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Abstract

We propose the first general and practical framework to design certifiable algo-
rithms for robust geometric perception in the presence of a large amount of outliers.
We investigate the use of a truncated least squares (TLS) cost function, which
is known to be robust to outliers, but leads to hard, nonconvex, and nonsmooth
optimization problems. Our first contribution is to show that –for a broad class of
geometric perception problems– TLS estimation can be reformulated as an opti-
mization over the ring of polynomials and Lasserre’s hierarchy of convex moment
relaxations is empirically tight at the minimum relaxation order (i.e., certifiably ob-
tains the global minimum of the nonconvex TLS problem). Our second contribution
is to exploit the structural sparsity of the objective and constraint polynomials and
leverage basis reduction to significantly reduce the size of the semidefinite program
(SDP) resulting from the moment relaxation, without compromising its tightness.
Our third contribution is to develop scalable dual optimality certifiers from the
lens of sums-of-squares (SOS) relaxation, that can compute the suboptimality gap
and possibly certify global optimality of any candidate solution (e.g., returned by
fast heuristics such as RANSAC or graduated non-convexity). Our dual certifiers
leverage Douglas-Rachford Splitting to solve a convex feasibility SDP. Numerical
experiments across different perception problems, including single rotation aver-
aging, shape alignment, 3D point cloud and mesh registration, and high-integrity
satellite pose estimation, demonstrate the tightness of our relaxations, the correct-
ness of the certification, and the scalability of the proposed dual certifiers to large
problems, beyond the reach of current SDP solvers.1

1 Introduction
Geometric perception, estimating unknown geometric models (e.g., rotations, poses, 3D structure)
from visual measurements (e.g., images and point clouds), is a fundamental problem in computer
vision, robotics, and graphics. It finds extensive applications to object detection and localization [95,
98], motion estimation and 3D reconstruction [30, 104], simultaneous localization and mapping [23,
84], shape analysis [71, 78], virtual and augmented reality [58], and medical imaging [8].

A common formulation for geometric perception resorts to optimization to perform estimation:

min
x∈X

∑N
i=1 ρ (r (x,yi)) , (1)

where yi ∈ Y, i = 1, . . . , N, are the visual measurements, x ∈ X ⊆ Rn is the to-be-estimated
geometric model, r : X × Y → R+ is the residual function that quantifies the disagreement between
each measurement yi and the geometric model x, and ρ : R+ → R+ is the cost function that
determines how residuals are penalized. When the distribution of the measurement noise is known,
maximum likelihood estimation provides a systematic way to design ρ; for instance, assuming

1Code available at https://github.com/MIT-SPARK/CertifiablyRobustPerception.
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Figure 1: A general and practical framework for certifiably robust geometric perception with outliers.

Gaussian noise leads to the popular least squares cost function ρ(r) = r2 [51, 81, 45]. However, in
practice, a large amount of measurements, called outliers, depart from the assumed noise distribution
(e.g., due to sensor failure or incorrect data association). Therefore, a robust cost function, such as
the `1-norm [91], Huber [52], Geman-McClure [99], and truncated least squares [96], is necessary to
prevent the outliers from corrupting the estimate. Both the constraints –defining the domain X– and
the objective function in (1) are typically nonconvex in geometric perception problems.

Solving geometric perception with optimality guarantees is of paramount importance for safety-
critical and high-integrity applications such as autonomous driving and space robotics. Indeed,
suboptimal solutions of (1) typically correspond to poor or outlier-contaminated estimates [99].
However, obtaining globally optimal solutions, particularly in the presence of outliers, remains a
challenging task. Related work is divided into (i) fast heuristics, e.g., RANSAC [37] and graduated
non-convexity (GNC) [99], that are efficient but brittle against high outlier rates and offer no optimality
guarantees, and (ii) global solvers, e.g., Branch and Bound [54, 100], that guarantee optimality but
run in worst-case exponential time. Recently, certifiable algorithms [9, 98, 19, 25] are rising as a
new paradigm for solving geometric perception with both a posteriori optimality guarantees and
polynomial-time complexity. A popular framework for constructing a certifiable algorithm requires
(i) a tight convex relaxation of problem (1); (ii) a fast heuristics that computes a candidate solution to
problem (1) with high probability of success; and (iii) a fast duality-based certifier that verifies if the
candidate solution returned by the heuristics is globally optimal for the relaxation.2 However, although
a growing body of tight convex relaxations have been discovered for various instances of geometric
perception without outliers [57, 20, 21, 84, 36, 106, 97, 82, 71, 27, 4, 39, 3, 42, 48, 94], only a few
(problem-specific) tight relaxations exist for outlier-robust geometric perception [95, 96, 91, 62, 24].

