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Abstract

A central mechanism in machine learning is to identify, store, and recognize
patterns. How to learn, access, and retrieve such patterns is crucial in Hopfield
networks and the more recent transformer architectures. We show that the atten-
tion mechanism of transformer architectures is actually the update rule of modern
Hopfield networks that can store exponentially many patterns. We exploit this
high storage capacity of modern Hopfield networks to solve a challenging multiple
instance learning (MIL) problem in computational biology: immune repertoire
classification. In immune repertoire classification, a vast number of immune re-
ceptors are used to predict the immune status of an individual. This constitutes a
MIL problem with an unprecedentedly massive number of instances, two orders
of magnitude larger than currently considered problems, and with an extremely
low witness rate. Accurate and interpretable machine learning methods solving
this problem could pave the way towards new vaccines and therapies, which is
currently a very relevant research topic intensified by the COVID-19 crisis. In this
work, we present our novel method DeepRC that integrates transformer-like atten-
tion, or equivalently modern Hopfield networks, into deep learning architectures
for massive MIL such as immune repertoire classification. We demonstrate that
DeepRC outperforms all other methods with respect to predictive performance on
large-scale experiments including simulated and real-world virus infection data
and enables the extraction of sequence motifs that are connected to a given disease
class. Source code and datasets: https.//github.com/ml-jku/DeepRC

1 Introduction

Transformer architectures (Vaswani et al.,[2017) and their attention mechanisms are currently used in
many applications, such as natural language processing (NLP), imaging, and also in multiple instance
learning (MIL) problems (Lee et al., 2019). In MIL, a set or bag of objects is labelled rather than
objects themselves as in standard supervised learning tasks (Dietterich et al.,|1997). Examples for MIL
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Figure 1: Schematic representation of the DeepRC approach. a) An immune repertoire X is
represented by large bags of immune receptor sequences (colored). A neural network (NN) h serves
to recognize patterns in each of the sequences s; and maps them to sequence-representations z;.
A pooling function f is used to obtain a repertoire-representation z for the input object. Finally,
an output network o predicts the class label . b) DeepRC uses stacked 1D convolutions for a
parameterized function h due to their computational efficiency. Potentially, millions of sequences
have to be processed for each input object. In principle, also recurrent neural networks (RNNs), such
as LSTMs (Hochreiter et al.,[2007), or transformer networks (Vaswani et al.,[2017) may be used but are
currently computationally too costly. ¢) Hopfield-pooling is used to obtain a repertoire-representation
z for each input object. For this, DeepRC uses weighted averages of sequence-representations, where
the weights are determined by an update rule of modern Hopfield networks that allows to retrieve
exponentially many patterns.

problems are medical images, in which each sub-region of the image represents an instance, video
classification, in which each frame is an instance, text classification, where words or sentences are
instances of a text, point sets, where each point is an instance of a 3D object, and remote sensing data,
where each sensor is an instance (Carbonneau et al., [2018}; |Uriot, 2019). Attention-based MIL has
been successfully used for image data, for example to identify tiny objects in large images (Ilse et al.}
2018; Pawlowski et al., [2019; Tomita et al., | 2019; [Kimeswenger et al.,[2019) and transformer-like
attention mechanisms for sets of points and images (Lee et al., 2019).

However, in MIL problems considered by machine learning methods up to now, the number of
instances per bag is in the range of hundreds or few thousands (Carbonneau et al., 2018 Lee et al.,
2019) (see also Suppl. Tab. A3). At the same time the witness rate (WR), the rate of discriminating
instances per bag, is already considered low at 1% — 5%. We will tackle the problem of immune
repertoire classification in which large bags of immune receptor sequences have to be classified. This
problem is characterized by hundreds of thousands of instances per bag without instance-level labels
and with extremely low witness rates down to 0.01%. We will show that the attention mechanism
of transformers is the update rule of modern Hopfield networks (Krotov & Hopfield, 2016, 2018}
Demircigil et al., 2017)) that are generalized to continuous states in contrast to classical Hopfield
networks (Hopfield, [1982)) (see Suppl. B). These novel continuous state Hopfield networks allow
to store and retrieve exponentially (in the dimension of the association space) many patterns (see
Section [2). Thus, modern Hopfield networks with their update rule allow us to approach MIL
problems with large numbers of instances per bag, such as immune repertoire classification.

