noisy, it is not similar to most of the other
correlation maps, leading to small weight Wkj . Thus, the weighted fusion suppresses reasonably the
noisy correlation maps, enabling the CSA map Ak to discover the potentially co-salient region in Fk.

Figure 5 shows some examples of the generated CSA maps. We observe that, the generated CSA
maps (3-rd row) highlight the regions that are similar to the co-salient category, although the used
SISMs (2-nd row) are noisy to the co-salient category or do not even include any salient objects. This
demonstrates that the inter consistency is well expressed by the CSA maps.

3.4 Rearranged Self-Correlation Feature

Once we obtain the CSA map Ak, we multiply it with the `2-normalized feature Fk to focus on the
co-salient region and finally predict the Co-SOD map, as suggested in [39]. However, we observe
that in this way our network fails to distinguish pixels with similar but different categories, leading to
sub-optimal predictions. This is mainly due to the inconsistency on the category dependence between
Ak and Fk: Ak is category-independent and just reflects the potentially co-saliency scores, while
Fk is category-related and each pixel in it is a vector representing a specific category. Specifically,
in our initial experiments, we found that the predictions of our ICNet mainly depend on category-
independent Ak, but the category information (which could be used to further identify the categories
of pixels with similar semantics) in Fk is neglected. To tackle this inconsistency, we propose to
explicitly utilize the category information in Fk to calculate similarities between pairs of pixels in Fk,
and transform Fk into category-independent self-correlation feature (SCF). In addition, we extend
SCF to a “Rearanged” version (RSCF), further improving the performance of our ICNet on Co-SOD.

Self-correlation feature (SCF). Given the feature map Fk ∈ RC×H×W , we reshape it into the size
of C ×HW , denoted as F̂k. Then we calculate the self-correlation matrix F̂ T

k F̂k ∈ RHW×HW , and
reshape it into the size of HW ×H ×W to obtain the SCF F s

k . For the pixel (x, y), regardless of the
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Figure 5: Visualization of generated co-salient attention (CSA) maps. The 1-st and 2-nd rows
are the input image groups and corresponding SISMs produced by [42], respectively. The 3-rd row
shows the CSA maps yielded by our correlation fusion module (CFM). With the CSA maps, our
ICNet obtains predictions (4-th row) that are more accurate than the used SISMs.

semantic category expressed by Fk(:, x, y), the counterpart feature vector F s
k (:, x, y) in SCF only

reflects the correlations between Fk(:, x, y) and all pixels of Fk, ensuring that the SCF is independent
of specific categories. Experiments in §4.3 show that SCF boosts our ICNet on Co-SOD.

Rearranged SCF (RSCF). Though combining SCF with CSA maps benefits from the consistency
of category independence, using SCF in our network may potentially lead to the risk of over-fitting.
The reason is that each channel of SCF is a self-correlation map related to a certain spatial position,
making the learned parameters based on the fixed channel order position-related. To alleviate the
over-fitting risk, we rearrange the channel order of SCF. Specifically, for the pixel (x, y) that has
higher co-saliency value in Ak, the self-correlation map F s

k (z, :, :) (z = (x−1)W + y is the channel
index) will be placed on the upper channel to generate the RSCF F r

k . In this way, the channel order
of RSCF is independent of the pixel positions. We will validate the effectiveness of the rearranging
operation in §4.3 and provide visual comparisons in the Supplementary File.

3.5 Implementation Details

We employ the pre-trained VGG-16 [26] as our backbone, and the SISMs are produced by the pre-
trained EGNet [42] (also based on VGG-16). To obtain co-saliency mapsM, we multiply RSCFs Fr
by CSA maps A element-wisely to enhance the potentially co-salient regions, generating foreground
co-saliency features Ff with two convolutional layers. Since inter consistency may also exist in
the common backgrounds, we perform the above process to obtain background co-saliency features
Fb with the reversion of S. After concatenating foreground features Ff and background ones Fb,
we use two convolution layers to yield the co-saliency enhanced features Fc. In our network, we
replace the fully connected layers of VGG-16 [26] with three convolutional layers. For an image
group, we extract the `2-normalized outputs of 4-th, 5-th and 6-th stages as {F4,F5,F6}. Then,
we obtain corresponding co-saliency enhanced features {Fc4,Fc5,Fc6} by performing the above
described process on each of {F4,F5,F6}. Finally, a U-net [24] like decoder is employed to fuse
{Fc4,Fc5,Fc6} and the low-level features (outputs of 1-st, 2-nd and 3-rd stages of the backbone) to
produce final co-saliency mapsM.