Contributions. We contribute the first general and practical framework for designing certifiable
algorithms for robust geometric perception with outliers (Fig. 1). Our first contribution is to show
that common geometric perception problems with the truncated least squares (TLS) cost function can
be reformulated as an optimization over the ring of polynomials, and Lasserre’s hierarchy of moment
relaxations [64, 65] is tight at the minimum relaxation order, despite the strong non-convexity and
non-smoothness of the problem. Our second contribution is to propose a basis reduction technique,
that exploits the structural sparsity of the polynomials and significantly reduces the size of the
semidefinite programs (SDP) resulting from moment relaxation, while surprisingly maintaining
tightness of the relaxation. These two contributions lead to the first set of certifiably robust solvers
for a broad class of geometric perception problems. While scaling better than the standard moment
relaxation, these solvers still rely on existing SDP solvers, whose runtime restricts their use to
small-scale problems (e.g., N = 20). Therefore, our third contribution is to study the dual sums-of-
squares (SOS) relaxation and design fast dual optimality certifiers that scale to realistic problem sizes
(e.g., N = 100). Our certifiers leverage Douglas–Rachford Splitting (DRS), initialized by solving an
SOS program with correlative sparsity [89, 90], to compute a suboptimality gap for any candidate
solution, and possibly certify global optimality when the suboptimality is zero. Dual certifiers enhance
existing heuristics (e.g., RANSAC and GNC) with a fast certification that asserts the quality of their
estimates and rejects failure cases, thus enhancing trustworthiness in safety-critical applications. We
demonstrate our tight relaxations and fast certifiers on several perception problems including single
rotation averaging [44, 66], image-based pose estimation (also called shape alignment) [99], point
cloud registration [95], mesh registration [20], and in a satellite pose estimation application [28].

Notation. Let R[x] be the ring of real-valued multivariate polynomials in {xi}ni=1. Using standard
notation [65], we denote every f ∈ R[x] as f =

∑
α∈F c(α)xα, where F ⊆ Zn+ is a finite set of

nonnegative integer exponents, c(α) are real coefficients, and xα .
= xα1

1 xα2
2 · · ·xαnn are standard

monomials. The degree of a monomial xα is deg (xα)
.
=
∑n
i=1 αi, and the degree of a polynomial

f is deg (f) = max{deg (xα) : α ∈ F}. We use (x)d (resp. [x]d) to denote the set of monomials

2Global optimality of the relaxation implies global optimality of problem (1) when the relaxation is tight.
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with degree d (resp. with degree up to d). We use mn(d)
.
=
(
n+d
d

)
to denote the dimension of [x]d.

Similarly, we use [x]F
.
= {xα : α ∈ F} to denote the set of monomials with exponents in F , and

we use m(F) to denote its dimension. We use Sn to denote the set of n× n symmetric matrices, and
Sn+ for the set of symmetric positive semidefinite (PSD) matrices. We also writeA � 0 to indicate
A ∈ Sn+. For A ∈ Sn we use svec (A) to denote its symmetric vectorization [87]. A polynomial
q ∈ R[x] is a sums-of-squares (SOS) polynomial if and only if q can be written as q = [x]

T
F Q [x]F

for some monomial basis [x]F and PSD matrixQ � 0, in which case q ≥ 0,∀x ∈ Rn.

2 Related Work
Outlier-free Geometric Perception algorithms can be divided into minimal solvers and non-minimal
solvers. Minimal solvers assume noiseless measurements (i.e., r(x,yi) = 0,∀ i in (1)) and use
the minimum number of measurements necessary to estimate x, which leads to solving a system
of polynomial equations [79, 60, 40, 76]. Non-minimal solvers account for measurement noise and
estimate x via nonlinear least squares (NLS), i.e., ρ(r) = r2 in (1). While in rare cases NLS can
be solved in closed form [69, 70, 51, 7] or by solving the polynomial equations arising from the
first-order optimality conditions [93, 59, 108], in general they lead to nonconvex problems and are
attacked using local solvers [61, 2] or exponential-time methods (e.g., Branch and Bound [77, 46]).