Immune repertoire classification, i.e. predicting the immune status based on the immune repertoire
sequences, is essentially a text-book example for a multiple instance learning problem (Dietterich
et al.l (1997} [Maron & Lozano-Pérez, |1998; Wang et al., [2018). Briefly, the immune repertoire
of an individual consists of an immensely large bag of immune receptors, represented as amino
acid sequences. Usually, the presence of only a small fraction of particular receptors determines
the immune status with respect to a particular disease (Christophersen et al.,2014; Emerson et al.|
2017). Therefore, classification of immune repertoires bears a high difficulty since each immune
repertoire can contain millions of sequences as instances with only a few indicating the class. Further
properties of the data that complicate the problem are: (a) The overlap of immune repertoires of



different individuals is low (in most cases, maximally low single-digit percentage values) (Greiff]
et al.,|2017; Elhanati et al.| 2018), (b) multiple different sequences can bind to the same pathogen
(Wucherpfennig et al., [2007), and (c) only subsequences within the sequences determine whether
binding to a pathogen is possible (Dash et al.| 2017 |Glanville et al., 2017; |Akbar et al.,2019; |Springer|
et al.}2020; [Fischer et al.,[2019). In summary, immune repertoire classification can be formulated as
multiple instance learning with an extremely low witness rate and large numbers of instances, which
represents a challenge for currently available machine learning methods. Furthermore, the methods
should ideally be interpretable, since the extraction of class-associated sequence motifs is desired to
gain crucial biological insights.

The acquisition of human immune repertoires has been enabled by immunosequencing technology
(Georgiou et al., 2014 Brown et al., 2019) which allows to obtain the immune receptor sequences
and immune repertoires of individuals. Each individual is uniquely characterized by their immune
repertoire, which is acquired and changed during life. This repertoire may be influenced by all diseases
that an individual is exposed to during their lives and hence contains highly valuable information
about those diseases and the individual’s immune status. Immune receptors enable the immune
system to specifically recognize disease agents or pathogens. Each immune encounter is recorded
as an immune event into immune memory by preserving and amplifying immune receptors in the
repertoire used to fight a given disease. This is, for example, the working principle of vaccination.
Each human has about 10"—10® unique immune receptors with low overlap across individuals and
sampled from a potential diversity of > 10'* receptors (Mora & Walczak, 2019). The ability to
sequence and analyze human immune receptors at large scale has led to fundamental and mechanistic
insights into the adaptive immune system and has also opened the opportunity for the development of
novel diagnostics and therapy approaches (Georgiou et al., 2014} Brown et al., 2019).

Immunosequencing data have been analyzed with computational methods for a variety of different
tasks (Greiff et al., 2015;Shugay et al.,2015;Miho et al.,[2018;|Yaari & Kleinstein, 2015; Wardemann
& Busse,, [2017). A large part of the available machine learning methods for immune receptor data
has been focusing on the individual immune receptors in a repertoire, with the aim to, for example,
predict the antigen or antigen portion (epitope) to which these sequences bind or to predict sharing of
receptors across individuals (Gielis et al., 2019} |Springer et al., [2020; Jurtz et al., 2018}; |Moris et al.,
2019; [Fischer et al.,|2019; |Greiff et al.,|2017; |Sidhom et al., 2019; Elhanati et al., 2018). Recently,
Jurtz et al.| (2018)) used 1D convolutional neural networks (CNNs) to predict antigen binding of T-cell
receptor (TCR) sequences (specifically, binding of TCR sequences to peptide-MHC complexes) and
demonstrated that motifs can be extracted from these models. Similarly, Konishi et al.|(2019)) use
CNNss, gradient boosting, and other machine learning techniques on B-cell receptor (BCR) sequences
to distinguish tumor tissue from normal tissue. However, the methods presented so far predict a
particular class, the epitope, based on a single input sequence.

Immune repertoire classification has been considered as a MIL problem in the following publications:
A Deep Learning framework called DeepTCR (Sidhom et al.l 2019) implements several Deep
Learning approaches for immunosequencing data. The computational framework, inter alia, allows for
attention-based MIL repertoire classifiers and implements a basic form of attention-based averaging.
Ostmeyer et al.| (2019) already suggested a MIL method for immune repertoire classification. This
method considers 4-mers, fixed sub-sequences of length 4, as instances of an input object and trained
a logistic regression model with these 4-mers as input. The predictions of the logistic regression
model for each 4-mer were max-pooled to obtain one prediction per input object. This approach is
characterized by (a) the rigidity of the k-mer features as compared to convolutional kernels (Alipanahi
et al.| 2015; Zhou & Troyanskaya, |2015; Zeng et al.,[2016)), (b) the max-pooling operation, which
constrains the network to learn from a single, top-ranked k-mer for each iteration over the input
object, and (c) the pooling of prediction scores rather than representations (Wang et al.| 2018). Our
experiments also support that these choices in the design of the method can lead to constraints on the
predictive performance (see Table|[T).

Our proposed method, DeepRC, also uses a MIL approach but considers sequences rather than
k-mers as instances within an input object and a transformer-like attention mechanism. DeepRC sets
out to avoid the above-mentioned constraints of current methods by (a) applying transformer-like
attention-pooling instead of max-pooling and learning a classifier on the repertoire- rather than on the
sequence-representation, (b) pooling learned representations rather than predictions, and (c) using less
rigid feature extractors, such as 1D convolutions or LSTMs. In this work, we contribute the following:
We demonstrate that continuous generalizations of binary modern Hopfield-networks (Krotov &



Hopfield, 2016, 2018 Demircigil et al.l |2017) have an update rule that is known as the attention
mechanisms in the transformer. We show that these modern Hopfield networks have exponential
storage capacity, which allows them to extract patterns among a large set of instances (Section [2)).
Based on this result, we propose DeepRC, a deep MIL method based on modern Hopfield networks
for large bags of complex sequences, as they occur in immune repertoire classification (Section 3)).
We evaluate the predictive performance of DeepRC and other machine learning approaches for the
classification of immune repertoires in a large comparative study (Section ).

