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Abstract

Deep metric learning has attracted much attention in recent years, due to seamlessly
combining the distance metric learning and deep neural network. Many endeavors
are devoted to design different pair-based angular loss functions, which decouple
the magnitude and direction information for embedding vectors and ensure the
training and testing measure consistency. However, these traditional angular losses
cannot guarantee that all the sample embeddings are on the surface of the same
hypersphere during the training stage, which would result in unstable gradient in
batch optimization and may influence the quick convergence of the embedding
learning. In this paper, we first investigate the effect of the embedding norm for
deep metric learning with angular distance, and then propose a spherical embedding
constraint (SEC) to regularize the distribution of the norms. SEC adaptively adjusts
the embeddings to fall on the same hypersphere and performs more balanced
direction update. Extensive experiments on deep metric learning, face recognition,
and contrastive self-supervised learning show that the SEC-based angular space
learning strategy significantly improves the performance of the state-of-the-art.

1 Introduction

The objective of distance metric learning is to learn an embedding space where semantically similar
instances are encouraged to be closer than semantically different instances [1, 2]. In recent years, with
the development of deep learning, deep metric learning (DML) demonstrates evident improvements
by employing a neural network as the embedding mapping. With an appropriate distance metric,
it is convenient to handle many visual understanding tasks, such as face recognition [3, 4] and
fine-grained image retrieval [5, 6, 7]. In regard to the research in DML, an active direction is to design
a discriminative loss function for model optimization. A family of pair-based loss functions are
proposed, which are constructed by similarities of instance pairs in a mini-batch, such as contrastive
loss [8], triplet loss [9, 4], lifted structured loss [5], N -pair loss [10], and multi-similarity loss [11].

Theoretically, either Euclidean distance or angular distance could be employed to measure the
similarity between two embeddings in an embedding space, while in the existing DML loss functions,
angular distance is usually adopted to disentangle the norm and direction of an embedding, which
ensures the training and testing measure consistency. However, this traditional setup usually ignores
the importance of the embedding norm for gradient computation. For example, considering a cosine
distance which measures the angular distance between two embeddings fi and fj , its gradient to an
embedding fi is computed as follows:

∂〈f̂i, f̂j〉
∂fi

=
1

||fi||2
(f̂j − cos θij f̂i), (1)

where f̂ denotes the l2-normalized embedding of f .
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Figure 1: We train models on CUB200-2011 and Cars196 datasets, all with a triplet loss using a
cosine distance. Here we show the distribution of learned embeddings’ norms with and without SEC.

From the above gradient analysis, we see that the embedding norm plays an important role in the
gradient magnitude, which is also mentioned in [12]. When angular distances are optimized in the
loss function, it requires the embeddings to have similar norms to achieve a balanced direction update.
However, most existing angular loss-based methods cannot guarantee that all the sample embeddings
are on the surface of the same hypersphere during the training stage. As shown in Figure 1, the
distribution of learned embeddings’ norms with the angular triplet loss have a large variance in
the training stage. Consequently, the gradient correspondingly would become unstable in batch
optimization and may influence the quick convergence of the embedding learning. For example, the
direction updating is relatively slower for embeddings with larger norms.

To address the above limitation, in this paper, we propose a spherical embedding constraint (SEC)
method for better embedding optimization. SEC attempts to make the embeddings to fall on the
surface of the same hypersphere by adaptively adjusting the norms of embeddings. Instead of directly
constraining these norms to be a fixed value, which represents the radius of the hypersphere, SEC
flexibly reduces the variance of the embedding norm and constrains these norms to be similar. During
training, SEC operates on each mini-batch and all embedding norms are pushed to their average value.
As shown in Figure 1, the variance of the embedding norms are reduced so that a balanced direction
update is performed. Extensive evaluations are conducted on deep metric learning, face recognition,
and contrastive self-supervised learning to investigate the performance of angular space learning with
SEC. The experiment results on several public datasets show that the proposed method significantly
improves the performance of the state-of-the-art.

2 Related work

Batch normalization. Ioffe and Szegedy propose batch normalization (BN) method [13] to deal
with the change of input distribution of layers in CNNs. This method has been shown to be effective
to accelerate the convergence and to enhance the generalization ability of CNNs. By inserting a BN
layer into an arbitrary position in CNNs (usually before the nonlinear function), a Gaussian-like
distribution at each dimension of the output is expected to be obtained in a mini-batch. Our SEC also
attempts to perform an operation similar to this normalization for obtaining a better generalization
performance. The difference is that SEC focuses on optimizing embeddings in an angular space and
only restricts the norms of final embeddings to be similar to make them on the same hypersphere.