Certifiable algorithms for outlier-free perception have recently emerged as an approach to compute
globally optimal NLS solutions in polynomial time. These algorithms relax the NLS minimization into
a convex optimization, using Shor’s semidefinite relaxation for quadratically constrained quadratic
programs [43, 68] or Lasserre’s hierarchy of moment relaxations for polynomial optimizations [65].
By solving the SDP resulting from the convex relaxations, certifiable algorithms compute global
solutions to NLS problems and provide a certificate of optimality, which usually depends on the rank of
the SDP solution or the duality gap. Empirically tight convex relaxations have been discovered in pose
graph optimization [25, 84], rotation averaging [36, 38], triangulation [4], 3D registration [20, 71, 27],
absolute pose estimation [3], relative pose estimation [21, 106], hand-eye calibration [48] and 3D
shape reconstruction from 2D landmarks [97]. More recently, theoretical analysis of when and why
the relaxations are tight is also emerging [4, 36, 84, 31, 105, 27, 35, 53]. Tight relaxations also enable
optimality certification (i.e., checking if a given solution is optimal), which –in outlier-free perception–
can be sometimes performed in closed form [25, 36, 41, 19, 22, 83, 32, 53]. Despite being certifiably
optimal, these solvers assume all measurements are inliers (i.e., have small noise), which rarely
occurs in practice, and hence give poor estimates even in the presence of a single outlier. In stark
contrast, this paper develops certifiable algorithms in the presence of large amounts of outliers.

Robust Geometric Perception algorithms can be divided into fast heuristics and globally optimal
solvers. Two general frameworks for designing fast heuristics are RANSAC [37] and graduated
non-convexity (GNC) [99, 14, 5]. RANSAC robustifies minimal solvers and acts as a fast heuristics to
solve consensus maximization [29, 88], while GNC robustifies non-minimal solvers and acts as a fast
heuristics to solve M-estimation (i.e., using a robust cost function ρ in (1)) [17]. Local optimization
is also a popular and fast heuristics [26, 47, 85, 18, 1, 34] for the case where an initial guess is
available. On the other hand, globally optimal solvers are typically designed using Branch and
Bound [12, 80, 54, 56, 101], or boost robustness via a preliminary outlier-pruning scheme [95, 80].

Certifiably robust algorithms relax problem (1) with a robust cost into a tight convex optimization.
While certain robust costs, such as the `1-norm [91] and Huber [24], are already convex, they
have low breakdown points (i.e., they can be compromised by a single outlier) [103, 72]. A few
problem-specific certifiably robust algorithms have been proposed to deal with high-breakdown-point
formulations, such as the TLS cost [96, 95, 16, 62]. Even optimality certification becomes harder
and problem-specific in the presence of outliers, due to the lack of a closed-form characterization of
the dual variables [98]. In this paper, we introduce a general framework to design certifiably robust
algorithms and optimality certifiers for a broad class of geometric perception problems with TLS cost.

3 Robust Geometric Perception as Polynomial Optimization
In this paper we develop certifiable algorithms to solve (1) for the case when the cost ρ is a truncated
least squares (TLS) cost:

f? = min
x∈X

N∑
i=1

min

{
r2(x,yi)

β2
i

, c̄2
}
, (TLS)
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where min{·, ·} denotes the minimum between two scalars, βi is a known constant that can be used
to model the inlier standard deviation (potentially different for each measurement i), and c̄ is the
maximum admissible residual for a measurement to be considered an inlier. Intuitively, problem (TLS)
implements a nonlinear least squares where measurements with large residuals (i.e., outliers) do
not influence the estimate (i.e., lead to a constant cost of c̄2). Problem (TLS) is known to be robust
to large amounts of outliers [102, 72]. However, its global minimum f? is hard to compute due to
the non-convexity and non-smoothness of the cost (which adds to the typical non-convexity of the
domain X ). In the following, we briefly review a few instantiations of robust geometric perception.

Example 1 (Single Rotation Averaging [44]) Given N measurements of an unknown 3D rotation:
Ri, i = 1, . . . , N , single rotation averaging seeks to find the best average rotation R. In this case,
x = R ∈ SO(3), yi = Ri, and the residual function can be chosen as r(x,yi) = ‖R−Ri‖F (the
chordal distance between two rotations [44]), where ‖·‖F denotes the Frobenius norm.

Example 2 (Shape Alignment [99]) Given a set of 3D points Bi ∈ R3 and a set of 2D pixels
bi ∈ R2 (i = 1, . . . , N ), with putative correspondences bi ↔ Bi, shape alignment seeks to find the
best scale s ∈ [0, s̄] (where s̄ is a given upper bound for the scale) and 3D rotation R ∈ SO(3) of
the point set, such that the 3D points project onto the corresponding pixels. In this case, x = (R, s),
yi = (Bi, bi) and the residual function is the reprojection error under the weak perspective camera
model: r(x,yi) = ‖bi − sΠRBi‖, where Π = [1, 0, 0; 0, 1, 0] ∈ R2×3.