2 Exponential storage capacity of continuous state modern Hopfield
networks with transformer attention as update rule

In this section, we show that modern Hopfield networks have exponential storage capacity, which will
later allow us to approach massive multiple instance learning problems. We assume stored patterns as
fixed-size vectors x1, ...,z € R? that are stacked as columns to the matrix X = (z1,...,xy)
and a query or state pattern & that represents the current state. The largest norm of a stored pattern is
M = max; ||z;||. The separation A; of a pattern x; is defined as its minimal dot product difference
to any of the other patterns: A; = min; j; (a,'ZT:cl - a:leJ) A pattern is well-separated from the

data if A; > BLN + % log (2(N —1)NEGM 2). We consider a modern Hopfield network with current

state £ and the energy function E = —37 ! log (Zf;l exp(ﬂw?{)) + B og N + 2€7¢ + 1 M2
For energy E and state &, the update rule

€ = f(&:X.0) = X p = X softmax(5X 7€) W

is proven to converge globally to stationary points of the energy E, which are local minima or saddle
points (see Suppl. Theorem B2). Surprisingly, the update rule Eq. (1)) is also the formula of the
well-known transformer attention mechanism.

To see this more clearly, we simultaneously update several queries E = (£, ..., &x ), which alters
Eq.(T) to E"*V = X softmax(3X T E). Furthermore, the state patterns &; and the stored patterns
a; are linear mappings of vectors y; into the space R%. For matrix notation, we set x; = WLy,
& = WgyZ and multiply the result of our update rule with Wy,. Using Y = (y1,...,yn)7, we
define the matrices X7 = K = YWy, Q = ET = YWgh,and V = YW Wy = XTWy,
where Wy € Rv*de Wy € Rév>de Wy, € RUXde K € RNXde Q € RVN*de |V ¢ RVX 4o
and the patterns are now mapped to the Hopfield space with dimension d = dj. We set 3 = 1/+/dp,
where 3 corresponds to the reciprocal of the temperature of the softmax function, and change
softmax to a row vector. The update rule Eq. (T) multiplied by Wy, and performed for all queries
simultaneously becomes in row vector notation:

att(Q, K, V;B) = softmax (8Q K') V = softmax((l/%d?) QKT) V, (@

which is the formula of the transformer attention mechanism.

If the patterns x; are well separated, the iterate Eq. (T)) converges to a fixed point close to a pattern
to which the initial £ is similar. If the patterns are not well separated the iterate Eq.(T) converges
to a fixed point close to the arithmetic mean of the patterns. If some patterns are similar to each
other but well separated from all other vectors, then a metastable state between the similar patterns
exists. Iterates that start near a metastable state converge to this metastable state. For details see
Suppl. Sect. B2. Typically, the update converges after one update step (see Suppl. Theorem B8) and
has an exponentially small retrieval error (see Suppl. Theorem B9).

Our main concern for application to immune repertoire classification is the number of patterns that
can be stored and retrieved by the modern Hopfield network, i.e. the attention mechanism. This
storage capacity of an attention mechanism is critical for massive MIL problems. We first define
what we mean by storing and retrieving patterns from the modern Hopfield network.

Definition 1 (Pattern Stored and Retrieved) We assume that around every pattern x; a sphere S;
is given. We say x; is stored if there is a single fixed point x} € S; to which all points § € S,
converge, and S; N'S; = 0 for i # j. We say x; is retrieved if the iteration Eq. (1)) converged to the
single fixed point x} € S;.



For randomly chosen patterns, the number of patterns that can be stored is exponential in the
dimension d of the space of the patterns (z; € R%).

Theorem 1 We assume a failure probability 0 < p < 1 and randomly chosen patterns on the sphere
2
with radius M = K\/d —1. We definea = 727 (1 + In(2 8 K2p (d—1))), b := 2K5 B,

m, where Wy is the upper branch of the Lambert W function and ensure
4

and ¢ =

c > (l) " Then with probability 1 — p, the number of random patterns that can be stored is

=\
N > Jpc'T . 3)

Examples are ¢ > 3.1546 for = 1, K = 3, d = 20 and p = 0.001 (a + In(b) > 1.27) and
¢c>1378forB=1K =1,d =75, and p = 0.001 (a + In(b) < —0.94).

See Suppl. Theorem B5 for a proof. We have established that a modern Hopfield network or a
transformer attention mechanism can store and retrieve exponentially many patterns. This allows us
to approach MIL problems with massive numbers of instances from which we have to retrieve a few
with an attention mechanism.

