
Supplementary Material for “Deep Metric Learning
with Spherical Embedding”

Dingyi Zhang1, Yingming Li1∗, Zhongfei Zhang2
1College of Information Science & Electronic Engineering, Zhejiang University, China

2Department of Computer Science, Binghamton University, USA
{dyzhang, yingming}@zju.edu.cn, zhongfei_mark@yahoo.com

A The proof of Proposition 4 and 5

A.1

When adopting the embedding normalization for angular distance calculation, we show that the
gradient of a pair-based loss function L to the embedding f is:

∂L

∂f
= (

∂f̂

∂f
)>
∂L

∂f̂
=

1

||f ||2
(I − f̂ f̂>)∂L

∂f̂
, (1)

where I − f̂ f̂> projects the gradient to the tangent hyperplane of f . The SGD with momentum
method would update the embedding by

vt+1 = βvt +
∂L

∂ft
(2)

ft+1 = ft − αvt+1. (3)
Proposition 4. When using SGD with momentum, the embedding direction is updated by

f̂t+1 = f̂t −
α

||ft||22
(I − f̂tf̂>t)[||ft||2βvt + (I − f̂tf̂>t)

∂L

∂f̂t
] +O(α2). (4)

Proof. Based on Equation 3, we have

||ft+1||22 = ||ft||22 − 2αf>t vt+1 + α2v>t+1vt+1,

and thus

||ft+1||2 =

√
||ft||22[1−

2α

||ft||2
f̂>t vt+1 +

α2

||ft||22
v>t+1vt+1] = ||ft||2 − αf̂>t vt+1 +O(α2).

From Equation 3, we also have

||ft+1||2f̂t+1 = ||ft||2f̂t − αvt+1,

Then we combine the above results with Equation 1 and 2 and we have

f̂t+1 =
||ft||2
||ft+1||2

f̂t −
α

||ft+1||2
vt+1

= (1 +
α

||ft||2
f̂>t vt+1)f̂t −

α

||ft||2
vt+1 +O(α2)

= f̂t −
α

||ft||2
(I − f̂tf̂>t)vt+1 +O(α2)

= f̂t −
α

||ft||2
(I − f̂tf̂>t)[βvt +

1

||ft||2
(I − f̂tf̂>t)

∂L

∂f̂t
] +O(α2)

= f̂t −
α

||ft||22
(I − f̂tf̂>t)[||ft||2βvt + (I − f̂tf̂>t)

∂L

∂f̂t
] +O(α2).

∗Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A.2

Adam would update the embedding by

vt+1 =β1vt + (1− β1)
∂L

∂ft
, gt+1 = β2gt + (1− β2)||

∂L

∂ft
||22 (5)

ft+1 = ft − α
vt+1/(1− βt

1)√
gt+1/(1− βt

2) + ε
. (6)

Proposition 5. With Adam, the embedding direction is updated by

f̂t+1 = f̂t −
α

||ft||2
(I − f̂tf̂>t)

√
1− βt

2[||ft||2β1vt + (1− β1)(I − f̂tf̂>t) ∂L

∂f̂t
]

(1− βt
1)
√
||ft||22β2gt + (1− β2)(∂L

∂f̂t
)>(I − f̂tf̂>t) ∂L

∂f̂t

+O(α2). (7)

Proof. Based on Equation 6, we have

||ft+1||22 = ||ft||22 − 2α

√
1− βt

2f
>
t vt+1

(1− βt
1)
√
gt+1

+ α2[

√
1− βt

2

(1− βt
1)
√
gt+1

]2v>t+1vt+1,

where we neglect ε for simplicity. Therefore,

||ft+1||2 =

√
||ft||22{1− 2α

√
1− βt

2f̂
>
t vt+1

||ft||2(1− βt
1)
√
gt+1

+
α2

||ft||22
[

√
1− βt

2

(1− βt
1)
√
gt+1

]2v>t+1vt+1}

= ||ft||2 − α
√

1− βt
2f̂
>
t vt+1

(1− βt
1)
√
gt+1

+O(α2).