Example 3 (Point Cloud Registration [95]) Given two sets of 3D points ai, bi ∈ R3, i = 1, . . . , N ,
with putative correspondences ai ↔ bi, point cloud registration seeks the best 3D rotation R ∈
SO(3) and translation t ∈ R3 to align them.3 In this case, x = (R, t), yi = (ai, bi) and the residual
function is the Euclidean distance between registered pairs of points: r(x,yi) = ‖bi −Rai − t‖.

Example 4 (Mesh Registration [20]) Consider a 3D mesh {ai,ui}Ni=1 and a 3D point cloud with
estimated normals {bi,vi}Ni=1, where ai ∈ R3 is an arbitrary point on a face of the mesh, and ui is
the unit normal of the same face, while bi ∈ R3 is a 3D point and vi is the estimated unit normal at
bi. Given putative correspondences (ai,ui)↔ (bi,vi), mesh registration seeks the best 3D rotation
R ∈ SO(3) and translation t ∈ R3 to align the mesh with the point cloud.3 In this case, x = (R, t),
yi = (ai,ui, bi,vi), and the residual function is the weighted sum of the point-to-plane distance
and normal-to-normal distance: r2(x,yi) = ‖(Rui)T(bi −Rai − t)‖2+wi‖vi −Rui‖2, where
wi > 0 is the relative weight between normal-to-normal distance and point-to-plane distance.

The following proposition states that all the four examples above lead to (TLS) problems that can be
cast as polynomial optimization problems (POPs).

Proposition 5 (Geometric Perception as POP) Robust geometric perception (TLS), with residual
functions as in Examples 1-4, is equivalent to the following polynomial optimization (POP):

f? = min
p∈Rñ

f(p) (2)

s.t. hj(p) = 0, j = 1, . . . , lh,

1 ≥ gk(p) ≥ 0, k = 1, . . . , lg,

with ñ .
= n + N, and p .

= [xT,θT]T ∈ Rñ, where x ∈ X contains the to-be-estimated geometric
model, and the vector of binary variables θ ∈ {±1}N is such that θi = +1 (resp. θi = −1) when
the i-th measurement yi is estimated to be an inlier (resp. outlier). In this POP, f is a polynomial in
p with deg (f) ≤ 3, while hj , gk are quadratic (degree-2) polynomials in p that are used to define
the domains X and {±1}N . The polynomials f, hj , gk possess the following structural properties:

(i) (objective function sparsity) f can be written as a sum of N polynomials fi, i = 1, . . . , N ,
and each fi is a polynomial in x and θi of degree lower or equal to 3, i.e., f =

∑N
i=1 fi, fi ∈

R[x, θi], deg (fi) ≤ 3;

(ii) (constraints sparsity) let h .
= {hj}lhj=1 and g = {gk}

lg
k=1. Then, g ⊂ R[x] are polynomials

in x (i.e., do not depend on θ). Moreover, h can be partitioned into N + 1 disjoint subsets:
h = hθ ∪ hx, with hθ = ∪Ni=1h

θi , where hθi ⊂ R[θi] are polynomials in θi (i.e., do not
depend on x and θj ,∀j 6= i), hx ⊂ R[x] are polynomials in x (i.e., do not depend on θ);

3For mathematical convenience, we assume the translation is bounded by a known value T , i.e., ‖t‖≤ T .
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(iii) (Archimedeanness) the feasible set P of the POP (2) is Archimedean.4

The Supplementary Material provides a proof of Proposition 5 and the expressions of f, hj , gk for
Examples 1-4. Proposition 5 is based on three insights. First, each inner minimization min{a, b}
(a, b ∈ R) can be written as min

θ∈{±1}
1+θ
2 a+ 1−θ

2 b, which gives rise to the binary variables and leads to
the objective sparsity in (i). Second, the constraint sets of x and each θi are mutually independent, and
can be described by quadratic equality and inequality constraints, leading to the constraints sparsity
in (ii). Third, the unknown variables, includingR ∈ SO(3), s ∈ [0, s̄], ‖t‖≤ T , and θi ∈ {±1}, live
in compact domains described by polynomials, leading to the Archimedeanness property (iii).

4 The Primal View: Tight Moment Relaxation
In this section, we develop dense (Section 4.1) and sparse (Section 4.2) convex moment relaxations to
the POP (2). The dense relaxation is a standard application of Lasserre’s hierarchy [64, 65], while the
sparse relaxation is based on a basis reduction that leverages the structural properties in Proposition 5.

4.1 Lasserre’s Hierarchy

The following theorem describes Lasserre’s hierarchy of dense moment relaxations for the POP (2).