Angular distance optimization in pair-based and classification loss functions. In deep metric
learning task, much effort has been devoted to design pair-based loss functions. Triplet loss [9, 4]
encourages the distance of a negative pair to be larger than that of a positive pair by a given margin.
N -pair loss [10] extends the triplet loss and pushes more than one negative samples farther away from
the anchor simultaneously compared with the positive sample. Multi-similarity loss [11] considers
both self-similarity and relative similarity for weighting informative pairs by two iterative steps. Other
loss functions includes lifted structured loss [5], proxy-NCA [14], clustering [15], hierarchical triplet
loss [16], ranked list loss [17], and tuplet margin loss [18]. Among these methods, angular distance
optimization has become a common approach and is employed by most of loss functions mentioned
above. With this setup, they decouple the magnitude and direction information of embedding vectors
and aim to optimize the angular distance between two embeddings. This way dose achieve a better
performance, guaranteeing the consistent training and testing measurement. On the other hand, in
face recognition task, researchers also find that in softmax loss, replacing the inner product between
weight vectors and embeddings by cosine distance provides better results. A series of cosine-based
softmax loss functions have gradually been proposed, including l2-softmax [22], normface [23],
sphereface [24], cosface [25], and arcface [26]. In addition, recent contrastive learning algorithms
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for self-supervised learning also adopt the embedding normalization step and attempt to maximize
the cosine similarity between two embeddings generated from a positive pair, i.e., two differently
augmented versions or two different views of the same image, with contrastive losses, such as
SimCLR [19], CMC [20], and [21]. However, the traditional angular loss setup cannot guarantee
that all the sample embeddings are on the surface of the same hypersphere during the training stage,
which is usually ignored by the current methods. In this paper, we first investigate the importance of
the embedding norm to direction update in batch optimization and then introduce the SEC to improve
the optimization process. Further, SEC attempts to perform more balanced embedding update by
adaptively adjusting the norms for embeddings and is complementary to the above loss functions.

3 Method
3.1 Revisiting pair-based angular loss functions for deep metric learning

Suppose that we are provided with a set of training images of K classes. We first extract the feature
embedding of each sample by CNN and obtain {(f, y), · · · }, where f ∈ RD denotes the feature
embedding and y ∈ {1, · · · ,K} is the corresponding label. A normalized Euclidean distance or a
cosine distance is usually employed to measure the similarity between two embeddings fi and fj ,

normalized Euclidean distance: Sij = ||f̂i − f̂j ||22
cosine distance: Sij = 〈f̂i, f̂j〉

where f̂ denotes the l2-normalized embedding with a unit norm from the original embedding f , i.e.,
f̂ = f

||f ||2 . The above two measures are equivalent for computing the angular distance between two

embeddings, since ||f̂i − f̂j ||22 = 2− 2〈f̂i, f̂j〉.
Then different pair-based loss functions can be constructed by the above similarities. Let Sap denote
the similarity of positive pair (f̂a, f̂p) and San denote the similarity of negative pair (f̂a, f̂n), where
labels satisfy ya = yp 6= yn. The classical triplet loss [4] and tuplet loss (also refereed as normalized
N -pair loss by us) [10, 18] can be formulated as

Ltriplet = (||f̂a − f̂p||22 − ||f̂a − f̂n||22 +m)+ (2)

Ltuplet = log[1 +
∑
n

es(〈f̂a,f̂n〉−〈f̂a,f̂p〉)], (3)

where m is a margin hyper-parameter and s is a scale hyper-parameter. Both of them optimize the
embeddings in an angular space.

Existing problem. Though the angular space learning ensures the training and testing measure
consistency by decoupling the norm and direction of an embedding, the existing pair-based loss
functions for angular distance optimization usually ignore the importance of the embedding norm
distribution during the training stage. As shown in Figure 1, the distribution of learned embeddings’
norms with the vanilla angular triplet loss has a large variance in the training stage, which means that
the embeddings are not on the surface of the same hypersphere, resulting in unbalanced direction
update for different embeddings and influencing the stability of batch optimization.

3.2 The effect of embedding norm to the optimization process

In this part, the effect of embedding norm is investigated for the optimization of the existing pair-based
angular loss functions. We draw two conclusions: (1) when the angular distances are optimized in
these loss functions, the gradient of an embedding is always orthogonal to itself. (2) the direction
updating of the embedding is easy to be influenced by the large variance norm distribution, resulting
in unstable batch optimization and a slower convergence rate.