From Equation 6 we also have

||ft+1||2f̂t+1 = ||ft||2f̂t − α
vt+1/(1− βt

1)√
gt+1/(1− βt

2)
.

Then combining the above results with Equation 1 and 5, we obtain

f̂t+1 =
||ft||2
||ft+1||2

f̂t −
αvt+1/(1− βt

1)

||ft+1||2
√
gt+1/(1− βt

2)

= [1 +
α
√

1− βt
2f̂
>
t vt+1

||ft||2(1− βt
1)
√
gt+1

]f̂t −
α
√

1− βt
2vt+1

||ft||2(1− βt
1)
√
gt+1

+O(α2)

= f̂t −
α

||ft||2
(I − f̂tf̂>t)

√
1− βt

2vt+1

(1− βt
1)
√
gt+1

+O(α2)

= f̂t −
α

||ft||2
(I − f̂tf̂>t)

√
1− βt

2[||ft||2β1vt + (1− β1)(I − f̂tf̂>t) ∂L

∂f̂t
]

(1− βt
1)
√
||ft||22β2gt + (1− β2)(∂L

∂f̂t
)>(I − f̂tf̂>t) ∂L

∂f̂t

+O(α2).

B More implementation details

B.1 Deep metric learning

During training, we follow [1] and adopt random resized cropping for data augmentation. Specifically,
each image is first resized so that the length of its shorter side is 256. Then a random crop is generated
with scale varying in [0.16, 1.0] and aspect ratio varying in [34 ,

4
3]. Finally, this crop is resized to 227

by 227 and randomly horizontally flipped. During testing, after the image is resized to have a shorter
side with length 256, it is only center cropped to 227 by 227. The parameters of batch normalization
layers are frozen during training. To construct a mini-batch, we first randomly sample C different
classes and than randomly sample K images from each class. For triplet loss, semihard triplet loss,
normalized N -pair loss, and multi-similarity loss, the values of K are 3, 3, 2, and 5, respectively.
On top of the final average pooling layer of the backbone network, we add a head to output 512-d
embeddings. This head is composed of a BN layer and a FC layer for triplet loss, semihard triplet loss,
and normalized N -pair loss. For multi-similarity loss, the head is only a FC layer when we do not
use SEC, and the head composes of a BN layer and a FC layer when using SEC. We experimentally
find that such head settings bring better results. Other training settings are listed in Table 1.

2

Table 1: Hyper-parameters for deep metric learning task. We use T, SHT, NNP, and MS to denote
triplet loss, semihard triplet loss, normalized N -pair loss, and multi-similarity loss, respectively.

Dataset Iters Loss LR Settings
(lr for head/lr for backbone/lr decay@iter)

CUB200-2011 8k
T, SHT 0.5e-5/2.5e-6/0.1@5k
NNP 1e-5/5e-6/0.1@5k
MS 5e-5/2.5e-5/0.1@3k, 6k

Cars196 8k
T, SHT 1e-5/1e-5/0.5@4k, 6k
NNP * 1e-5/1e-5/0.5@4k, 6k
MS 4e-5/4e-5/0.1@2k

SOP 12k T, SHT, NNP, MS 5e-4/1e-4/0.1@6k

In-Shop 12k T, SHT, NNP, MS 5e-4/1e-4/0.1@6k
* For NNT on Cars196 dataset, the lr settings of 2e-5/2e-5/0.5@4k, 6k would bring a better result.

Table 2: The settings of η for SEC and L2-reg in Table 3 of the original paper. We use T, SHT, NNP,
and MS to denote triplet loss, semihard triplet loss, normalized N -pair loss, and multi-similarity loss,
respectively.