Theorem 6 (Dense Moment Relaxation [65]) The dense moment relaxation at order κ (≥ 2) for
the POP (2) is the following SDP:

p?κ = min
z2κ∈Rmñ(2κ)

∑
α∈F c(α)zα (3)

s.t. z0 = 1,Mκ(z2κ) � 0,

Mκ−1(hjz2κ−2) = 0, j = 1, . . . , lh,

Mκ−1(gkz2κ−2) � 0, k = 1, . . . , lg.

where z2κ = {zα} ∈ Rmñ(2κ) is the vector of moments up to degree 2κ, c(α) are the real coefficients
of the objective function f(p) corresponding to monomials pα in (2), Mκ(z2κ) ∈ Smñ(κ) is the
moment matrix, andMκ−1(hjz2κ−2),Mκ−1(gkz2κ−2) ∈ Smñ(κ−1) are the localizing matrices.5
Let z?2κ be the optimal solution of (3), then the following holds true:

(i) (lower bound) p?κ is a lower bound for f?, i.e., p?κ ≤ f?,∀κ ≥ 2;

(ii) (finite convergence) p?κ1
≤ p?κ2

for any κ1 ≤ κ2, and p?κ = f? at some finite κ;

(iii) (optimality certificate) if rank (Mκ(z?2κ)) = 1, then z?κ = [p?]κ, where p? is the unique
global minimizer of the POP (2), and the relaxation is said to be tight;

(iv) (rounding and duality gap) if rank (Mκ(z?2κ)) > 1, let p̂ be a rounded estimate computed
from a rank-1 approximation ofMκ(z?2κ),5 and denote f̂ = f(p̂). Then, p?κ ≤ f? ≤ f̂ and
we say that the relative duality gap is ηκ = (f̂ − p?κ)/f̂ .

Theorem 6 is a standard application of Lasserre’s hierarchy [64] and the finite convergence result [75]
to problem (2). Although Lasserre’s hierarchy is guaranteed to be tight at some finite κ, the relaxation
becomes computationally impractical for large κ. Therefore, it is desirable to obtain tight relaxations
with small κ. In the Supplementary Material, we show that the dense moment relaxation is empirically
tight at the minimum relaxation order κ = 2 for Examples 1-4, despite the fact that the POPs have
both binary variables (a notoriously challenging setup [63]) and non-convex constraintsR ∈ SO(3).

4.2 Basis Reduction

Although the dense relaxation is tight at κ = 2, the size of the SDP (3) (i.e., the size of the moment
matrixMκ(z2κ) for κ = 2) is

(
n+N+2

2

)
, which grows quadratically in the number of measurements

N and quickly becomes intractable even for small N (e.g., N = 20). In this section, we exploit the

4Archimedeanness is a stronger condition than compactness, see [15, Definition 3.137, p. 115].
5We refer the non-expert reader to [65] for a comprehensive introduction to moment relaxations, and provide

extra definitions and accessible examples in the Supplementary Material.
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monomial sparsity of the POP (2) and use basis reduction to construct a sparse moment relaxation
whose size grows linearly with N .

Theorem 7 (Sparse Moment Relaxation) Define [p]B
.
= [1,xT,θT, (x)

T
2 ,θ

T ⊗ xT]T to be a re-
duced set of monomials, with B being the set of monomial exponents in [p]B, i.e., B .

= {α ∈
Zñ+ : pα ∈ [p]B}. Similarly, define [p]Bx

.
= [1,xT]T and let Bx be its set of exponents. Let

2B .
= {α ∈ Zñ+ : α = α1 + α2,α1,α2 ∈ B} (resp. 2Bx) be the Minkowski sum of B (resp.

Bx) with itself. Define z2B ∈ Rm(2B) (resp. z2Bx ∈ Rm(2Bx)) to be the vector of moments for all
monomials in [p]2B (resp. [p]2Bx ), andMB(z2B) ∈ Sm(B) (resp. MBx(z2Bx) ∈ Sm(Bx)) to be the
moment matrix that assembles z2B (resp. z2Bx) in rows and columns indexed by [p]B (resp. [p]Bx).
Then, the sparse moment relaxation is:

p?B = min
z2B∈Rm(2B)

∑
α∈F c(α)zα (4)

s.t. z0 = 1,MB(z2B) � 0,

M1(hz2) = 0,∀h ∈ hx; MBx(hz2Bx) = 0,∀h ∈ hθ,
M1(gz2) � 0,∀g ∈ g,

wherehx,hθ, g are defined as in Proposition 5. Moreover, we have p?B ≤ p?2 ≤ f? and properties (iii)-
(iv) in Theorem 6 hold for the sparse relaxation (4).