Since gradient descent-based methods are mainly adopted for deep model optimization, here we
would analyze the effect of the embedding norm from the perspective of the gradient. Considering a
pair-based angular loss function L, its gradient to an embedding fi can be formulated as

∂L

∂fi
=

∑
(i,j)

∂L

∂Sij

∂Sij

∂fi
=

∑
(i,j)

φij
∂Sij

∂fi
=

∑
(i,j)

φij
κ

||fi||2
(−f̂j + cos θij f̂i), (4)

where κ = 2 if L adopts a normalized Euclidean distance and κ = −1 with a cosine distance. Here
(i, j) is a positive or negative index pair, cos θij = 〈f̂i, f̂j〉 denotes the cosine distance between
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embeddings fi and fj , and φij = ∂L
∂Sij

is a scalar function which is only related to all Sik terms in
the loss function, where Sik could be seen as the angular relationship between embeddings fi and fk
and k is the index of a positive or negative sample.

Proposition 1. For a pair-based angular loss function, i.e., it is constructed by similarities measured
with a normalized Euclidean distance or cosine distance, then its gradient to an embedding is
orthogonal to this embedding, i.e., 〈fi, ∂L∂fi 〉 = 0.

Proof. Based on Equation 4, we calculate the inner product between an embedding and the gradient
of the loss function to it, i.e.,

〈fi,
∂L

∂fi
〉 =

∑
(i,j)

φij
κ

||fi||2
〈fi, (−f̂j + cos θij f̂i)〉

=
∑
(i,j)

φij
κ

||fi||2
(−||fi||2 cos θij + cos θij ||fi||2) = 0, (5)

Δ"
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Figure 2: An il-
lustration of ∆θ.

This conclusion is similar to that in [23]. From Proposition 1, since the gradient
of a specific embedding is orthogonal to itself, the change of its direction at each
update would be conveniently calculated, as shown in Figure 2. Here the tangent
of the angular variation ∆θ is used to measure the magnitude of direction change,
as tangent is a monotonically increasing function when the angle is in [0, π/2).
Consequently, for embedding fi, we have

tan(∆θ)i = || ∂L
∂fi
||2/||fi||2 =

1

||fi||22
||
∑
(i,j)

φijκ(−f̂j + cos θij f̂i)||2. (6)

Proposition 2. Considering a pair-based angular loss function, we assume that the angular relation-
ships among embeddings are fixed. For a specific embedding at one update, if it has a larger norm,
then it gets a smaller change in its direction and vice versa.

Proof. From Equation 6, we observe that 1
||fi||22

is the only term which is related to the norm of this
embedding, while the other terms are constants or only related to the angular relationship among
embeddings. Therefore, when

||f (1)
i ||2 > ||f

(2)
i ||2, (7)

we obtain
tan(∆θ)

(1)
i < tan(∆θ)

(2)
i , (8)

which indicates a smaller change in this embedding’s direction updating.

From Proposition 2, for a specific embedding, the change in its direction at one update is not only
related to the angular relationship, but also inversely proportional to the square of its norm. A similar
observation is also reported in [12]. However, we note that the above conclusion is only based on the
vanilla SGD method and next we also attempt to explain how other optimizers affect the direction
update. We start with expressing the above conclusion of the vanilla SGD method more formally as
below, where with the learning rate α, an embedding is updated at the t-th iteration by

ft+1 = ft − α
∂L

∂ft
. (9)

Proposition 3. With vanilla SGD, the embedding direction is updated by

f̂t+1 = f̂t −
α

||ft||22
(I − f̂tf̂>t )

∂L

∂f̂t
+O(α2). (10)

Proof. We first rewrite Equation 4 without the subscript as

∂L

∂f
= (

∂f̂

∂f
)>
∂L

∂f̂
=

1

||f ||2
(I − f̂ f̂>)

∂L

∂f̂
. (11)

Then based on the above equation and Equation 9, we have

||ft+1||22 = ||ft||22 +
α2

||ft||22
[(I − f̂tf̂>t )

∂L

∂f̂t
]>[(I − f̂tf̂>t )

∂L

∂f̂t
],

and thus

||ft+1||2 =

√
||ft||22[1 +

α2

||ft||42
(
∂L

∂f̂t
)>(I − f̂tf̂>t )

∂L

∂f̂t
] = ||ft||2 +O(α2).
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Besides, from Equation 9 and 11 we also have

||ft+1||2f̂t+1 = ||ft||2f̂t −
α

||ft||2
(I − f̂tf̂>t )

∂L

∂f̂t
.

Finally we combine the above results and obtain

f̂t+1 =
||ft||2
||ft+1||2

f̂t −
α

||ft+1||2||ft||2
(I − f̂tf̂>t )

∂L

∂f̂t
= f̂t −

α

||ft||22
(I − f̂tf̂>t )

∂L

∂f̂t
+O(α2).