3 Deep Repertoire Classification

Problem setting and notation. We consider a MIL problem, in which an input object X is a bag of
N instances X = {s1,..., sy }. The instances do not have dependencies nor orderings between them
and N can be different for every object. We assume that each instance s; is associated with a label
y; € {0, 1}, assuming a binary classification task, to which we do not have access. We only have
access to a label Y = max; y; for an input object or bag. Note that this poses a credit assignment
problem, since the sequences that are responsible for the label Y have to be identified and that the
relation between instance-label and bag-label can be more complex (Foulds & Frank, 2010).

A model § = g(X) should be (a) invariant to permutations of the instances and (b) able to cope with
the fact that NV varies across input objects (Ilse et al.|2018]), which is a problem also posed by point
sets (Qi et al.,|2017). Two principled approaches exist. The first approach is to learn an instance-level
scoring function h : S — [0, 1], which is then pooled across instances with a pooling function f, for
example by average-pooling or max-pooling (see below). The second approach is to construct an
instance representation z; of each instance by h : S ++ R% and then encode the bag, or the input
object, by pooling these instance representations (Wang et al., 2018} |Yan et al.,[2018) via a function
f. An output function o : R% s [0, 1] subsequently classifies the bag. The second approach, the
pooling of representations rather than scoring functions, is currently best performing (Wang et al.,
2018).

In the problem at hand, the input object X is the immune repertoire of an individual that consists
of a large set of immune receptor sequences (T-cell receptors or antibodies). Immune receptors are
primarily represented as sequences s; from a space s; € S. These sequences act as the instances
in the MIL problem. Although immune repertoire classification can readily be formulated as MIL
problem, it is yet unclear how well machine learning methods solve the above-described problem
with a large number of instances N > 10, 000 and with instances s; being complex sequences. Next
we describe currently used pooling functions for MIL problems.

Pooling functions for MIL problems. Different pooling functions equip a model g with the prop-
erty to be invariant to permutations of instances and with the ability to process different num-
bers of instances. Typically, a neural network hg with parameters 6 is trained to obtain a func-
tion that maps each instance onto a representation: z; = hg(s;) and then a pooling function
z = f({z1,...,2n}) supplies a representation z of the input object X = {s1,...,sy}. The

following pooling functions are typically used: average-pooling: z = % Zf\]:l z;, max-pooling:

d ) ) . )
z =" en(max;1<i<cn{zim}), where e,, is the standard basis vector for dimension 1 and

attention-pooling: z = Ziil a;z; where a; are non-negative (a; > 0), sum to one (Zﬁv:l a; =1),
and are determined by an attention mechanism. These pooling functions are invariant to permutations
of {1,..., N} and are differentiable. Therefore, they are suited as building blocks for Deep Learning
architectures. We employ attention-pooling in our DeepRC model as detailed in the following.



Modern Hopfield networks viewed as transformer-like attention mechanisms. The modern
Hopfield networks from Section [2| have a storage capacity that is exponential in the dimension of
the vector space and converge after just one update (see Suppl. B). Additionally, the update rule
of modern Hopfield networks is known as key-value attention mechanism, which has been highly
successful through the transformer (Vaswani et al.,[2017) and BERT (Devlin et al., 2019) models in
natural language processing. Therefore, using modern Hopfield networks with the key-value-attention
mechanism as update rule is the natural choice for our task. In particular, modern Hopfield networks
are theoretically justified for storing and retrieving the large number of vectors (sequence patterns)
that appear in the immune repertoire classification task.

Instead of using the terminology of modern Hopfield networks, we explain our DeepRC architecture
in terms of key-value-attention (the update rule of the modern Hopfield network), since it is well
known in the deep learning community. The attention mechanism assumes a space of dimension
dy, in which keys and queries are compared. A set of NV key vectors are combined to the matrix K.
A set of d,; query vectors are combined to the matrix . Similarities between queries and keys are
computed by inner products, therefore queries can search for similar keys that are stored. Another
set of N value vectors are combined to the matrix V. The output of the attention mechanism is
a weighted average of the value vectors for each query q. The i-th vector v; is weighted by the
similarity between the i-th key k; and the query q. The similarity is given by the softmax of the inner
products of the query g with the keys k;. All queries are calculated in parallel via matrix operations.
Consequently, the attention function att(Q, K, V'; ) maps queries Q, keys K, and values V' to
d,-dimensional outputs: att(Q, K,V;3) = softmax(SQK?T)V (see also Eq. (@)). While this
attention mechanism has originally been developed for sequence tasks (Vaswani et al.l 2017), it can
be readily transferred to sets (Lee et al.,[2019; |Ye et al., 2018)). This type of attention mechanism will
be employed in DeepRC.