The key idea behind Theorem 7 is to reduce the size of the SDP by only considering the reduced
monomial basis [p]B, which essentially removes all the monomials of the form θiθj that do not
appear in f as per property (i) in Proposition 5. The size of the SDP (4) (i.e., the size ofMB(z2B)) is
m(B) = (n+1)(n+2)

2 + (1 + n)N , which grows linearly in N . In Section 6, we show that the sparse
moment relaxation (4) is also tight, even in the presence of a large amount of outliers. Although there
exist other efficient sparse variants [89, 92] of Lasserre’s hierarchy that exploit correlative sparsity, in
the Supplementary Material we show they break the tightness at the minimum relaxation order and
produce poor estimates. Nevertheless, they can be used to bootstrap our dual certifiers (Section 5.2).

5 The Dual View: Fast Optimality Certification
Despite scaling linearly in N , the sparse relaxation (4) is still too large to be solved efficiently using
current interior point methods (IPM) [74] when N > 20. On the other hand, fast heuristics such
as graduated non-convexity [99] can compute globally optimal solutions to the POP (2) with high
probability of success. In this section, we show that, by taking the dual perspective of sums-of-squares
(SOS) relaxations, we can develop efficient certifiers to verify the optimality of a candidate solution
(p̂, f̂) for large N (e.g., N = 100), for which the SDP relaxation (4) is not even implementable.

5.1 Sums-of-Squares Relaxation

A candidate solution (p̂, f̂) is globally optimal for the POP (2) if and only if f(p)− f̂ ≥ 0,∀p ∈ P .
However, testing nonnegativity of a polynomial on a constraint set is NP-hard [15], so instead we test
if the polynomial is SOS on the constraint set and provide a sufficient condition for global optimality.

Theorem 8 (Sufficient Condition for Global Optimality) Given any candidate solution (p̂, f̂) to
the POP (2), if the following optimization is feasible (i.e., has at least one solution):

find λxj ∈ Rmñ(2),λθj ∈ Rmn(2),S0 ∈ Sm(B)
+ ,Sk ∈ Smñ(1)+ (5)

s.t.f(p)−f̂−
∑
hj∈hx

hj

(
[p]

T
2 λ

x
j

)
−
∑
hj∈hθ

hj

(
[x]

T
2 λ

θ
j

)
=[p]

T
B S0 [p]B+

lg∑
k=1

gk

(
[p]

T
1 Sk [p]1

)
,∀p, (6)

then f̂ (resp. p̂) is the global minimum (resp. global minimizer) of the POP (2). Moreover, problem (5)
can be written compactly as a feasibility SDP:

find d, s.t. d ∈ K ∩A, (7)

where d = [(λx1)T, . . . , (λx|hx|)
T, (λθ1)T, . . . , (λθ|hθ|)

T, svec (S1)
T
, . . . , svec

(
Slg
)T
, svec (S0)

T
]T

concatenates all variables in (5), K defines a convex cone, and A .
= {d : Ad = b} defines an affine

subspace, where b is a vector andA is a matrix satisfying the partial orthogonality property [107, 13].
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In the Supplementary Material, we provide a proof of Theorem 8. Intuitively, if problem (5) is
feasible, then for any p ∈ P , the left-hand side of (6) reduces to f(p) − f̂ (due to hj = 0) and
the right-hand side of (6) is nonnegative (due to gk ≥ 0,S0,Sk � 0), producing a certificate that
f(p) ≥ f̂ . The SOS relaxation (5) also uses basis reduction and it is the dual of the sparse moment
relaxation (4) [65] with the constraint that f̂ is the global optimum. In SDP (7), the convex cone
K corresponds to the PSD constraints in (5) and the affine subspace A corresponds to matching
coefficients in the equality constraint (6). The partial orthogonality of A is a property for SDPs
resulting from SOS relaxations and allows efficient projection onto the affine subspace A [107, 13].

5.2 Douglas-Rachford Splitting

In this section, we propose a first-order method based on Douglas-Rachford Splitting (DRS) [33, 55] to
solve (7) at scale. DRS iteratively solves (7) by starting at an arbitrary initial point d0, and performing
the following three-step updates (at each iteration τ ≥ 0):

(i) dKτ = projK (dτ ) , (ii) dAτ = projA
(
2dKτ − dτ

)
, (iii) dτ+1 = dτ + γτ

(
dAτ − dKτ

)
, (8)

where projK (resp. projA) denotes the orthogonal projection onto K (resp. A) and γτ is a parameter
of the algorithm. The rationale behind the use of DRS to solve the feasibility SDP (7) is that, although
finding d ∈ K ∩ A is expensive (requires solving a large-scale SDP), finding d ∈ K and d ∈ A
separately (i.e., projecting onto K and A separately) is computationally inexpensive [49, 10, 50]. The
following result shows how to certify optimality using the DRS iterations (8).