Then we consider SGD with momentum method, which updates the embedding by

vt+1 = βvt +
∂L

∂ft
, ft+1 = ft − αvt+1, (12)

and Adam method [27], which updates the embedding by

vt+1 = β1vt + (1− β1)
∂L

∂ft
, gt+1 = β2gt + (1− β2)|| ∂L

∂ft
||22, ft+1 = ft − α

vt+1/(1− βt
1)√

gt+1/(1− βt
2) + ε

. (13)

Proposition 4. When using SGD with momentum, the embedding direction is updated by

f̂t+1 = f̂t −
α

||ft||22
(I − f̂tf̂>t )[||ft||2βvt + (I − f̂tf̂>t )

∂L

∂f̂t
] +O(α2). (14)

Proposition 5. With Adam, the embedding direction is updated by

f̂t+1 = f̂t −
α

||ft||2
(I − f̂tf̂>t )

√
1− βt

2[||ft||2β1vt + (1− β1)(I − f̂tf̂>t ) ∂L

∂f̂t
]

(1− βt
1)
√
||ft||22β2gt + (1− β2)( ∂L

∂f̂t
)>(I − f̂tf̂>t ) ∂L

∂f̂t

+O(α2). (15)

The proofs are provided in Appendix A. From the above propositions, with a small global learning
rate α, α

||ft||22
and α

||ft||2 could be approximately seen as the effective learning rate for updating the
embedding direction with vanilla SGD (SGD with momentum) and Adam method, respectively.
Thus, with different optimizers, the embedding norm would always play an important role in the
direction updating. With a large norm, an embedding may update slowly and get stuck within a
small area in the embedding space. On the other hand, if the norm is too small, then this embedding
may take a quite large step at one update. Due to this effect, similar norms of embeddings would be
more preferable to attaining more balanced direction update. However, we actually observe a large
variance from the norm distribution when learning with a pair-based angular loss function on different
datasets, as shown in Figure 1. It shows that the traditional angular loss setup cannot guarantee that
the learned embeddings lie on the surface of the same hypersphere. Consequently, the gradient would
become unstable in batch optimization during training, due to unbalanced direction update among
embeddings, which slows the convergence rate and degrades the generalization performance.

3.3 Spherical embedding learning

Based on the above analysis, since the large variance of norms would make embeddings suffering
from unbalanced direction update, it is necessary to constrain the embedding norm during training
to eliminate this negative effect. One straightforward idea is to attempt to alleviate this problem
by constraining the embeddings to lie on the surface of the same hypersphere so that they have the
identical norm. Mathematically, it could be formulated as a constrained optimization problem:

min
ϑ
L({(fi, yi)}Ni=1;ϑ) s.t. ∀i, ||fi||2 = µ, (16)

where L is a pair-based angular loss function, ϑ is the model parameter, and µ is the radius of
the hypersphere. With a quadratic penalty method, this problem could be easily transformed to an
unconstrained one as follows:

min
ϑ
L({(fi, yi)}Ni=1;ϑ) + η ∗ 1

N

N∑
i=1

(||fi||2 − µ)2, (17)

where η is a penalty weight for the norm constrain. However, to solve this problem, we still need
to determine the value of the hyper-parameter µ, which is inconvenient for training. Instead, we
consider a parameter-free scheme, where µ is decided by the average norm of all embeddings, i.e.,
µ = 1

N

∑N
j=1 ||fj ||2, and is calculated in each mini-batch in practice. Further, the second term in
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Figure 3: SEC adaptively adjusts the direction update ∆θ at each iteration by adding a new gradient
component ∂Lsec

∂f to ∂Lmetric
∂f .

Equation 17 is named as a spherical embedding constraint (SEC), i.e., Lsec = 1
N

∑N
i=1(||fi||2 − µ)2.

During training, the complete objective function is L = Lmetric + η ∗ Lsec. With SEC, two benefits
are obtained: (1) it would alleviate unbalanced direction update by adaptively increasing (decreasing)
the change of direction for embeddings with large (small) norms at one update. (2) the change of an
embedding’s direction is almost only related to its angular relationships with the other embeddings.

In Figure 3, we illustrate how SEC adjusts the direction update for different embeddings. Considering
the gradient of it to an embedding, i.e.,

∂Lsec

∂fi
=

2

N
(||fi||2 − µ)f̂i. (18)

From the above equation, SEC provides an update direction which is parallel to the embedding.
Consequently, for an embedding whose norm is smaller (larger) than the average norm, SEC attempts
to increase (decrease) its norm at the current update. With this newly added gradient component, the
total angular change of an embedding is also adjusted, as shown in Figure 3. For embeddings with
different norms, the angular changes they obtain would be less influenced by their norms than without
SEC. It thus leads to more balanced direction updating for embeddings especially when the norms
have an extremely large variance. Besides, SEC gradually narrows the norm gap at each iteration and
with the variance becoming smaller and smaller, this negative effect is further eliminated.