The DeepRC method. We propose a novel method Deep Repertoire Classification (DeepRC) for
immune repertoire classification with attention-based deep massive multiple instance learning and
compare it against other machine learning approaches. For DeepRC, we consider immune repertoires
as input objects, which are represented as bags of instances. In a bag, each instance is an immune
receptor sequence and each bag can contain a large number of sequences. Note that we will use z; to
denote the sequence-representation of the i-th sequence and z to denote the repertoire-representation.
At the core, DeepRC consists of a transformer-like attention mechanism that extracts the most
important information from each repertoire. We first give an overview of the attention mechanism
and then provide details on each of the sub-networks k1, ha, and o of DeepRC. (Overview: Fig.
Architecture: Fig. [2} Implementation details: Suppl. Sect. A3; DeepRC variations: Suppl. Sect. A10.)

Attention mechanism in DeepRC. This mechanism is based on the three matrices K (the keys),
Q (the queries), and V' (the values) together with a parameter 3. Values. DeepRC uses a 1D
convolutional network h; (LeCun et al., 1998} Hu et al., 2014} [Kelley et al., [2016) that supplies
a sequence-representation z; = hi(s;), which acts as the values V. = Z = (z1,...,2zy) in the
attention mechanism (see Figure[2). Keys. A second neural network ho, which shares its first layers
with hy, is used to obtain keys K € RV *? for each sequence in the repertoire. This network uses 2
self-normalizing layers (Klambauer et al., 2017) with 32 units per layer (see Figure[2)). Query. We
use a fixed dy-dimensional query vector £ which is learned via backpropagation. For more attention
heads, each head has a fixed query vector. We note that applying a standard transformer, in which
each instance would create a query, is not feasible due to the large number of instances per repertoire.
With the quantities introduced above, the attention mechanism (Eq. (2)) of DeepRC is implemented

as follows:
1 ETKT >
——) = softmax Z, 4)
Vg ) ( Vg

where Z € RV*4v are the sequence—representations stacked row-wise, K are the keys, and z is the
repertoire-representation and at the same time a weighted mean of sequence—representations z;. The
attention mechanism can readily be extended to multiple queries, however, computational demand
could constrain this depending on the application and dataset. Theorem [T|demonstrates that this
mechanism is able to retrieve a single pattern out of several hundreds of thousands.

z=att(¢?, K, Z;

Attention-pooling and interpretability. Each input object, i.e. repertoire, consists of a large number
N of sequences, which are reduced to a single fixed-size feature vector of length d,, representing
the whole input object by an attention-pooling function. To this end, a transformer-like attention



mechanism adapted to sets is realized in DeepRC which supplies a; — the importance of the sequence
s;. This importance value is an interpretable quantity, which is highly desired for the immunological
problem at hand. Thus, DeepRC allows for two forms of interpretability methods. (a) A trained
DeepRC model can compute attention weights a;, which directly indicate the importance of a
sequence. (b) DeepRC furthermore allows for the usage of contribution analysis methods, such
as Integrated Gradients (IG) (Sundararajan et al [2017) or Layer-Wise Relevance Propagation
(Montavon et al., [2018} |Arras et al.| 2019). See Suppl. Sect. A9 for details.

Classification layer and network parameters. The repertoire-representation z is then used as input
for a fully-connected output network § = o(z) that predicts the immune status, where we found it
sufficient to train single-layer networks. In the simplest case, DeepRC predicts a single target, the
class label y, e.g. the immune status of an immune repertoire, using one output value. However, since
DeepRC is an end-to-end deep learning model, multiple targets may be predicted simultaneously in
classification or regression settings or a mix of both. This allows for the introduction of additional
information into the system via auxiliary targets such as age, sex, or other metadata.

Network parameters, training, and inference. DeepRC is trained using standard gradient descent
methods to minimize a cross-entropy loss. The network parameters are 81, 82, 8, for the sub-networks
h1, he, and o, respectively, and additionally £. In more detail, we train DeepRC using Adam (Kingma
& Bal |2014)) with a batch size of 4 and dropout of input sequences (see Suppl. Sect. A3).

Implementation. To reduce computational time, the
attention network first computes the attention weights
a; for each sequence s; in a repertoire. Subsequently,
the top 10% of sequences with the highest a; per

output
fully connected

repertoire are used to compute the weight updates o ngf::;:f(sf)l

and prediction. Furthermore, computation of z; is -

performed in 16-bit and other computations in 32-bit SuUm over sequences

precision to ensure numerical stability in the softmax. shape=(dy)

See Suppl. Sect. A3 for details. )
sequence-attention

4 Experimental Results elementwise multiplication

sﬂape=(N,dl)

In this section, we report and analyze the predictive _7

power of DeepRC and the compared methods on [softmax]

several immunosequencing datasets. The ROC-AUC

is used as the main metric for the predictive power. queries - keysT

n_features=1

Methods compared. We compared state-of-the-art values shape=(N.,1)

methods for immune repertoire classification, (Ost{  Z=(z1,....2n) keys+

meyer et al., [2019) (“Log. MIL (KMER)”, “Log. attention SNN

MIL (TCRB)”) and a burden test (Emerson et al., p 1 n_layers=2 h>

2017), as well as the methods Logistic Regression r;ﬁf::éir(eszgf

(“Log. Regr.”), k-nearest neighbour (“KNN”), and -

Support Vector Machines (“SVM”) with kernels de- - —

signed for sets, such as the Jaccard kernel (“J”) maximum over sequence positions

and the MinMax (“MM”) kernel (Ralaivola et al., shape=(N.dv)