Dataset
η for SEC/L2-reg

T SHT NNP MS

CUB 1.0 / 1e-4 0.5 / 1e-3 1.0 / 1e-2 0.5 / 5e-3
Cars 0.5 / 1e-4 0.5 / 1e-2 1.0 / 1e-2 1.0 / 1e-2
SOP 1.0 / 1e-4 1.0 / 5e-4 1.0 / 1e-3 0.5 / 5e-4

In-Shop 1.0 / 5e-5 1.0 / 5e-5 1.0 / 1e-3 0.25 / 1e-4

The hyper-parameters of compared losses are: (1) m = 1.0 for vanilla triplet loss, following [2]. (2)
m = 0.2 for semihard triplet loss, following [3]. (3) s = 25 for normalized N -pair loss, where we
test two settings: s = 25 and s = 64, and we find that the former is better. (4) ε = 0.1, λ = 0.5,
α = 2, and β = 40 for multi-similarity loss, following the original authors’ GitHub (which is a
little different from the original paper). When combined with different loss functions, we tune η in
{0.25, 0.5, 1.0} for SEC and in {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5} for L2-reg.
The detailed settings of them are listed in Table 2. The model is trained on a NVIDIA 2080Ti GPU.

B.2 Face recognition

We train the model for 16 epochs with the learning rate starting from 0.1 and divided by 10 at 10,
14 epochs. For the hyper-parameters of the three compared loss functions, they largely follow the
original papers, while the model does not converge on CASIA-WebFace with the value of m in
the original papers for sphereface (m = 4) and arcface (m = 0.5), we thus choose the slightly
smaller values. In Table 4 of the original paper, when combined with SEC or L2-reg, η is set to 0
during the first three epochs, linearly increasing at the 4th epoch, and unchanged for the following
epochs. When combined with different loss functions, we tune η in {0.5, 1.0, 5.0, 10.0} for SEC and
in {5e− 2, 1e− 2, 5e− 3, 1e− 3, 5e− 4} for L2-reg. The detailed settings of them are provided in
Table 6.

B.3 Contrastive self-supervised learning

The ResNet-50 backbone network and the 2-layer MLP head are trained with cosine decayed learning
rate starting from 0.5, where the learning rate is tuned in {0.5, 1.0, 1.5}. For linear evaluation, a
linear classifier is trained for 100 epochs using SGD with momentum 0.9 with batch size 256 and the
learning rate starts from 5 and is divided by 5 at 60, 75, 90 epochs, where the learning rate is tuned in
{1, 2, 5, 10}. When combined with SEC or L2-reg, we use a linearly increasing η during the whole
training stage, i.e.,

ηt = η ∗ t

num. of total iterations
, (8)

at the t-th iteration. In Table 5 of the original paper, we tune η in {0.01, 0.05, 0.1, 0.25, 0.5, 1.0}
for SEC and in {5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4} for L2-reg. The detailed settings of them
are provided in Table 7. We use global BN as in [4]. The data augmentation includes random flip,
random crop and resize, and color distortions.

3

Figure 1: Comparisons between SEC and L2-reg with the triplet loss on
Cars196 dataset. We show the R@1 on testing set, the average norm, and
the variance of norm in a mini-batch during training.

Table 3: The effect of
η when using L2-reg
with the triplet loss on
Cars196 dataset.

η
Cars196

NMI F1 R@1

baseline
(w.o. L2-reg) 56.49 23.72 60.84

1e-3 55.95 22.20 57.16
5e-4 56.20 23.16 61.35
1e-4 56.65 23.95 63.02
5e-5 56.65 24.32 61.48

C More explanations and illustrations

C.1 Discussion and comparison between SEC and L2-reg

In addition to SEC, here we also discuss another norm regularization method which is empirically
helpful for angular pair-based losses. This method is proposed in [5] to regularize the l2-norm of
embeddings to be small, which we refer as L2-reg, i.e.,

LL2-reg =
1

N

N∑
i=1

||fi||22. (9)

We note that L2-reg could be seen as a special case of SEC by setting µ = 0. During training, the
complete objective function is L = Lmetric + η ∗ LL2-reg. We study the effect of this method with the
triplet loss on Cars196 dataset as in Figure 1. Here η is carefully tuned to obtain the best performance
for L2-reg, which will be compared with the original SEC and a variant of SEC with fixed µ (we fix
µ to the initial average norm of the training set, 8.70).