When the variance becomes relatively small, i.e., different embeddings almost locate on the same
hypersphere, from Equation 4 it is shown that the magnitude of the gradient is almost only determined
by the angular relationship among embeddings, i.e., ∂L

∂Sij
. From the general pair weighting framework

in [11], for a pair-based loss function, ∂L
∂Sij

can be seen as the weight assigned to Sij . Different
pair-based loss functions are designed to assign the required weights for harder pairs. During the
training stage, since hard pairs are difficult to learn, the larger gradients are obtained to encourage the
model to pay more attention to them, which implicitly benefits the model performance. Overall, the
magnitude of the gradient plays an important role in embedding optimization in an angular space.

In addition to SEC, here we also discuss another norm regularization method proposed in [10], which
aims to regularize the l2-norm of embeddings to be small and is refereed as L2-reg by us. This method
could be seen as a special case of SEC with µ = 0 and the comprehensive comparisons between them
are provided in Section 4. It is shown that SEC is more favorable than L2-reg, indicating a better way
for norm distribution adjustment during training.

3.4 An extension to cosine-based softmax losses and contrastive losses

Recently, cosine-based softmax losses, such as normface [23], sphereface [24], cosface [25], and
arcface [26], have achieved a remarkable performance in face recognition task. For example, the loss
function of cosface is formulated as follows:

L = − log
esSi,yi

esSi,yi +
∑

j 6=yi
esSi,j

, (19)

where Si,yi = cos(θi,yi) −m and Si,j = cos θi,j , m is a margin hyper-parameter, and s is a scale
hyper-parameter. It shows that cosine-based softmax losses are quite similar to pair-based angular
losses, as both of them optimize embeddings in an angular space. The minor difference is that
cosine-based softmax losses calculate the similarities between an embedding and a class template,
i.e., cos θi,k = 〈f̂i, ŵk〉, and a margin is usually introduced.

This motivates us to figure out whether cosine-based softmax losses also suffer from the analogous
unbalanced direction updating to that of pair-based angular losses. In the same way, the gradient of a

6



Table 1: Deep metric learning datasets.

Name
Num. of Classes Num. of Samples

Train Test Train Test

CUB200-2011 100 100 5,864 5,924
Cars196 98 98 8,054 8,131

SOP 11,318 11,316 59,551 60,502
In-Shop 3997 3985 25,882 26,830

Table 2: The effect of hyper-parameter η.

η
Cars196

NMI F1 R@1 R@2 R@4 R@8

0 56.66 24.44 60.79 71.30 79.47 86.27

0.1 59.08 26.50 66.72 76.92 84.39 89.88
0.5 59.17 25.51 67.89 78.56 85.59 90.99
1.0 58.43 24.61 64.97 75.92 84.18 90.03
1.5 56.38 22.37 57.72 70.42 80.04 87.43

cosine-based softmax loss to an embedding is computed as follows:

∂L

∂fi
=

∑
(i,k)

∂L

∂Si,k

∂Si,k

∂ cos θi,k

∂ cos θi,k
∂fi

=
∑
(i,k)

φ′i,k
∂ cos θi,k
∂fi

=
∑
(i,k)

φ′i,k
1

||fi||2
(ŵk − cos θi,kf̂i), (20)

where φ′i,k = ∂L
∂ cos θi,k

. It has a similar structure to Equation 4 in which the magnitude of the gradient
is inversely proportional to ||fi||2.

On the other hand, contrastive self-supervised learning algorithms also adopt the l2-normalization
step for embeddings and aim to maximize the cosine distances of positive embedding pairs and
minimize those of negative embedding pairs with contrastive losses [19, 20, 21], which could be
regarded as variants of normalized N -pair loss as in Equation 3. Therefore, we consider that the
above analysis of pair-based angular losses is also applicable for them, to which the proposed SEC is
also beneficial.

Therefore, to reduce the influence of embedding norm on the direction updating, we further combine
SEC with a cosine-based softmax (c-softmax) loss function or a contrastive loss function,

L = Lc-softmax + η ∗ Lsec, L = Lcontrastive + η ∗ Lsec, (21)

where η is a trade-off hyper-parameter. This helps constrain the embeddings to be on the surface of
the same hypersphere, and thus more balanced direction updating is performed in batch optimization.