4 Experiments

4.1 Experimental Protocol

Training and test details. The additional parameters in our proposed modules and the last three
layers are initialized with the random normal distribution of which µ = 0, σ = 0.1. We use
Adam [12] as the optimizer to train our ICNet with 60 epochs. The learning rate is 10−5, and the
weight decay is 10−4. The training set is a subset of the COCO dataset [17], containing 9213 images,
as suggested by [13, 32, 43]. All images are resized into 224× 224 in both training and test phases.
The training images are randomly flipped horizontally for augmentation. In each training iteration,
we randomly select a batch of 10 images from an image group due to limited GPU memory. In the
test phase, each image group with an arbitrary number of images constitutes a batch regardless of its
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Table 1: Quantitative comparisons on max F-measure (Fβ), S-measure (Sα) and MAE over
three benchmark datasets. “Co” and “Sin” in the “Type” column represent the corresponding meth-
ods are Co-SOD models and Single-SOD ones, respectively. “↑” (“↓”) means that larger (smaller) is
better. The best, second best and third best results are highlighted in red, blue and bold, respectively.

Cosal2015 [37] iCoseg [2] MSRC [33]
Method Type

Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓
CBCS [8] Co 0.539 0.546 0.234 0.728 0.673 0.165 0.639 0.516 0.279
CSHS [19] Co 0.568 0.596 0.310 0.766 0.750 0.176 0.740 0.694 0.260

CoDW [37] Co 0.672 0.651 0.273 0.783 0.753 0.177 0.786 0.721 0.252
UCSG [10] Co 0.745 0.756 0.158 0.836 0.825 0.117 0.847 0.806 0.164
CSMG [39] Co 0.787 0.778 0.130 0.833 0.815 0.104 0.861 0.767 0.153

MGLCN [11] Co 0.791 0.804 0.128 0.867 0.863 0.076 0.862 0.816 0.160
GICD [41] Co 0.835 0.837 0.072 0.821 0.819 0.069 0.812 0.753 0.131

EGNet [42] Sin 0.753 0.805 0.103 0.798 0.833 0.069 0.834 0.789 0.122
SCRN [35] Sin 0.769 0.813 0.097 0.796 0.836 0.066 0.847 0.791 0.124

ICNet Co 0.860 0.855 0.058 0.874 0.862 0.048 0.869 0.814 0.097

capacity, and its co-saliency maps are generated at once. The training and test are performed on an
Nvidia Titan Xp GPU. Our ICNet is implemented in PyTorch [22] and runs averagely at 80 FPS.

Loss function. To well separate the foreground and background, we supervise the predicted co-
saliency mapsM = {Mi}ni=1 (Mi ∈ RH×W ) by the corresponding ground-truths G = {Gi}ni=1

(Gi ∈ RH×W ) under the IoU loss [16]:

L(M,G) = 1− 1

n

n∑
i=1

∑HW
j=1 (min(Mi,Gi))j∑HW
j=1 (max(Mi,Gi))j

(3)

where min(·, ·) and max(·, ·) represent the functions that take two maps as inputs and output the
element-wise minimum and maximum, respectively. j denotes the pixel position of a map.

Evaluation metrics. To quantitatively evaluate the performance of our ICNet, we adopt three widely-
used metrics, including max F-measure score [1], S-measure [6] and mean absolute error (MAE) [3].

Datasets. We compare our ICNet with state-of-the-art competitors on three popular benchmarks:
MSRC [33], iCoseg [2] and Cosal2015 [37]. MSRC [33] consists of 7 groups of 233 images, and
each group has 30 ∼ 53 images with variant co-salient objects. We remove the group “Tree”, since
several state-of-the-art SOD methods [18, 35, 42] cannot detect any salient object in this group. Note
that all the compared methods are evaluated on MSRC [33] without the group “Tree” for fairness.
iCoseg [2] contains 38 groups of 643 images, each group has 4 ∼ 41 images, where the co-salient
objects and backgrounds in a group are roughly the same, respectively. Cosal2015 [37] includes 50
groups of 2015 images, and each group has 25 ∼ 52 images. It is a more challenging benchmark due
to the diverse variance in the appearance of co-salient objects with complex backgrounds.