Theorem 9 (DRS for Optimality Certification) Consider the DRS iterations (8). Then the follow-
ing properties hold true: (i) If the SDP (7) is feasible, then the sequence {dτ}τ≥0 in (8) converges to
a solution of (7) when 0 < γτ < 2; (ii) Let ε = (f̂ − f?)/f̂ be the relative suboptimality between f̂
and the global minimum f? of the POP (2), then each DRS iteration (8) gives a valid suboptimality
upper bound ε̄τ , i.e., ε ≤ ε̄τ , and ε̄τ can be efficiently computed from dAτ .

A complete proof of Theorem 9 is given in the Supplementary Material. The intuition behind
Theorem 9(i) is that, by using the two projections alternatively (thus, the name “splitting”), the
DRS iterates (8) converge to a solution in K ∩ A if the intersection is nonempty. Moreover, even
if the intersection is empty (e.g., when f̂ is not the global minimum), Theorem 9(ii) states that
each DRS iteration is still able to assess the suboptimality of f̂ , which enables the dual certifiers to
detect wrong candidate solutions (cf. Section 6). DRS converges faster than the vanilla alternating
projections to convex sets used in [98] (cf. [11]). Moreover, we further boost convergence speed
by initializing DRS with an initial point d0 computed by solving an inexpensive SOS program with
chordal sparsity [89, 65] (see the Supplementary Material for implementation details).

6 Experiments
This section shows that (i) the sparse moment relaxation (4) is tight and can be used to solve small
problems (e.g., N = 20); (ii) our dual optimality certifiers are effective and scale to larger problems
(e.g., N = 100); (iii) our algorithms allow solving realistic satellite pose estimation problems.

Implementation. We model the sparse moment relaxation (4) using YALMIP [67] in Matlab and
solve the resulting SDPs using MOSEK [6]. DRS is implemented in Matlab using γτ = 2.6

Setup. We test primal relaxation and dual certification on random problem instances of Examples 1-4:
single rotation averaging (SRA), shape alignment (SA), point cloud registration (PCR), and mesh
registration (MR). At each Monte Carlo run, we randomly sample a ground truth model x and generate
inliers by perturbing the measurements with Gaussian noise with standard deviation σ. We choose
σ = 3◦ in SRA, and σ = 0.01 in SA, PCR, and MR. Outliers are generated as arbitrary rotations or
vectors (independent on x). The relative weight between point-to-plane distance and normal-to-
normal distance in MR is set to wi = 1, i = 1, . . . , N . The threshold in problem (TLS) is set to c̄ = 1
for all applications, and βi, i = 1, . . . , N , is set to be proportional to the inlier noise. The interested
reader can find more details about the setup in the Supplementary Material.

6The limiting case of γτ = 2 for DRS is commonly referred to as the Peaceman-Rachford Splitting (PRS) [33].
Although theoretically PRS could diverge, we found it worked well for all our applications.
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Figure 2: Performance of certifiable algorithms. (a) Rotation estimation error (left axis) and relative duality
gap (right axis) of the sparse moment relaxation (4). (b) Number of runs when the solution of GNC is correct
(i.e., rotation error less than 5◦) and number of runs when the solution of GNC is certified (i.e., suboptimality
below 1%). (c) Suboptimality gap versus DRS iterations, averaged over correct and incorrect runs. Top row:
single rotation averaging (SRA), middle row: shape alignment (SA), bottom row: mesh registration (MR). (d)
Qualitative and quantitative results for satellite pose estimation on the SPEED dataset [86].

Primal Relaxation. We first evaluate the performance of the sparse moment relaxation (4) under
increasing outlier rates, with N = 20 measurements. Fig. 2(a) shows the boxplots of rotation
estimation errors and relative duality gap for SRA (top), SA (middle), and MR (bottom) averaged
over 30 Monte Carlo runs (results for PCR are qualitatively similar to MR and hence postponed
to the Supplementary Material). The sparse moment relaxation is numerically tight (relative gap
smaller than 10−3), with a single instance exhibiting a large gap (mesh registration, 80% outliers).
The figure also shows that the relaxation produces an accurate estimate in all tested instances. In the
Supplementary Material, we show our primal relaxation is tight even under adversarial outliers.