4 Experiments

4.1 Datasets, evaluation metrics and implementation details

(1) Deep metric learning task: we employ four fine-grained image clustering and retrieval bench-
marks, including CUB200-2011 [28], Cars196 [29], SOP [5], and In-Shop [30]. We Follow the
protocol in [5, 30] to split the training and testing sets for them as in Table 1. For CUB200-2011 and
Cars196, we do not use the bounding box annotations during training and testing. NMI, F1, and Re-
call@K are used as the evaluation metrics. The backbone network is BN-Inception [13] pretrained on
ImageNet [31]. We set batch size to 120 and embedding size to 512 for all methods and datasets. We
use Adam optimizer [27]. The compared methods are vanilla triplet loss (m = 1.0), semihard triplet
loss (m = 0.2) [4], normalized N -pair loss (s = 25) [10, 18], and multi-similarity loss (ε = 0.1,
λ = 0.5, α = 2, β = 40) [11], where the former two losses employ a normalized Euclidean distance
and the latter two losses employ a cosine distance. (2) Face recognition task: CASIA-WebFace [32]
is employed as the training set while the testing sets include LFW [33], AgeDB30 [34], CFP-FP [35],
and MegaFace Challenge 1 [36]. We adopt ResNet50 [37] as in [26] (i.e., SE-ResNet50E-IR). We
set batch size to 256 and embedding size to 512 for all methods. We use SGD with momentum 0.9.
The compared methods are sphereface [24], cosface [25], and arcface [26]. The hyper-parameter
s is set to 64 while m for sphereface, cosface, and arcface are 3, 0.35, and 0.45, respectively. (3)
Contrastive self-supervised learning task: we follow the framework and settings in SimCLR [19]
and evaluate on CIFAR-10 and CIFAR-100 datasets [38]. We use ResNet-50 and a 2-layer MLP
head to output 128-d embeddings, which are trained using SGD with momentum 0.9. NT-Xent with
temperature 0.5 is the loss and the batch size is 256. More details are provided in Appendix B.

4.2 Ablation study and discussion

The effect of η. η controls the regularization strength of SEC. We consider a triplet loss on Cars196
dataset and vary η from 0.1 to 1.5 as in Table 2. It is seen that SEC leads to a robust improvement with
η ∈ [0.1, 1.0], while the result degrades with a much larger η. It indicates that SEC is not sensitive to
the choice of η with mild values and an appropriate distribution of embedding norm helps improve
the generalization ability.
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(a) (b) (c) (d)

Figure 5: Ablation studies of SEC with a triplet loss on Cars196 dataset. (a) The distribution of
embedding norms on training set. (b) (c) The distribution of cos θap and cos θan on testing set learned
without and with SEC, respectively. (d) The distribution of cos θap − cos θan on testing set.

The effect of SEC. In this part, we employ the triplet loss to investigate the effect of SEC from
different perspectives. In Figure 5(a), we observe that for triplet loss with SEC, the learned norms
have a more compact distribution, showing the explicit effect of SEC. From the previous analysis in
Section 3.3, we explain that more similar norms would lead to a more balanced direction update among
different embeddings. To verify its effectiveness, we consider whether this update results in better
embedding directions, and here we illustrate this quality by cosine distances of positive and negative
pairs in testing set. From Figure 5(b) and 5(c), we observe that for positive pairs, the distribution
of their cosine distances becomes more compact, while the distribution still remains compact for
negative pairs. It indicates that SEC helps learn a relatively class-independent distance metric [18],
which benefits the models’ generalization ability. Besides, the distribution of (cos θap − cos θan) is
also studied in Figure 5(d). We observe that the number of the triplets violating cos θap > cos θan
decreases with SEC, indicating that SEC helps learn the required embedding distribution. In summary,
better performances are achieved with SEC by explicitly decreasing the norm variance while implicitly
learning more discriminative embedding direction. More illustrations are provided in Appendix C.

Convergence rate. We analyze the convergence of deep metric learning with and without SEC in
Figure 4. From the figure, we have two important observations. First, when combined with SEC, loss
functions converge much faster than the original loss functions, e.g., triplet loss with learning rate

(a) (b)

Figure 4: Testing R@1 on Cars196
dataset learned with and without SEC.

1e− 5 in Figure 4(a), and also obtain a much better perfor-
mance. We attribute this fast convergence to the regulariza-
tion power of SEC, which enforces a strong constraint on
the distribution of the embedding norm and achieves a more
balanced update. Second, when we increase the learning
rate properly, the convergence rate of loss functions with
SEC becomes faster and similar results are also received
than those of the original learning rate, as shown in Fig-
ure 4(b). This observation indicates that loss functions with
SEC may be less sensitive to the learning rate and a larger
learning rate also leads to a faster convergence.