We first notice in Figure 1 that, as expected, L2-reg would decrease the average norm, while with
the norm becoming small, it also has the side effect of reducing the norm variance, which is similar
to the function of SEC. Previous works have not stated that which factor has more impacts on the
performance, while here we argue that reducing the variance is more important than reducing the
norm, since in Figure 1, an improved result compared with L2-reg is obtained when we fix the average
norm and reduce the variance more strongly by using SEC with fixed µ. Therefore, we speculate that
the effectiveness of L2-reg also comes from the reduction of the variance. From Figure 1, we also
conclude that the way SEC adjusts the norm distribution is better than L2-reg, since it obtains clearly
favorable results, although both of them would alter the mean and variance of the norm. Besides,
SEC is more preferable in its convenience to determine η, to which the result is not very sensitive as
in Table 2 of the original paper compared to the situation of L2-reg as in Table 3 here.

C.2 An empirical illustration of more balanced direction update provided by SEC

In this part, we adopt the triplet loss trained on Cars196 dataset with and without SEC to show the
effect of SEC to perform more balanced direction update for embeddings. One characteristic of triplet
loss is its simple formulation of gradients, i.e., | ∂L∂Sij

| is always 0 or 1 no matter which pair (i, j) is

considered, and ∂Sij

∂f̂i
= 2(f̂i− f̂j). Therefore, from Proposition 5, we find that the direction update of

an embedding f would largely rely on α
||f ||2 . Due to this reason, we choose triplet loss and illustrate

the direction variation of each sample in the training set per 1000 iterations. The results are shown
in Figure 2, where we also calculate the variance of the direction variation distribution and provide
them in the legend of each sub-figure. We observe that when training with SEC, the distribution
of direction variation of different embeddings clearly becomes more compact than the distribution
without SEC, such as 1k → 2k, 2k → 3k, 3k → 4k, and 4k → 5k, while the two distributions are
similar in other situations. It indicates that different embeddings obtain more balanced direction
updates with the help of SEC, which explicitly constrains embeddings to lie on the surface of the
same hypersphere. Consequently, different embeddings would all attain adequate attention from the
model during training, which also benefits the generalization ability of the model.

4

Figure 2: An empirical illustration for explaining the effect of SEC to perform more balanced
direction update. We illustrate the distribution of direction variation of all embeddings in training
set per 1000 iterations. The variance of the direction variation distribution is also calculated and
provided in the legend of each sub-figure.

Figure 3: Visualization of six channels of the last feature maps which have the maximal average
activations. Here we use the multi-similarity loss as the baseline loss.

C.3 Visualization of feature maps and retrieval results

In Figure 3, we further visualize the the feature maps from the last convolutional layer learned by
multi-similarity loss without and with SEC. Here we only choose six channels with the maximal
average activation. We observe that in some of these channels, the baseline loss may focus on not
only the target object but also unrelated part or background, while with SEC, the model concentrates
more on the object itself. Therefore, SEC would also benefit the model by refining the feature maps
to better attend to the object region. Besides, we also illustrate some retrieval results in Figure 4. We
notice that no matter the top-1 retrieval result is correct or incorrect, SEC clearly finds images which

5

Figure 4: Top 3 retrieved images without and with SEC. Here we use the multi-similarity loss as the
baseline loss. Correct results are highlighted with green, while incorrect red.

Table 4: The effect of ρ when employing a triplet loss with SEC (EMA) on Cars196 dataset. The
initial average norm of all embeddings in the training set is 8.70.

ρ
Cars196 Final Norm

NMI F1 R@1 Mean Var.

baseline (w.o. SEC) 56.49 23.72 60.84 8.03 5.54

0.01 61.25 28.87 74.57 6.03 0.04
0.1 59.96 26.22 72.00 2.60 0.02
0.5 59.61 27.01 68.54 1.72 0.02
0.9 59.74 26.11 68.28 1.56 0.02

1.0* 59.17 25.51 67.89 1.58 0.02
* the original version of SEC

are more similar to the query images, in terms of appearance and even the pose of the birds and cars.
This observation implies that SEC would help learn a better structured embedding space with similar
images closer to each other by constraining embeddings to be on a hypersphere.