4.2 Comparison with State-of-the-arts

Comparison methods. We compare our ICNet with seven state-of-the-art Co-SOD methods and
two well known Single-SOD ones. For Co-SOD methods, we compare with two model-based (non-
deep) CBCS [8] and CSHS [19], and five state-of-the-art data-driven (deep) methods: CoDW [37],
UCSG [10], CSMG [39], MGLCN [11], and GICD [41]. We also compare our ICNet with EGNet [42]
and SCRN [35], two famous Single-SOD methods.

Quantitative results listed in Table 1 show that our ICNet achieves the best results on three Co-SOD
benchmarks by three widely used metrics. We note that, 38 out of 45 image groups in MSRC and
iCoseg contain only one category of salient objects, while 43 out of 50 image groups in Cosal2015
contain multiple categories of salient objects. Thus, the evaluations on Cosal2015 could reflect better
the capability of the comparison methods on Co-SOD than those on MSRC and iCoseg. Comparing
to previous methods, our ICNet obtains large improvements on the challenging Cosal2015, but
small gains on MSRC and iCoseg. This demonstrates that our ICNet is very capable of tackling
the Co-SOD problem. It also can be seen that, on MSRC and iCoseg, the gains on Fβ and Sα are
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Figure 6: Qualitative comparisons of different methods on three benchmark datasets.

more marginal than those on MAE. The reason is that Fβ is based on the binary saliency map and Sα
measures structural similarity, which are not sensitive to the pixel-level incorrectness as MAE.

Visual comparisons in Figure 6 demonstrate that, our ICNet utilizes the SISMs well to capture the
inter consistency of image groups, and generates more accurate co-saliency maps than other methods.

4.3 Ablation Study

Here, we study the effectiveness of each component in our ICNet. All variants have a similar capacity
to ensure that the performance gains are not due to the additional parameters.

Table 2: Results of different variants to our ICNet. NFs: `2-normalized features. CFM: correlation
fusion module (§3.3). SISMs: extracting SIVs via SISMs (§3.2). SCFs: self-correlation features. R:
rearrange (the channel order of SCFs, §3.4).

Cosal2015 [37] iCoseg [2] MSRC [33]
Model NFs SCFs CFM SISMs R

Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓
1 X 0.788 0.789 0.098 0.752 0.755 0.083 0.759 0.706 0.154

2 X X 0.815 0.823 0.081 0.726 0.763 0.081 0.782 0.742 0.139

3 X X X 0.824 0.833 0.076 0.864 0.862 0.047 0.830 0.789 0.114

4 X 0.767 0.787 0.105 0.804 0.804 0.070 0.772 0.717 0.148

5 X X 0.817 0.824 0.078 0.813 0.815 0.067 0.839 0.789 0.113

6 X X X 0.855 0.850 0.060 0.857 0.848 0.048 0.872 0.807 0.100

7 X X X X 0.860 0.855 0.058 0.874 0.862 0.048 0.869 0.814 0.097

Effectiveness of intra and inter cues. In our ICNet, we exploit SISMs to represent intra cues by
single image vectors (SIVs) as described in §3.2, and capture inter cues by our CFM introduced
in §3.3. Here we validate the effectiveness of SISMs and CFM for Co-SOD. For our ICNet without
“SISMs”, we replace the SISMs with masks of all ones to build SIVs. For our ICNet without “CFM”,
we average the group of SIVs to a group-level vector in RC and copy it for H ×W times to form
a tensor in RC×H×W as the inter cue, and concatenate it with each single-image feature to predict
co-saliency maps [29, 32]. As shown in Table 2, by comparing the results of models “1” and “2” as
well as models “4” and “5”, we observe that our ICNet with CFM obtains better performance. This
indicates that the CFM captures the inter consistency from the SIVs better than simple concatenation.
Equipped with SISMs, the models “3” and “6” outperform models “2” and “5” on all three metrics
respectively, since filtering out non-salient regions in semantic features with SISMs makes the
generated SIVs express more accurate intra-saliency categories. In summary, with SISMs and CFM,
our ICNet achieves fine-grained Co-SOD by exploiting discriminative intra and inter cues.

Importance of RSCF to our ICNet. To study this problem, we first replace the `2-normalized
features (“NFs”) with our proposed SCFs. In Table 2, the comparisons between the results of models
“1” and “4”, “2” and “5”, as well as “3” and “6” already show the effectiveness of SCFs. By comparing
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the results of models “6” and “7”, we observe that the rearranging operation (“R”) further boosts the
results slightly, since the potential dependence on position is eliminated.