4.3 Quantitative results on three tasks

(1) Deep metric learning: we evaluate four methods on fine grained image retrieval and clustering
tasks. In particular, the comparisons are performed between four representative baseline loss functions
with and without SEC. The results are provided in Table 3. As shown in the table, semihard triplet loss
performs better than triplet loss, indicating that the well-designed hard example mining strategies are
effective. Normalized N -pair loss also achieves a better performance than the triplet loss as it allows
a joint comparison among more than one negative example in the optimization. Multi-similarity loss
behaves much better than the other three loss functions as it considers three different similarities
for pair weighting. Further, we observe that SEC consistently boosts the performance of these four
loss functions on the four datasets. On CUB200-2011, SEC shows a significant improvement on
NMI, F1, and R@1 of triplet loss by 4.39%, 7.44%, and 7.48%, respectively. Specifically, for the
state-of-the-art method multi-similarity loss, on Cars196 dataset, SEC also improvs the NMI, F1, and
R@1 by 3.72%, 4.36%, and 1.66%, respectively. On one hand, this shows the superiority of SEC as it
constrains the embeddings to be on the surface of the same hypersphere and results in more balanced
direction update. On the other hand, it also demonstrates that SEC is available for a wide range of
pair-based loss functions and further benefits their generalization abilities. (2) Face recognition: we
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Table 3: Experimental results of deep metric learning. NMI, F1, and Recall@K are reported.
Method

CUB200-2011 Cars196

NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@2 R@4 R@8

Triplet Loss 59.85 23.39 53.34 65.60 76.30 84.98 56.66 24.44 60.79 71.30 79.47 86.27
Triplet Loss + L2-reg 60.11 24.03 54.81 66.21 76.87 84.91 56.65 23.95 63.02 72.97 80.79 86.85
Triplet Loss + SEC 64.24 30.83 60.82 71.61 81.40 88.86 59.17 25.51 67.89 78.56 85.59 90.99
Semihard Triplet [4] 69.66 40.30 65.31 76.45 84.71 90.99 67.64 38.31 80.17 87.95 92.49 95.67
Semihard Triplet + L2-reg 70.50 41.39 65.60 76.81 84.89 90.82 69.24 40.24 82.60 89.44 93.54 96.19
Semihard Triplet + SEC 71.62 42.05 67.35 78.73 86.63 91.90 72.67 44.67 85.19 91.53 95.28 97.29
Normalized N-pair Loss 69.58 40.23 61.36 74.36 83.81 89.94 68.07 37.83 78.59 87.22 92.88 95.94
Normalized N-pair Loss + L2-reg 69.73 40.08 64.58 76.03 84.74 91.12 69.20 39.13 81.87 88.85 93.47 96.54
Normalized N-pair Loss + SEC 72.24 43.21 66.00 77.23 86.01 91.83 70.61 42.12 82.29 89.60 94.26 97.07
Multi-Similarity [11] 70.57 40.70 66.14 77.03 85.43 91.26 70.23 42.13 84.07 90.23 94.12 96.53
Multi-Similarity + L2-reg 70.89 41.71 65.67 76.98 85.21 91.19 71.00 42.55 84.82 90.95 94.59 96.69
Multi-Similarity + SEC 72.85 44.82 68.79 79.42 87.20 92.49 73.95 46.49 85.73 91.96 95.51 97.54

Method
SOP In-Shop

NMI F1 R@1 R@10 R@100 R@1000 R@1 R@10 R@20 R@30 R@40 R@50

Triplet Loss 88.67 29.61 62.69 80.39 91.89 97.86 82.12 95.18 96.83 97.54 97.95 98.26
Triplet Loss + L2-reg 88.93 30.91 64.07 81.27 92.18 97.93 83.01 95.46 96.85 97.45 97.94 98.28
Triplet Loss + SEC 89.68 34.29 68.86 83.76 92.93 98.00 85.29 96.29 97.48 97.99 98.34 98.57
Semihard Triplet [4] 91.16 41.89 74.46 88.16 95.21 98.59 87.16 97.11 98.17 98.54 98.76 98.98
Semihard Triplet + L2-reg 91.16 41.77 74.88 88.25 95.18 98.53 88.04 97.39 98.24 98.65 98.83 98.99
Semihard Triplet + SEC 91.72 44.90 77.59 90.12 96.04 98.80 89.68 97.95 98.61 98.94 99.09 99.21
Normalized N-pair Loss 90.97 41.21 74.30 87.81 95.12 98.55 86.43 96.99 98.00 98.40 98.70 98.93
Normalized N-pair Loss + L2-reg 91.12 41.73 75.11 88.42 95.15 98.53 86.54 96.98 98.06 98.52 98.73 98.85
Normalized N-pair Loss + SEC 91.49 43.75 76.89 89.64 95.77 98.68 88.63 97.60 98.45 98.77 99.01 99.14
Multi-Similarity [11] 91.42 43.33 76.29 89.38 95.58 98.58 88.11 97.55 98.34 98.76 98.94 99.09
Multi-Similarity + L2-reg 91.65 44.51 77.34 89.61 95.67 98.65 88.51 97.59 98.50 98.84 99.03 99.12
Multi-Similarity + SEC 91.89 46.04 78.67 90.77 96.15 98.76 89.87 97.94 98.80 99.06 99.24 99.35

Table 4: Experimental results of face recognition. Face veri-
fication accuracy is reported on LFW, AgeDB30, and CFPFP
while face identification accuracy is reported on MegaFace.

