
We thank all reviewers for comments. We are glad to see our work commented as “promising”(R3), “effective”(R6),1

supported with “strong experimental results” and “intuitive justification”(R1). We address their concerns below.2

Response to R13

Q1. Writing We’ll rephrase remarks, e.g.“Examples give hints to local behavior of optimizers in deep learning”.4

Q2.a Assumptions We list assumptions (1)-(3) as below:5

–(1) assume gt is drawn from a stationary distribution, hence after bias correction, Evt = (Egt)2 + Vargt.6

–(2) low-noise assumption, (Egt)2 � Vargt, hence we have Egt/
√
Evt ≈ Egt/

√
(Egt)2 = sign(Egt).7

–(3) low-bias assumption, βt1 (β1 to the power of t) is small. mt as an estimator of Egt has bias βt1Egt, as in [1].8

Numerically, we need a small β (e.g 0.3) or large t. We also tried default β with large t, results similar to Fig.3(d).9

Q2.b Conclusion (“Parameter” refer to coordinates of gt) Under above assumptions, Adam is close to sign-descent,10

which hurts performance , similar results explained in [3] (e.g. Lemma 2&3). We will rephrase as suggested.11

Q2.c Analysis setting, line 107 By “run a long time”, we refer to a large t, hence βt1 is small, and assumption (a.3) is12

satisfied. mt, vt are calculated strictly following Adam and updated with iterates, NOT post-hoc analysis of SGD.13

Q3.a Notations Our notations strictly follow the convention in [1,2]. We will add missing notations to Sec2.1 and14

2.3. We use (β1t, β2t) to denote the momentum for mt and vt respectively at step t, and typically set as constant (e.g.15

β1t = β1, β2t = β2,∀t ∈ {1, 2, ...T}, where T is the total number of steps). Note that β1t 6= βt1, βt1 is β1 to the power16

t. As in Algo. 1 in Appendix A, we use ŝt and m̂t to denote the bias-corrected version of st and mt respectively.17

Q3.b Optimization problem Strictly following the convention in [1,2], for deterministic problems, the problem to18

be optimized is minθ∈Ff(θ); for online optimization, the problem is minθ∈F
∑T
t=1 ft(θ), where ft can be interpreted19

as “loss of the model with the chosen parameters in t-th step” [2].20

Q3.c Projection step A detailed version of our method with projection step is in Appendix A. Our proof already21

considers projection, see Lemma 0.1 and Formula.(1) in Appendix B.22

Q3.d Corollary 2.1.1 (1) Similar to Theorem 4.1 in [1] and corollary 1 in [2], where the term
∑d
i=1 v

1/2
T,i exists, we23

have
∑d
i=1 s

1/2
T,i . Without further assumption,

∑d
i=1 s

1/2
T,i < dG∞ since ||gt −mt||∞ < G∞ as assumed in Theorem24

2.1, and dG∞ is constant. (2) The literature [1,2,5] exerts a stronger assumption that
∑d
i=1 T

1/2v
1/2
T,i � dG∞T

1/2.25

Our assumption could be similar or weaker, because Est = Vargt ≤ Eg2t = Evt, then get better regret than O(T 1/2).26

Response to additional comments27

(a) No, see response to Q2 of R6. (b) Yes. It’s related to "cycle" in theory, and "mode collapse" in practice. (e)28

see response to R3 below. (f) We refer to all three optimizers. Fig2 is illustrative; rigorously, oscillation amplitude29

in y-axis decreases, but gradient is independent of the distance to axis for L1 loss, hence our analysis holds for30

both fixed-step-size and decreasing-step-size. (g) We absorb ε into st in theoretical analysis, in implementation31

we add ε to match assumption st > c > 0 in Theorem 2.1 (c ≥ ε > 0). AdaBelief is robust to ε, as Fig.4 in Appendix.32

Response to R3 We only claim AdaBelief is related to Hessian but not necessarily a good approximation, mainly33

because: (1) in Newton method, the update is H−1∇f , using diag(H)−1 to approximate H−1 may cause problems.34

It might be better to directly approximate H−1∇f rather than approximating H as diag(H). (2) omitting the35

effect of EMA, gt − gt−1 ≈ H∆θt, where ∆θt is the update of parameter; in other words, gt − gt−1 approximates36

the product ofH with a direction ∆θt, rather than approximating diag(H). (3) Adam-type methods use 1/
√
vt, which is37

approximation to H−1/2 rather than H−1. We’ll work on a tighter bound from Hessian perspective in future work.38

Response to R639

Q1. Simplicity Our method is "simple but effective" (R6). To our knowledge, it’s novel and uninvestigated before.40

Q2. Comparison with Adam We address R6’s concern that the success of AdaBelief stems largely from an41

effectively larger stepsize. We argue that this is not the case. (1) As in Fig.5 in Appendix, for various learning rates,42

AdaBelief consistently outperforms the best choice of Adam, including when Adam uses a much larger lr than43

AdaBelief. Validating the performance improvement of Adabelief does not solely come from larger stepsize. (2) when44

sign(gt) 6= sign(mt) (e.g. due to noise in gt) hence (gt −mt)
2 > g2t , AdaBelief can take a smaller step than Adam.45

Q3. Name of our method (1) We use the word “belief” in a colloquial sense to refer to the amount by which the46

observed gradient gt deviates from its exponential moving average mt(viewed as approximated expected gradient).47

Updates in AdaBelief are “per-gradient” and element-wise, similar to Adam[1] and AdaBayes[6] where they all depend48

on history gradients implicitly due to the momentum and iterative update. (2) R6 argues intuition for AdaBelief holds49

for Adam, which is not true. AdaBelief resembles Adam when (Egt)2 � Vargt. When (Egt)2 � Vargt Adam is close50

to “sign-descent” and affects accuracy, explained in Sec.2.2 of our paper and [3]; while AdaBelief overcomes this.51

Q4. Prior work (1) The denominator in [4] is (vt −m2
t )

1/2, could result in numerical errors (e.g. vt −m2
t < 0),52

as the authors mentioned. AdaBelief uses [EMA((gt −mt)
2)]1/2 as denominator, guaranteed to be valid operation,53

and trains LSTM successfully without numerical issues. Compared with [4], we provide extensive theoretical and54

experimental validations. (2) [6] is completely different, “AdaBelief has nothing to do with AdaBayes” (by R6).55

Q5. In Fig.3, AdaBelief uses same hyperparameters as Adam thus have similar trajectories, but reaches optima faster.56
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