2005)). For the simulated data, we also added base- TD-CNN

line methods that search for the implanted motif ei- n_layers=1

ther in binary or continuous fashion (“Known motif n_kernels=d,

b.”, “Known motif ¢.”) assuming that this motif was shape=(N,d,,dy)

known (for details, see Suppl. Sect. AS5). X={s1,...sn}A

Datasets. We aimed at constructing immune reper- sc: :;::?,\? ;lt,'zo 3n)

toire classification scenarios with varying degree of

difficulties and realism in order to compare and an- [amino acid features) [ position features
alyze the suggested machine learning methods. To shape=(N,d},20) shape=(N,d|,3)
this end, we either use simulated or experimentally-

observed immune receptor sequences and implant Figure 2: DeepRC architecture as used in

signals, specifically, sequence motifs or sets thereof Table [T with sub-networks h1, ho, and o. d;
(Akbar et al., 2019; [Weber et al.l 2020), at different  ;, jicares the sequence length. T

frequencies into sequences of repertoires of the posi-




tive class. These frequencies represent the witness rates and range from 0.01% to 10%. Overall, we
compiled four categories of datasets: (a) simulated immunosequencing data with implanted signals,
(b) LSTM-generated immunosequencing data with implanted signals, (c) real-world immunosequenc-
ing data with implanted signals, and (d) real-world immunosequencing data with known immune
status, the CMV dataset (Emerson et al., 2017). The average number of instances per bag, which is
the number of sequences per immune repertoire, is 22300,000 except for category (c), in which we
consider the scenario of low-coverage data with only 10,000 sequences per repertoire. The number of
repertoires per dataset ranges from 785 to 5,000. In total, all datasets comprise /30 billion sequences
or instances. This, to our knowledge, represents the largest comparative study on immune repertoire
classification (see Suppl. Sect. A4).

Hyperparameter selection. We used a nested 5-fold cross validation (CV) procedure to estimate the
performance of each of the methods. All methods could adjust their most important hyperparameters
on a validation set in the inner loop of the procedure. See Suppl. Sect. A6 for details.

Real-world Real-world data with implanted signals LSTM-generated data Simulated
CMV s.m. 1% sm. 0.1% mm. 1% mm. 0.1% 10% 1% 0.5% 0.1% 0.05% avg.
DeepRC 0.831 + 0.002 1.000 + 0.000 0.984- 0.008 0.999+ 0.001 0.938+0.009 1.000= 0.000 1.000-+ 0.000 1.000=+ 0.000 1.000-£ 0.000 0.998=+ 0.002 0.865-+ 0.211
SVM (MM) 0.825 +0.022 1.000 + 0.000 0.578+ 0.020 1.000-£ 0.000 0.531+0.019 1.000=£ 0.000 1.000+ 0.000 0.999-+ 0.001 0.999+ 0.002 0.985+ 0.014 0.832+ 0.203
SVM (J) 0.546 +0.021 0.988 + 0.003 0.527+ 0.016 1.000+ 0.000 0.574+0.019 0.981+ 0.041 1.000+ 0.000 1.000+ 0.000 0.904= 0.036 0.768+ 0.068 0.543+ 0.076
KNN (MM) 0.679 +0.076 0.744 + 0.237 0.486+ 0.031 0.674+ 0.182 0.500+0.022 0.699+ 0.272 0.717+ 0.263 0.732+ 0.263 0.536- 0.156 0.516+ 0.153 0.629+ 0.126
KNN () 0.534 +0.039 0.652 + 0.155 0.484- 0.025 0.695+ 0.200 0.508+0.025 0.698+ 0.285 0.6064 0.237 0.5234 0.164 0.550+ 0.186 0.539+ 0.194 0.501- 0.007
Log. Regr. 0.613 + 0.044 1.000 + 0.000 0.585=+ 0.045 1.000=+ 0.000 0.512+0.015 1.000= 0.000 1.000=+ 0.000 1.000=+ 0.000 0.697- 0.164 0.466+ 0.103 0.832-+ 0.204

Log. MIL (KMER) 0.582 = 0.065 0.541 + 0.074 0.506+ 0.034 0.994- 0.004 0.620-0.153 0.997+ 0.004 0.718+ 0.112 0.637+ 0.144 0.5714 0.146 0.528+0.129 0.662+ 0.216
Log. MIL (TCRB) 0.515 =+ 0.073 0.503 + 0.032 0.5014 0.016 0.992+ 0.003 0.782+0.030 0.5414 0.086 0.566+ 0.162 0.468+ 0.086 0.505+ 0.067 0.500+ 0.121 0.501+ 0.015