Method
Face Verification Size of MegaFace Distractors

LFW AgeDB30 CFPFP 106 105 104 103

Softmax 98.97 91.30 93.39 80.43 87.11 92.83 96.12

Sphereface [24] 99.20 93.45 94.24 87.72 92.48 95.64 97.68
Sphereface + L2-reg 99.28 93.42 94.30 88.38 92.86 95.93 97.87
Sphereface + SEC 99.30 93.45 94.39 88.42 92.79 95.88 97.86

Cosface [25] 99.37 93.82 94.46 90.71 94.30 96.57 98.09
Cosface + L2-reg 99.12 94.32 94.64 91.03 94.46 96.85 98.24
Cosface + SEC 99.42 94.37 94.93 91.13 94.63 96.92 98.37
Arcface [26] 99.22 94.18 94.69 90.31 94.07 96.67 98.20
Arcface + L2-reg 99.32 93.93 94.77 90.68 94.34 96.83 98.32
Arcface + SEC 99.35 93.82 94.91 90.91 94.56 96.95 98.37

Table 5: Experimental results of con-
trastive self-supervised learning with
SimCLR [19]. Top 1/5 accuracy of
linear evaluation is reported.

Method Training CIFAR-10 CIFAR-100

Epoch Top 1 Top 5 Top 1 Top 5

NT-Xent [19]
100

84.76 99.36 58.43 85.26
NT-Xent + L2-reg 86.64 99.56 61.43 87.23
NT-Xent + SEC 86.87 99.64 61.66 87.33
NT-Xent [19]

200
89.05 99.69 65.73 89.64

NT-Xent + L2-reg 90.14 99.73 66.57 90.18
NT-Xent + SEC 90.35 99.77 66.25 90.12

consider three cosine-based softmax loss functions with and without SEC. The results are provided
in Table 4. As shown in Table 4, three cosine-based softmax loss functions perform better than the
original softmax by adopting angular margin for a better discriminative ability. We also observe that
SEC improves the performance of sphereface, cosface, and arcface in most cases. For example, on
MegaFace dataset with 106 distractors, the rank-1 accuracies of sphereface, cosface, and arcface
are boosted by 0.7%, 0.42%, and 0.6%, respectively. It illustrates that these cosine-based softmax
losses also benefit from SEC, helping learn a more discriminative embedding space. (3) Contrastive
self-supervised learning: we consider the latest SimCLR framework using NT-Xent loss with and
without SEC. The results are provided in Table 5. From the table, we observe that SimCLR benefits
from more training steps, while SEC also consistently enhances its performance on the two datasets
with two different settings of training epochs. For instance, on CIFAR-10 dataset, SEC improves
the top-1 linear evaluation accuracy of SimCLR by 2.11% and 1.3% when training for 100 and
200 epochs, respectively. It shows that SEC is also helpful for contrastive self-supervised learning
methods to learn more useful visual representations.

In the above tables, the results of L2-reg is also illustrated, for which the weight η is carefully tuned
to obtain the best performance. We observe that SEC consistently outperforms L2-reg on deep metric
learning, while SEC obtains slightly better results than L2-reg in most cases on face recognition and
contrastive self-supervised learning, indicating the superiority of SEC on various tasks.

5 Conclusion
In this paper, we investigate the problem of deep metric learning with spherical embedding constraint.
In particular, we first investigate the importance of the embedding norm distribution for deep metric
learning with angular distance, and then propose a spherical embedding constraint (SEC) to reduce
the variance of the embedding norm distribution. SEC adaptively pushes the embeddings to be on the
same hypersphere and achieves a more balanced direction update. Extensive experiments on deep
metric learning, face recognition, and contrastive self-supervised learning show that the SEC-based
angular space learning strategy helps improve the generalization performance of the state-of-the-art.
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Broader Impact

In this paper, we mainly investigate the effect of embedding norm to the direction update in the existing
angular loss functions and how to improve the angular distance optimization. Our experiments indicate
that the proposed SEC would be beneficial for applications related to discriminative representation
learning of images in an angular space, where experiments on face recognition are also conducted.
However, we note that although face recognition is quite controversial as a technique, there is no
reason to expect that the mild improvement brought by SEC to the face recognition performance
should make substantial difference to its societal application, nor is it expected to exacerbate its e.g.
racial unbalances. As for the existing society and ethical problems of face recognition, we also agree
that further study is still needed to make a substantial improvement before it is widely used in real
life.
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