How much does our ICNet improve basic SOD models? To study this question, we conduct exper-
iments based on a model-based SOD method GC [5] and 4 data-driven SOD methods: EGNet [42],
BASNet [23], CPD [34] and F3Net [31]. As listed in Table 3, our ICNet achieves clearly better
results than the baselines, no matter which SOD method is used to generate the SISMs. This indicates
the effectiveness and robustness of our ICNet upon the SISMs produced by different SOD methods.

Table 3: Results of our ICNet with SISMs by various SOD methods. “Baseline”: the basic
Single-SOD methods. “ICNet”: our ICNet with SISMs produced by corresponding SOD methods.

Cosal2015 [37] iCoseg [2] MSRC [33]

Baseline ICNet Baseline ICNet Baseline ICNetMethod

Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓
GC [5] 0.640 0.682 0.149 0.854 0.852 0.064 0.698 0.708 0.124 0.859 0.853 0.056 0.755 0.691 0.160 0.878 0.826 0.093

EGNet [42] 0.753 0.805 0.103 0.860 0.855 0.058 0.798 0.833 0.069 0.874 0.862 0.048 0.834 0.789 0.122 0.869 0.814 0.097

BASNet [23] 0.790 0.821 0.096 0.858 0.849 0.059 0.855 0.866 0.054 0.862 0.852 0.053 0.869 0.821 0.098 0.867 0.810 0.101

CPD [34] 0.761 0.807 0.100 0.857 0.851 0.060 0.802 0.834 0.063 0.857 0.850 0.051 0.849 0.791 0.116 0.870 0.815 0.097

F3Net [31] 0.810 0.840 0.084 0.856 0.850 0.059 0.844 0.864 0.052 0.864 0.855 0.048 0.864 0.822 0.103 0.865 0.813 0.097

Impacts of the batch size to our ICNet. In the default setting, we train our ICNet with batch size of
10 but take the whole image group as a batch for the test, which leads to the inconsistency between
the batch size of “ntrain” and “ntest” in the training and test stage, respectively. To explore the
impacts of this inconsistency and different settings of batch size to the final results, we evaluate the
performance of our ICNet under multiple settings in Table 4. When ntrain is set as 5/10/15, in the
test stage we use all images in a group as a batch. When ntest is set as 5/10/20, in the training stage
we set ntrain = 10. The results show that the training batch size influences little our ICNet and the
inconsistent batch sizes in training and test phases are empirically available. Besides, our ICNet
leverages SISMs better when taking the whole group as input during tests, as increasing the test batch
size brings slight improvements on Cosal2015 [37].

Table 4: Results of our ICNet with different batch size settings. “ntrain” and
“ntest” denote training and test batch size, respectively.

Cosal2015 [37] iCoseg [2] MSRC [33]
Model

Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓ Fβ ↑ Sα ↑ MAE↓
ntrain = 5 0.858 0.854 0.058 0.866 0.854 0.050 0.868 0.812 0.098

ntrain = 10 0.860 0.855 0.058 0.874 0.862 0.048 0.869 0.814 0.097

ntrain = 15 0.857 0.850 0.060 0.863 0.853 0.052 0.876 0.813 0.096

ntest = 5 0.844 0.846 0.066 0.865 0.856 0.050 0.870 0.815 0.097

ntest = 10 0.851 0.849 0.063 0.874 0.862 0.048 0.869 0.814 0.097

ntest = 20 0.856 0.852 0.061 0.873 0.862 0.048 0.869 0.815 0.097

4.4 Failure Case Study

Our ICNet is heavily based on the SISMs, and fails on Co-SOD when the used SISMs are unreliable.
For example, the SISMs of the “Tree” category (in MSRC [33]) produced by EGNet [42] contain
negligible saliency information, making our ICNet produce meaningless predictions on this case. We
illustrate this point in the Supplementary File due to limited space.

5 Conclusion

In this paper, we proposed an Intra-saliency Correlation Network (ICNet) for co-saliency detection
(Co-SOD). By directly integrating single image saliency maps produced by any off-the-shelf SOD
method into the deep neural network for discriminative intra cues extraction, we further exploited
correlations between intra cues and single-image features to capture accurate inter cues for Co-
SOD. Besides, by leveraging correlations within the image features, we devised a Rearranged Self-
Correlation Feature strategy combined with the inter cues, to further boost our ICNet on Co-SOD.
Experiments demonstrated that our ICNet achieves better performance than state-of-the-art Co-SOD
methods on three benchmarks. Comprehensive ablation studies also validated our contributions.

9



Broader Impact

This work would potentially benefit researchers in the computer vision community, especially those
who are interested in (co-)saliency detection. The authors believe that this work does not have
negative societal consequences.
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