D Spherical embedding with exponential moving average (EMA) norm

D.1 Formulation

In this part, we further extend SEC by adopting the EMA method for updating µ. With the EMA
method, we aim to capture the variation of the global average norm during the training process.
Specifically, we update µ at the t-th iteration by:

µt = (1− ρ)µt−1 + ρ ∗ 1

N

N∑
i=1

||ft,i||2, (10)

where µ0 = 1
N

∑N
i=1 ||f0,i||2, N is the batch size and ρ is the momentum hyper-parameter in [0, 1].

It also helps maintain a smoothly changed µ and makes the training more stable when the average
norm across mini-batches differs a lot. We note that if ρ = 1, this formulation degenerates to the
original version of SEC. We show the influence of ρ in Table 4, where the final average norm is closer
to the initial one with a smaller ρ. From the table, we also observe consistent improvements compared
with the baseline when ρ is set to a proper range of values, and here the range seems to be [0, 1] for
the triplet loss, indicating the convenience of determining ρ. Besides, when employing this EMA
method to update µ, here we also notice a higher improvement than setting ρ = 1.0 (the original
SEC), which indicates that this new version of SEC may be a better choice in some circumstances. A

6

Table 5: Experimental results of deep metric learning. NMI, F1, and Recall@K are reported.
Method

CUB200-2011 Cars196

NMI F1 R@1 R@2 R@4 R@8 NMI F1 R@1 R@2 R@4 R@8

Triplet Loss 59.85 23.39 53.34 65.60 76.30 84.98 56.66 24.44 60.79 71.30 79.47 86.27
Triplet Loss + L2-reg (η=1e-4/1e-4) 60.11 24.03 54.81 66.21 76.87 84.91 56.65 23.95 63.02 72.97 80.79 86.85
Triplet Loss + SEC (η=1.0/0.5) 64.24 30.83 60.82 71.61 81.40 88.86 59.17 25.51 67.89 78.56 85.59 90.99
Triplet Loss + SEC (EMA, ρ=0.01, η=1.0/0.5) 64.81 32.14 60.72 72.45 82.33 89.18 61.25 28.87 74.57 83.96 89.79 93.78
Semihard Triplet [3] 69.66 40.30 65.31 76.45 84.71 90.99 67.64 38.31 80.17 87.95 92.49 95.67
Semihard Triplet + L2-reg (η=1e-3/1e-2) 70.50 41.39 65.60 76.81 84.89 90.82 69.24 40.24 82.60 89.44 93.54 96.19
Semihard Triplet + SEC (η=0.5/0.5) 71.62 42.05 67.35 78.73 86.63 91.90 72.67 44.67 85.19 91.53 95.28 97.29
Semihard Triplet + SEC (EMA, ρ=0.01, η=0.5/0.5) 72.00 43.68 67.51 77.90 86.44 91.98 72.38 44.31 84.73 91.18 95.07 97.27

Normalized N-pair Loss 69.58 40.23 61.36 74.36 83.81 89.94 68.07 37.83 78.59 87.22 92.88 95.94
Normalized N-pair Loss + L2-reg (η=1e-2/1e-2) 69.73 40.08 64.58 76.03 84.74 91.12 69.20 39.13 81.87 88.85 93.47 96.54
Normalized N-pair Loss + SEC (η=1.0/1.0) 72.24 43.21 66.00 77.23 86.01 91.83 70.61 42.12 82.29 89.60 94.26 97.07
Normalized N-pair Loss + SEC (EMA, ρ=0.01, η=1.0/1.0) 71.62 42.16 65.82 77.31 86.07 91.98 70.97 42.60 81.85 89.30 93.83 96.57

Multi-Similarity [1] 70.57 40.70 66.14 77.03 85.43 91.26 70.23 42.13 84.07 90.23 94.12 96.53
Multi-Similarity + L2-reg (η=5e-3/1e-2) 70.89 41.71 65.67 76.98 85.21 91.19 71.00 42.55 84.82 90.95 94.59 96.69
Multi-Similarity + SEC (η=0.5/1.0) 72.85 44.82 68.79 79.42 87.20 92.49 73.95 46.49 85.73 91.96 95.51 97.54
Multi-Similarity + SEC (EMA, ρ=0.01, η=0.5/1.0) 74.22 47.42 69.78 80.40 88.00 93.23 71.70 42.84 83.80 90.96 94.99 97.47