Dual Certification. We test our dual optimality certifiers under increasing outlier rates, withN = 100
measurements. In each Monte Carlo run, we first use GNC [99] as a fast heuristics to compute a
candidate solution to the POP (2), and then run the proposed dual certifiers (Theorem 9) to compute
a suboptimality gap. Fig. 2(b) plots the number of runs when GNC returns the correct solutions
(i.e., with rotation error less than 5◦), and the number of runs when the solutions are certified (i.e., have
suboptimality below 1%). We can see that our dual certifiers can certify all correct solutions and
reject all incorrect estimates (the blue and green bars always have same height, meaning that there
are no false positives nor false negatives). Fig. 2(c) plots the average convergence history of the
suboptimality gap versus the number of DRS iterations (in log-log scale). DRS drives the suboptimality
below 1% within 1000 iterations (within 100 iterations for SRA) if the solution is correct, while it
reports a suboptimality larger than 10% if the solution is incorrect. In the Supplementary Material,
we show our certification outperforms the statistical Kolmogorov–Smirnov test [73].

Which One is More Scalable? Table 1 compares the scalability of the sparse relaxation and the dual
certification for increasing number of measurements. Solving the large-scale SDP quickly becomes
intractable for moderate N , while certification using DRS can scale to large number of measurements.
Satellite Pose Estimation. Satellite pose estimation using monocular vision is a crucial technology
for many space operations [86, 28]. We use “Shape Alignment (Example 2)” to perform 6D pose
estimation from satellite images in the SPEED dataset [86] (see Fig. 2(d)). Towards this goal, we first
use the pre-trained network from [28] to detect 11 pixel measurements corresponding to 3D keypoints
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N
SRA SA PCR MR

m(B) trelax tcertify m(B) trelax tcertify m(B) trelax tcertify m(B) trelax tcertify

20 255 151.65 0.73 168 35.52 2.00 351 763.59 16.34 351 750.67 8.43

50 555 38866 2.67 378 3287 7.88 741 >105 84.86 741 >105 60.76

100 1055 ∗∗ 8.35 728 >105 37.44 1391 ∗∗ 357.48 1391 ∗∗ 165.87

Table 1: Relaxation and certification time (in seconds) for increasing N . trelax is the time for solving the sparse
moment relaxation (4). tcertify includes the time for computing the chordal initial guess and the time for DRS to
drive the suboptimality below 1%. “∗∗” denotes instances where MOSEK ran out of memory.

of the Tango satellite model. Because the network outputs fairly accurate detections (all inliers), we
also replace 0%, 18%, 35%, 49%, 62%, and 73% pairwise inliers (see Supplementary Material) with
random outliers to test more challenging instances. We show a correct and certified estimation with
62% outliers in Fig. 2(d) top panel, and an incorrect and non-certified estimation with 73% outliers in
Fig. 2(d) middle panel. Fig. 2(d) bottom panel plots the statistics of the rotation error over 20 satellite
images (showing the relation between suboptimality and estimation errors). We refer the reader to
the Supplementary Material for a more comprehensive description of the tests and the results.

7 Conclusions
We have proposed a general framework for designing certifiable algorithms for a broad class of
robust geometric perception problems. From the primal perspective, we apply Lasserre’s hierarchy
of moment relaxations, together with basis reduction, to construct tight semidefinite relaxations
to nonconvex robust estimation problems. From the dual perspective, we use SOS relaxation to
convert the certification of a given candidate solution to a convex feasibility SDP, and then we
leverage Douglas-Rachford Splitting to solve the feasibility SDP and compute a suboptimality for the
candidate solution. Our primal relaxation is tight, and our dual certification is correct and scalable.

Broader Impact
Geometric perception plays an essential role in robotics applications ranging from autonomous
driving, robotic manipulation, autonomous flight, to robotic search and rescue. Occasional perception
failures are almost inevitable while operating in the wild (e.g., due to sensor malfunction, or incorrect
data association resulting from neural networks or hand-crafted feature matching techniques). These
failures, if not detected and handled properly, have detrimental effects, especially in safety-critical and
high-integrity applications (e.g., they may put passengers at risk in autonomous driving or damage a
satellite in space applications). Existing perception algorithms (e.g., fast heuristics) can fail without
notice. On the contrary, the certifiable algorithms presented in this work perform geometric perception
with optimality guarantees and act as safeguards to detect perception failures. The development
of certifiable algorithms has the potential to enhance the robustness of perception systems, inform
system certification and monitoring, and increase the trustworthiness of autonomous systems.

On the negative side, the use of certifiable algorithms as an enabler for robots and autonomous systems
inherits the shortcomings connected to the misuse of these technologies. The use of autonomous
systems in military applications as well as the impact of robotics and automation on the (human)
workforce must be carefully pondered to ensure a positive societal impact.
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