Burden test 0.699 + 0.041 1.000 £ 0.000 0.640+ 0.048 1.000+ 0.000 0.891+0.016 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000 0.999+ 0.003 0.792:+ 0.280 0.543-+ 0.070
Motif binary 1.000 + 0.000 0.7044 0.028 0.994+ 0.003 0.620+:0.038 1.000+ 0.000 1.000 0.000 1.000+£ 0.000 0.999+ 0.003 0.999+ 0.003 0.899+ 0.158
Motif nonbinary 0.920 + 0.004 0.5624 0.028 0.647+ 0.030 0.515+0.031 1.000+ 0.000 1.000+ 0.000 0.989-+ 0.011 0.7224 0.085 0.626+ 0.094 0.727+ 0.189

Table 1: Results in terms of AUC of the competing methods on all datasets. The reported errors
are standard deviations across 5 cross-validation (CV) folds (except for the column “Simulated”).
Real-world CMV: Average performance over 5 CV folds on the CMV dataset (Emerson et al., | 2017)).
Real-world data with implanted signals: Average performance over 5 CV folds for each of the
four datasets. A signal was implanted with a frequency (=witness rate) of 1% or 0.1%. Either a
single motif (“s.m.”) or multiple motifs (“m.m.”) were implanted. LSTM-generated data: Average
performance over 5 CV folds for each of the 5 datasets. In each dataset, a signal was implanted with
a frequency of 10%, 1%, 0.5%, 0.1%, or 0.05%, respectively. Simulated: We report the arithmetic
mean over 21 simulated datasets with implanted signals and varying difficulties (see Suppl. Tab. A10
for details). The error reported is the standard deviation of the AUC values across the 21 datasets.
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Results. In each of the four categories, “real-world data”, “real-world data with implanted signals”,
“LSTM-generated data”, and “simulated immunosequencing data”, DeepRC outperforms all compet-
ing methods with respect to average AUC. Across categories, the runner-up methods are either the
SVM for MIL problems with MinMax kernel (SVM (MM)) or the burden test (see Table . The
advantage of DeepRC over the other methods such as the SVM (MM) becomes apparent on datasets
with more complex or noisy motifs (see Suppl. Sect. A7). DeepRC significantly outperforms the
second best method, the SVM (MM), at a p-value of 4 - 10~ 12! on the 4 categories (McNemar'’s test).

Results on simulated immunosequencing data. In this setting the complexity of the implanted signal is
in focus and varies throughout 21 simulated datasets (Suppl. Sect. A4). Some datasets are challenging
for the methods because the implanted motif is hidden by noise and others because only a small
fraction of sequences carries the motif, resulting in a low witness rate. These difficulties become
evident by the method called “known motif binary”, which assumes the implanted motif is known.
The performance of this method ranges from a perfect AUC of 1.000 in several datasets to an AUC of
0.532 in dataset *17° (see Suppl. Sect. A7). DeepRC outperforms all other methods with an average
AUC of 0.86540.211. The runner-up methods are the SVM (MM) and the Logistic Regression, which
experience performance losses at higher motif complexities, with an average AUC of 0.832 + 0.203
and 0.832 £ 0.204, respectively (see Suppl. Sect. A7). The predictive performance of all methods
suffers if the signal occurs only in an extremely small fraction of sequences. DeepRC significantly
outperforms the second best method, the SVM (MM), at a p-value of 3 - 10766 (McNemar’s test).
Results on LSTM-generated data. On the LSTM-generated data, in which we implanted noisy motifs
with frequencies of 10%, 1%, 0.5%, 0.1%, and 0.05%, DeepRC yields almost perfect predictive
performance with an average AUC of 1.000 + 0.001 (see Suppl. Sect. A7 and A8). The second



best method, SVM with MinMax kernel, has a similar predictive performance to DeepRC on all
datasets but the other competing methods have a lower predictive performance on datasets with low
frequency of the signal (0.05%). Results on real-world data with implanted motifs. In this dataset
category, we used real immunosequences and implanted single or multiple noisy motifs. Again,
DeepRC outperforms all other methods with an average AUC of 0.980 £ 0.029, with the second
best method being the burden test with an average AUC of 0.883 4 0.170. Notably, all methods
except for DeepRC have difficulties with noisy motifs at a frequency of 0.1% (see Suppl. Tab. A12).
DeepRC significantly outperforms the second best method, the SVM (MM), at a p-value of 10222
(McNemar'’s test). Results on real-world data. On the real-world dataset, in which the immune
status of persons affected by the cytomegalovirus has to be predicted, the competing methods yield
predictive AUCs between 0.515 and 0.825 (see Table[I)). We note that this dataset is not the exact
dataset that was used in [Emerson et al.| (2017)). It differs in pre-processing and also comprises a
different set of samples and a smaller training set due to the nested 5-fold cross-validation procedure,
which leads to a more challenging dataset. The best performing method is DeepRC with an AUC of
0.831 £ 0.002, followed by the SVM (MM) (AUC 0.825 =£ 0.022) and the burden test with an AUC
of 0.699 4 0.041. The top-ranked sequences by DeepRC significantly correspond to those detected
by Emerson et al.| (2017), which we tested by a Mann-Whitney U-test with the null hypothesis
that the attention values of the sequences detected by [Emerson et al.|(2017) would be equal to the
attention values of the remaining sequences (p-value of 1.3 - 10~°%). The sequence attention values
are displayed in Suppl. Tab. A15.