Method
SOP In-Shop

NMI F1 R@1 R@10 R@100 R@1000 R@1 R@10 R@20 R@30 R@40 R@50

Triplet Loss 88.67 29.61 62.69 80.39 91.89 97.86 82.12 95.18 96.83 97.54 97.95 98.26
Triplet Loss + L2-reg (η=1e-4/5e-5) 88.93 30.91 64.07 81.27 92.18 97.93 83.01 95.46 96.85 97.45 97.94 98.28
Triplet Loss + SEC (η=1.0/1.0) 89.68 34.29 68.86 83.76 92.93 98.00 85.29 96.29 97.48 97.99 98.34 98.57
Triplet Loss + SEC (EMA, ρ=0.01, η=1.0/1.0) 88.64 29.37 64.03 79.95 90.71 97.17 80.38 94.16 96.12 96.91 97.47 97.81

Semihard Triplet [3] 91.16 41.89 74.46 88.16 95.21 98.59 87.16 97.11 98.17 98.54 98.76 98.98
Semihard Triplet + L2-reg (η=5e-4/5e-5) 91.16 41.77 74.88 88.25 95.18 98.53 88.04 97.39 98.24 98.65 98.83 98.99
Semihard Triplet + SEC (η=1.0/1.0) 91.72 44.90 77.59 90.12 96.04 98.80 89.68 97.95 98.61 98.94 99.09 99.21
Semihard Triplet + SEC (EMA, ρ=0.01, η=1.0/1.0) 91.68 44.69 77.45 89.62 95.70 98.67 89.79 97.94 98.59 98.86 99.08 99.20

Normalized N-pair Loss 90.97 41.21 74.30 87.81 95.12 98.55 86.43 96.99 98.00 98.40 98.70 98.93
Normalized N-pair Loss + L2-reg (η=1e-3/1e-3) 91.12 41.73 75.11 88.42 95.15 98.53 86.54 96.98 98.06 98.52 98.73 98.85
Normalized N-pair Loss + SEC (η=1.0/1.0) 91.49 43.75 76.89 89.64 95.77 98.68 88.63 97.60 98.45 98.77 99.01 99.14
Normalized N-pair Loss + SEC (EMA, ρ=0.01, η=1.0/1.0) 91.55 43.84 76.68 89.46 95.68 98.70 89.06 97.65 98.46 98.82 98.97 99.06

Multi-Similarity [1] 91.42 43.33 76.29 89.38 95.58 98.58 88.11 97.55 98.34 98.76 98.94 99.09
Multi-Similarity + L2-reg (η=5e-4/1e-4) 91.65 44.51 77.34 89.61 95.67 98.65 88.51 97.59 98.50 98.84 99.03 99.12
Multi-Similarity + SEC (η=0.5/0.25) 91.89 46.04 78.67 90.77 96.15 98.76 89.87 97.94 98.80 99.06 99.24 99.35
Multi-Similarity + SEC (EMA, ρ=0.01, η=0.5/0.25) 91.35 42.85 76.84 89.43 95.54 98.55 89.39 98.11 98.76 99.06 99.19 99.31
* We use “/” to separate the hyper-parameter settings for two datasets.

Table 6: Experimental results of face recognition. Face veri-
fication accuracy is reported on LFW, AgeDB30, and CFPFP
while face identification accuracy is reported on MegaFace.

Method
Face Verification Size of MegaFace Distractors

LFW AgeDB30 CFPFP 106 105 104 103

Softmax 98.97 91.30 93.39 80.43 87.11 92.83 96.12

Sphereface [6] 99.20 93.45 94.24 87.72 92.48 95.64 97.68
Sphereface + L2-reg (η=5e-3) 99.28 93.42 94.30 88.38 92.86 95.93 97.87
Sphereface + SEC (η=5.0) 99.30 93.45 94.39 88.42 92.79 95.88 97.86
Sphereface + SEC (EMA, ρ=0.4, η=1.0) 99.33 94.02 94.93 88.74 92.91 95.93 97.87
Cosface [7] 99.37 93.82 94.46 90.71 94.30 96.57 98.09
Cosface + L2-reg (η=5e-3) 99.12 94.32 94.64 91.03 94.46 96.85 98.24
Cosface + SEC (η=5.0) 99.42 94.37 94.93 91.13 94.63 96.92 98.37
Cosface + SEC (EMA, ρ=0.4, η=1.0) 99.18 94.17 94.79 91.31 94.61 96.85 98.33

Arcface [8] 99.22 94.18 94.69 90.31 94.07 96.67 98.20
Arcface + L2-reg (η=1e-3) 99.32 93.93 94.77 90.68 94.34 96.83 98.32
Arcface + SEC (η=5.0) 99.35 93.82 94.91 90.91 94.56 96.95 98.37
Arcface + SEC (EMA, ρ=0.4, η=1.0) 99.27 93.90 94.74 91.02 94.74 97.02 98.46

Table 7: Experimental results of con-
trastive self-supervised learning with
SimCLR [4]. Top 1/5 accuracy of
linear evaluation is reported.

Method Training CIFAR-10 CIFAR-100

Epoch Top 1 Top 5 Top 1 Top 5

NT-Xent [4]

100

84.76 99.36 58.43 85.26
NT-Xent + L2-reg (η=5e-3/1e-3) 86.64 99.56 61.43 87.23
NT-Xent + SEC (η=0.25/0.01) 86.87 99.64 61.66 87.33
NT-Xent + SEC (EMA, ρ=0.2, η=0.5/0.05) 86.82 99.58 61.88 87.85
NT-Xent [4]

200

89.05 99.69 65.73 89.64
NT-Xent + L2-reg (η=5e-3/1e-3) 90.14 99.73 66.57 90.18
NT-Xent + SEC (η=0.25/0.01) 90.35 99.77 66.25 90.12
NT-Xent + SEC (EMA, ρ=0.2, η=1.0/0.05) 90.21 99.75 66.59 90.41

more comprehensive comparison between the original and this new version of SEC is shown below
in the next subsection.

From Table 4, we also notice that different ρ leads to slightly different improvements, where we
suspect that ρ would affect the magnitude of norms by µt and then further influence the performance.
This observation implies that the magnitude of embedding norms would also influence the model
optimization and the final result and thus ρ may need further adjustments to achieve a higher
improvement.

D.2 Quantitative results on three tasks

Here we evaluate the new version of SEC (EMA) on three tasks as in the original paper. The
implementation details are the same as in Appendix B, except that on face recognition, the value of η
at the t-th iteration is determined by

ηt = min(η,
500 ∗ t

num. of total iterations
). (11)

The results are shown in Table 5, 6, and 7, where we observe that SEC (EMA) further boosts the
performance of the original SEC under several settings. In Table 5 of deep metric learning task,

7

where ρ is not carefully tuned and simply set to 0.01, we observe that on CUB200-2011 dataset,
SEC (EMA) improves the NMI, F1, and R@1 of multi-similarity loss with SEC by 1.37%, 2.6%,
and 0.99%, respectively. On Cars196 dataset, SEC (EMA) also shows a remarkable improvements
on NMI, F1, and R@1 of triplet loss with SEC by 2.08%, 3.36%, and 6.68%, respectively. In
Table 6 of face recognition task, we observe that on MegaFace dataset with 106 distractors, the rank-1
accuracies of sphereface, cosface, and arcface, with SEC, are enhanced by 0.32%, 0.18%, and 0.11%,
respectively. In Table 7 of contrastive self-supervised learning task, on CIFAR-100 dataset, the top-1
linear evaluation accuracy of SimCLR with SEC is also improved by 0.22% and 0.34% when training
for 100 and 200 epochs, with the help of SEC (EMA). These observations indicate the effectiveness
of SEC (EMA) under some circumstances and it could be regarded as a more general version of SEC.

References
[1] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity

loss with general pair weighting for deep metric learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5022–5030, 2019.

[2] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4004–4012, 2016.

[3] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[5] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Advances
in neural information processing systems, pages 1857–1865, 2016.

[6] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 212–220, 2017.

[7] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 5265–5274, 2018.

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4690–4699, 2019.

8