Conclusion. We have demonstrated how modern Hopfield networks and attention mechanisms enable
successful classification of the immune status of immune repertoires. For this task, methods have
to identify the discriminating sequences amongst a large set of sequences in an immune repertoire.
Specifically, even motifs within those sequences have to be identified. We have shown that DeepRC, a
modern Hopfield network and an attention mechanism with a fixed query, can solve this difficult task
despite the massive number of instances. DeepRC furthermore outperforms the compared methods
across a range of different experimental conditions.

Availability. All datasets and code will be fully released at https://github.com/ml-jku/
DeepRC. The CMV dataset is publicly available at https://clients.adaptivebiotech.com/
pub/Emerson-2017-NatGen!

Broader Impact

Impact on machine learning and related scientific fields. We envision that with (a) the increasing
availability of large immunosequencing datasets (Kovaltsuk et al.l 2018} |Corrie et al.| 2018}, [Christley
et al.,|2018; Zhang et al.,[2020; Rosenfeld et al., [2018}; |Shugay et al.,|2018)), (b) further fine-tuning
of ground-truth benchmarking immune receptor datasets (Weber et al., [2020; |Olson et al.l 2019
Marcou et al., 2018)), (c) accounting for repertoire-impacting factors such as age, sex, ethnicity,
and environment (potential confounding factors), and (d) increased GPU memory and increased
computing power, it will be possible to identify discriminating immune receptor motifs for many
diseases, potentially even for the current SARS-CoV-2 (COVID-19) pandemic (Raybould et al.,|[2020;
Minervina et al., 2020; |Galson et al., [2020). Such results would greatly benefit ongoing research
on antibody and TCR-driven immunotherapies and immunodiagnostics as well as rational vaccine
design (Brown et al., 2019).

In the course of this development, the experimental verification and interpretation of machine-learning-
identified motifs could receive additional focus, as for most of the sequences within a repertoire
the corresponding antigen is unknown. Nevertheless, recent technological breakthroughs in high-
throughput antigen-labeled immunosequencing are beginning to generate large-scale antigen-labeled
single-immune-receptor-sequence data, thus resolving this longstanding problem (Setliff et al., 2019).

From a machine learning perspective, the successful application of DeepRC on immune repertoires
with their large numbers of instances per bag might encourage the application of modern Hopfield
networks and attention mechanisms on new, previously unsolved or unconsidered, datasets and
problems.

Impact on society. If the approach proves itself successful, it could lead to faster testing of individuals
for their immune status w.r.t. a range of diseases based on blood samples. This might motivate
changes in the pipeline of diagnostics and tracking of diseases, e.g. automated testing of the immune
status in regular intervals. It would furthermore make the collection and screening of blood samples
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for larger databases more attractive. In consequence, the improved testing of immune statuses
might identify individuals that do not have a working immune response towards certain diseases
to government or insurance companies, which could then push for targeted immunisation of the
individual. Similarly to compulsory vaccination, such testing for the immune status could be made
compulsory by governments, possibly violating privacy or personal self-determination in exchange
for increased over-all health of a population.

Ultimately, if the approach proves itself successful, the insights gained from the screening of indi-
viduals that have successfully developed resistances against specific diseases could lead to faster
targeted immunisation, once a certain number of individuals with resistances can be found. This might
strongly decrease the harm done by e.g. pandemics and lead to a change in the societal perception of
such diseases.

Consequences of failures of the method. As common with methods in machine learning, potential
danger lies in the possibility that users rely too much on our new approach and use it without reflecting
on the outcomes. However, the full pipeline in which our method would be used includes wet lab tests
after its application to verify and investigate the results, gain insights, and possibly derive treatments.
Failures of the proposed method would lead to unsuccessful wet lab validation and negative wet lab
tests. Since the proposed algorithm does not directly suggest treatment or therapy, human beings are
not directly at risk of being treated with a harmful therapy. Substantial wet lab and in-vitro testing
and would indicate wrong decisions by the system.

Leveraging of biases in the data and potential discrimination. As for almost all machine learning
methods, confounding factors, such as age or sex, could be used for classification. This, might lead to
biases in predictions or uneven predictive performance across subgroups. As a result, failures in the
wet lab would occur (see paragraph above). Moreover, insights into the relevance of the confounding
factors could be gained, leading to possible therapies or counter-measures concerning said factors.

Furthermore, the amount of data available with respect to relevant confounding factors could lead to
better or worse performance of our method. E.g. a dataset consisting mostly of data from individuals
within a specific age group might yield better performance for that age group, possibly resulting in
better or exclusive treatment methods for that specific group. Here, again, the application of DeepRC
would be followed by in-vitro testing and development of a treatment, where all target groups for the
treatment have to be considered accordingly.
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